Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +85 -0
- config.json +107 -0
- configuration_brumby.py +235 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_brumby.py +857 -0
- quant_log.csv +281 -0
- quantize_config.json +25 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{{- messages[0].content + '\n\n' }}
|
| 5 |
+
{%- endif %}
|
| 6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 7 |
+
{%- for tool in tools %}
|
| 8 |
+
{{- "\n" }}
|
| 9 |
+
{{- tool | tojson }}
|
| 10 |
+
{%- endfor %}
|
| 11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 12 |
+
{%- else %}
|
| 13 |
+
{%- if messages[0].role == 'system' %}
|
| 14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
| 15 |
+
{%- endif %}
|
| 16 |
+
{%- endif %}
|
| 17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
| 18 |
+
{%- for message in messages[::-1] %}
|
| 19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
| 20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
| 21 |
+
{%- set ns.multi_step_tool = false %}
|
| 22 |
+
{%- set ns.last_query_index = index %}
|
| 23 |
+
{%- endif %}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- for message in messages %}
|
| 26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
| 27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 28 |
+
{%- elif message.role == "assistant" %}
|
| 29 |
+
{%- set content = message.content %}
|
| 30 |
+
{%- set reasoning_content = '' %}
|
| 31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
| 32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
| 33 |
+
{%- else %}
|
| 34 |
+
{%- if '</think>' in message.content %}
|
| 35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
| 36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
| 37 |
+
{%- endif %}
|
| 38 |
+
{%- endif %}
|
| 39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
| 40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
| 41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
| 42 |
+
{%- else %}
|
| 43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 44 |
+
{%- endif %}
|
| 45 |
+
{%- else %}
|
| 46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
| 47 |
+
{%- endif %}
|
| 48 |
+
{%- if message.tool_calls %}
|
| 49 |
+
{%- for tool_call in message.tool_calls %}
|
| 50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
| 51 |
+
{{- '\n' }}
|
| 52 |
+
{%- endif %}
|
| 53 |
+
{%- if tool_call.function %}
|
| 54 |
+
{%- set tool_call = tool_call.function %}
|
| 55 |
+
{%- endif %}
|
| 56 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 57 |
+
{{- tool_call.name }}
|
| 58 |
+
{{- '", "arguments": ' }}
|
| 59 |
+
{%- if tool_call.arguments is string %}
|
| 60 |
+
{{- tool_call.arguments }}
|
| 61 |
+
{%- else %}
|
| 62 |
+
{{- tool_call.arguments | tojson }}
|
| 63 |
+
{%- endif %}
|
| 64 |
+
{{- '}\n</tool_call>' }}
|
| 65 |
+
{%- endfor %}
|
| 66 |
+
{%- endif %}
|
| 67 |
+
{{- '<|im_end|>\n' }}
|
| 68 |
+
{%- elif message.role == "tool" %}
|
| 69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 70 |
+
{{- '<|im_start|>user' }}
|
| 71 |
+
{%- endif %}
|
| 72 |
+
{{- '\n<tool_response>\n' }}
|
| 73 |
+
{{- message.content }}
|
| 74 |
+
{{- '\n</tool_response>' }}
|
| 75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 76 |
+
{{- '<|im_end|>\n' }}
|
| 77 |
+
{%- endif %}
|
| 78 |
+
{%- endif %}
|
| 79 |
+
{%- endfor %}
|
| 80 |
+
{%- if add_generation_prompt %}
|
| 81 |
+
{{- '<|im_start|>assistant\n' }}
|
| 82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
| 83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
| 84 |
+
{%- endif %}
|
| 85 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BrumbyForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_brumby.BrumbyConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_brumby.BrumbyForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 151643,
|
| 12 |
+
"chunk_size": 64,
|
| 13 |
+
"dtype": "bfloat16",
|
| 14 |
+
"eos_token_id": 151643,
|
| 15 |
+
"head_dim": 128,
|
| 16 |
+
"hidden_act": "silu",
|
| 17 |
+
"hidden_size": 5120,
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 17408,
|
| 20 |
+
"layer_types": [
