# Training Summary - DeBERTa v3 Small Explicit Classifier v2.0 ## Overview This document summarizes the training process and improvements made in v2.0 of the explicit content classifier. ## Key Improvements ### 1. Data Quality Enhancement - **Problem**: Cross-split contamination (2,127 duplicate texts across train/val/test) - **Solution**: Comprehensive deduplication removing 5,121 duplicate samples - **Result**: Clean dataset with 119,023 unique samples ### 2. Advanced Training Strategy - **Focal Loss**: Implemented with γ=2.0 to address class imbalance - **Extended Training**: 4.79 epochs vs 1.1 epochs in v1.0 - **Learning Rate Schedule**: Cosine annealing for better convergence - **Early Stopping**: Patience of 5 on macro F1 metric ### 3. Architecture Optimizations - **Gradient Accumulation**: Effective batch size of 32 - **Warmup Steps**: 1,000 steps for stable training - **Weight Decay**: 0.01 for regularization ## Training Configuration ```yaml Model: microsoft/deberta-v3-small (141.9M parameters) Training Method: Focal Loss (γ=2.0) Epochs: 4.79 (early stopped) Learning Rate: 5e-5 with cosine schedule Batch Size: 16 (effective 32 with accumulation) Warmup Steps: 1,000 Weight Decay: 0.01 Hardware: Apple Silicon (MPS) Training Time: ~13.7 hours ``` ## Dataset Statistics ### Final Clean Dataset - **Total Samples**: 119,023 (vs 124,144 original) - **Duplicates Removed**: 5,121 - **Cross-split Contamination**: Eliminated completely ### Split Distribution - **Training**: 83,316 samples (70.0%) - **Validation**: 17,853 samples (15.0%) - **Test**: 17,854 samples (15.0%) ### Class Distribution (Training Set) | Class ID | Name | Count | Percentage | |----------|------|-------|------------| | 0 | EXPLICIT-DISCLAIMER | 758 | 0.9% | | 1 | EXPLICIT-OFFENSIVE | 16,845 | 20.2% | | 2 | EXPLICIT-SEXUAL | 21,526 | 25.8% | | 3 | EXPLICIT-VIOLENT | 1,032 | 1.2% | | 4 | NON-EXPLICIT | 29,090 | 34.9% | | 5 | SEXUAL-REFERENCE | 8,410 | 10.1% | | 6 | SUGGESTIVE | 5,655 | 6.8% | ## Performance Comparison ### Overall Metrics | Metric | v1.0 | v2.0 | Improvement | |---------|------|------|-------------| | Accuracy | 77.3% | **81.8%** | **+4.5%** | | Macro F1 | 0.709 | **0.754** | **+6.4%** | | Weighted F1 | 0.779 | **0.816** | **+4.7%** | ### Per-Class F1 Improvements | Class | v1.0 F1 | v2.0 F1 | Improvement | |-------|---------|---------|-------------| | EXPLICIT-DISCLAIMER | 0.927 | **0.977** | +5.4% | | EXPLICIT-OFFENSIVE | 0.808 | **0.813** | +0.6% | | EXPLICIT-SEXUAL | 0.918 | **0.930** | +1.3% | | EXPLICIT-VIOLENT | 0.478 | **0.581** | **+21.5%** 🚀 | | NON-EXPLICIT | 0.777 | **0.851** | +9.5% | | SEXUAL-REFERENCE | 0.658 | **0.652** | -0.9% | | SUGGESTIVE | 0.400 | **0.476** | **+19.0%** 🚀 | ## Training Progress ### Key Milestones - **Epoch 0.37**: Initial eval - Macro F1: 0.603 - **Epoch 1.47**: Significant improvement - Macro F1: 0.732 - **Epoch 2.95**: Peak performance - Macro F1: 0.758 - **Epoch 4.79**: Final model (early stopped) ### Loss Evolution - **Initial Loss**: 0.6945 - **Final Loss**: 0.0581 - **Total Reduction**: 91.6% ## Technical Achievements ### 1. Minority Class Performance The focal loss successfully addressed the class imbalance: - **EXPLICIT-VIOLENT**: +21.5% F1 improvement - **SUGGESTIVE**: +19.0% F1 improvement - **EXPLICIT-DISCLAIMER**: Near-perfect performance (0.977 F1) ### 2. Data Quality - Eliminated all cross-split contamination - Proper train/val/test independence - More reliable evaluation metrics ### 3. Training Stability - Consistent improvement across epochs - Proper early stopping prevented overfitting - Stable convergence with cosine learning rate schedule ## Limitations Addressed ### v1.0 Issues Fixed - ✅ Cross-split data contamination eliminated - ✅ Minority class performance significantly improved - ✅ Extended training for better convergence - ✅ More rigorous evaluation on clean data ### Remaining Challenges - SUGGESTIVE vs SEXUAL-REFERENCE distinction remains difficult - Limited training data for EXPLICIT-VIOLENT class - Context dependency for short texts ## Files Generated ### Model Files - `model.safetensors` - Model weights (567MB) - `config.json` - Model configuration with proper labels - `tokenizer.json`, `spm.model` - Tokenization files - `label_mapping.json` - Label reference ### Evaluation Results - `improved_classification_report.txt` - Detailed performance metrics - `recommended_thresholds.json` - Optimal decision thresholds - `confusion_matrix.png` - Classification confusion matrix - `pr_curves.png` - Precision-recall curves per class - `roc_curves.png` - ROC curves per class - `calibration.png` - Model calibration analysis ### Documentation - `README.md` - Comprehensive model documentation - `model_card.md` - Model card summary - `inference_example.py` - Usage example script - `TRAINING_SUMMARY.md` - This training summary ## Next Steps ### Potential Future Improvements 1. **Larger Model**: Scale to DeBERTa-large for even better performance 2. **Data Augmentation**: Generate more minority class samples 3. **Ensemble Methods**: Combine multiple models for robust predictions 4. **Domain Adaptation**: Fine-tune for specific content types ### Production Readiness - ✅ SafeTensors format for secure deployment - ✅ Comprehensive documentation - ✅ Example inference code - ✅ Evaluation artifacts included - ✅ Proper label mappings in config The v2.0 model represents a significant improvement over v1.0 and is ready for production deployment in literary analysis and content curation applications.