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"full_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"full_attention",
|
| 48 |
+
"full_attention",
|
| 49 |
+
"full_attention",
|
| 50 |
+
"full_attention",
|
| 51 |
+
"full_attention",
|
| 52 |
+
"full_attention",
|
| 53 |
+
"full_attention",
|
| 54 |
+
"full_attention",
|
| 55 |
+
"full_attention",
|
| 56 |
+
"full_attention",
|
| 57 |
+
"full_attention",
|
| 58 |
+
"full_attention",
|
| 59 |
+
"full_attention",
|
| 60 |
+
"full_attention"
|
| 61 |
+
],
|
| 62 |
+
"max_position_embeddings": 32768,
|
| 63 |
+
"max_window_layers": 40,
|
| 64 |
+
"model_type": "brumby",
|
| 65 |
+
"num_attention_heads": 40,
|
| 66 |
+
"num_hidden_layers": 40,
|
| 67 |
+
"num_key_value_heads": 8,
|
| 68 |
+
"p": 2,
|
| 69 |
+
"pad_token_id": 151643,
|
| 70 |
+
"prefill_chunk_size": 1024,
|
| 71 |
+
"quantization_config": {
|
| 72 |
+
"bits": 4,
|
| 73 |
+
"checkpoint_format": "gptq",
|
| 74 |
+
"desc_act": false,
|
| 75 |
+
"group_size": 32,
|
| 76 |
+
"lm_head": false,
|
| 77 |
+
"meta": {
|
| 78 |
+
"act_group_aware": true,
|
| 79 |
+
"damp_auto_increment": 0.01,
|
| 80 |
+
"damp_percent": 0.05,
|
| 81 |
+
"mse": 0.0,
|
| 82 |
+
"quantizer": [
|
| 83 |
+
"gptqmodel:5.1.0-dev"
|
| 84 |
+
],
|
| 85 |
+
"static_groups": false,
|
| 86 |
+
"true_sequential": true,
|
| 87 |
+
"uri": "https://github.com/modelcloud/gptqmodel",
|
| 88 |
+
"v2": false,
|
| 89 |
+
"v2_alpha": 0.25
|
| 90 |
+
},
|
| 91 |
+
"pack_dtype": "int32",
|
| 92 |
+
"pack_impl": "cpu",
|
| 93 |
+
"quant_method": "gptq",
|
| 94 |
+
"sym": true
|
| 95 |
+
},
|
| 96 |
+
"rms_norm_eps": 1e-06,
|
| 97 |
+
"rope_scaling": null,
|
| 98 |
+
"rope_theta": 1000000,
|
| 99 |
+
"sliding_window": null,
|
| 100 |
+
"switch_over_seq_len": 8192,
|
| 101 |
+
"tie_word_embeddings": false,
|
| 102 |
+
"transformers_version": "4.57.1",
|
| 103 |
+
"use_cache": true,
|
| 104 |
+
"use_exp": false,
|
| 105 |
+
"use_sliding_window": false,
|
| 106 |
+
"vocab_size": 151936
|
| 107 |
+
}
|
configuration_brumby.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Manifest AI.
|
| 3 |
+
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""Brumby model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
| 19 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BrumbyConfig(PretrainedConfig):
|
| 27 |
+
r"""
|
| 28 |
+
This is the configuration class to store the configuration of a [`BrumbyModel`]. It is used to instantiate a
|
| 29 |
+
Brumby model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 30 |
+
with the defaults will yield a similar configuration to that of
|
| 31 |
+
Brumby-14B-base [Brumby/Brumby-14B-base](https://huggingface.co/manifestai/Brumby-14B-base).
|
| 32 |
+
|
| 33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 34 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 39 |
+
Vocabulary size of the Brumby model. Defines the number of different tokens that can be represented by the
|
| 40 |
+
`inputs_ids` passed when calling [`BrumbyModel`]
|
| 41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 42 |
+
Dimension of the hidden representations.
|
| 43 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 44 |
+
Dimension of the MLP representations.
|
| 45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of hidden layers in the Transformer encoder.
|
| 47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 49 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 52 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 54 |
+
by meanpooling all the original heads within that group. For more details, check out [this
|
| 55 |
+
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
|
| 56 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 57 |
+
The attention head dimension.
|
| 58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 59 |
+
The non-linear activation function (function or string) in the decoder.
|
| 60 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 61 |
+
The maximum sequence length that this model might ever be used with.
|
| 62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 65 |
+
The epsilon used by the rms normalization layers.
|
| 66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 68 |
+
relevant if `config.is_decoder=True`.
|
| 69 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 70 |
+
Whether the model's input and output word embeddings should be tied.
|
| 71 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 72 |
+
The base period of the RoPE embeddings.
|
| 73 |
+
rope_scaling (`Dict`, *optional*):
|
| 74 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 75 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 76 |
+
accordingly.
|
| 77 |
+
Expected contents:
|
| 78 |
+
`rope_type` (`str`):
|
| 79 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 80 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 81 |
+
`factor` (`float`, *optional*):
|
| 82 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 83 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 84 |
+
original maximum pre-trained length.
|
| 85 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 86 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 87 |
+
pretraining.
|
| 88 |
+
`attention_factor` (`float`, *optional*):
|
| 89 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 90 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 91 |
+
`factor` field to infer the suggested value.
|
| 92 |
+
`beta_fast` (`float`, *optional*):
|
| 93 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 94 |
+
ramp function. If unspecified, it defaults to 32.
|
| 95 |
+
`beta_slow` (`float`, *optional*):
|
| 96 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 97 |
+
ramp function. If unspecified, it defaults to 1.
|
| 98 |
+
`short_factor` (`list[float]`, *optional*):
|
| 99 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 100 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 101 |
+
size divided by the number of attention heads divided by 2
|
| 102 |
+
`long_factor` (`list[float]`, *optional*):
|
| 103 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 104 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 105 |
+
size divided by the number of attention heads divided by 2
|
| 106 |
+
`low_freq_factor` (`float`, *optional*):
|
| 107 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 108 |
+
`high_freq_factor` (`float`, *optional*):
|
| 109 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 110 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 111 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 112 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 113 |
+
Whether to use sliding window attention.
|
| 114 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 115 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 116 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 117 |
+
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
|
| 118 |
+
additional layer afterwards will use SWA (Sliding Window Attention).
|
| 119 |
+
layer_types (`list`, *optional*):
|
| 120 |
+
Attention pattern for each layer.
|
| 121 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 122 |
+
The dropout ratio for the attention probabilities.
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
>>> from transformers import BrumbyModel, BrumbyConfig
|
| 126 |
+
|
| 127 |
+
>>> # Initializing a Brumby style configuration
|
| 128 |
+
>>> configuration = BrumbyConfig()
|
| 129 |
+
|
| 130 |
+
>>> # Initializing a model from the Brumby-14B-base style configuration
|
| 131 |
+
>>> model = BrumbyModel(configuration)
|
| 132 |
+
|
| 133 |
+
>>> # Accessing the model configuration
|
| 134 |
+
>>> configuration = model.config
|
| 135 |
+
```"""
|
| 136 |
+
|
| 137 |
+
model_type = "brumby"
|
| 138 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 139 |
+
|
| 140 |
+
# Default tensor parallel plan for base model `Brumby`
|
| 141 |
+
base_model_tp_plan = {
|
| 142 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 143 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 144 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 145 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 146 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 147 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 148 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 149 |
+
}
|
| 150 |
+
base_model_pp_plan = {
|
| 151 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 152 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 153 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
def __init__(
|
| 157 |
+
self,
|
| 158 |
+
vocab_size=151936,
|
| 159 |
+
hidden_size=5120,
|
| 160 |
+
intermediate_size=17408,
|
| 161 |
+
num_hidden_layers=40,
|
| 162 |
+
num_attention_heads=40,
|
| 163 |
+
num_key_value_heads=8,
|
| 164 |
+
head_dim=128,
|
| 165 |
+
hidden_act="silu",
|
| 166 |
+
max_position_embeddings=32768,
|
| 167 |
+
initializer_range=0.02,
|
| 168 |
+
rms_norm_eps=1e-6,
|
| 169 |
+
use_cache=True,
|
| 170 |
+
tie_word_embeddings=False,
|
| 171 |
+
rope_theta=10000.0,
|
| 172 |
+
rope_scaling=None,
|
| 173 |
+
attention_bias=False,
|
| 174 |
+
use_sliding_window=False,
|
| 175 |
+
sliding_window=4096,
|
| 176 |
+
max_window_layers=40,
|
| 177 |
+
layer_types=None,
|
| 178 |
+
attention_dropout=0.0,
|
| 179 |
+
chunk_size=64,
|
| 180 |
+
switch_over_seq_len=8192,
|
| 181 |
+
prefill_chunk_size=1024,
|
| 182 |
+
use_exp=False,
|
| 183 |
+
**kwargs,
|
| 184 |
+
):
|
| 185 |
+
self.vocab_size = vocab_size
|
| 186 |
+
self.max_position_embeddings = max_position_embeddings
|
| 187 |
+
self.hidden_size = hidden_size
|
| 188 |
+
self.intermediate_size = intermediate_size
|
| 189 |
+
self.num_hidden_layers = num_hidden_layers
|
| 190 |
+
self.num_attention_heads = num_attention_heads
|
| 191 |
+
self.use_sliding_window = use_sliding_window
|
| 192 |
+
self.sliding_window = sliding_window if self.use_sliding_window else None
|
| 193 |
+
self.max_window_layers = max_window_layers
|
| 194 |
+
|
| 195 |
+
# for backward compatibility
|
| 196 |
+
if num_key_value_heads is None:
|
| 197 |
+
num_key_value_heads = num_attention_heads
|
| 198 |
+
|
| 199 |
+
self.num_key_value_heads = num_key_value_heads
|
| 200 |
+
self.head_dim = head_dim
|
| 201 |
+
self.hidden_act = hidden_act
|
| 202 |
+
self.initializer_range = initializer_range
|
| 203 |
+
self.rms_norm_eps = rms_norm_eps
|
| 204 |
+
self.use_cache = use_cache
|
| 205 |
+
self.rope_theta = rope_theta
|
| 206 |
+
self.rope_scaling = rope_scaling
|
| 207 |
+
self.attention_bias = attention_bias
|
| 208 |
+
self.attention_dropout = attention_dropout
|
| 209 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 210 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 211 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 212 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 213 |
+
rope_config_validation(self)
|
| 214 |
+
|
| 215 |
+
self.layer_types = layer_types
|
| 216 |
+
if self.layer_types is None:
|
| 217 |
+
self.layer_types = [
|
| 218 |
+
"sliding_attention"
|
| 219 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
| 220 |
+
else "full_attention"
|
| 221 |
+
for i in range(self.num_hidden_layers)
|
| 222 |
+
]
|
| 223 |
+
layer_type_validation(self.layer_types, self.num_hidden_layers)
|
| 224 |
+
self.chunk_size = chunk_size
|
| 225 |
+
self.switch_over_seq_len = switch_over_seq_len
|
| 226 |
+
self.prefill_chunk_size = prefill_chunk_size
|
| 227 |
+
self.use_exp = use_exp
|
| 228 |
+
self.p = 2 # power of expansion for power attention, only 2 is supported for now
|
| 229 |
+
super().__init__(
|
| 230 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 231 |
+
**kwargs,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
__all__ = ["BrumbyConfig"]
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"transformers_version": "4.57.1"
|
| 7 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7a5fb6d7c5f0fbe8881269a0d64950655c2116fd54d57c0faa2ac418455cc8f
|
| 3 |
+
size 4285645429
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:edebaa9a0222e8d49729b0765b38ee700a5df083da31a710aa50d6bb601b69cb
|
| 3 |
+
size 4275983127
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89ff91b78f9922f4309be337441185574508c9ef5e5ff6a4381da637c9579455
|
| 3 |
+
size 2200218491
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_brumby.py
ADDED
|
@@ -0,0 +1,857 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""PyTorch Brumby model."""
|
| 17 |
+
|
| 18 |
+
from typing import Callable, Optional, Union, Any, Dict, Tuple
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
from torch import nn
|
| 22 |
+
|
| 23 |
+
from transformers.activations import ACT2FN
|
| 24 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache, SlidingWindowCache
|
| 25 |
+
from transformers.generation import GenerationMixin
|
| 26 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 27 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 28 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 29 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 30 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 31 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 32 |
+
from transformers.processing_utils import Unpack
|
| 33 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
| 34 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 35 |
+
from transformers.utils.generic import check_model_inputs
|
| 36 |
+
from .configuration_brumby import BrumbyConfig
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
from retention.triton import power_retention, power_retention_inference
|
| 41 |
+
from retention._utils import compute_expanded_dim
|
| 42 |
+
except ImportError:
|
| 43 |
+
raise ImportError("Retention is required by the Brumby model. Please install it with `pip install retention`.")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class PowerAttentionDynamicCache(DynamicCache):
|
| 47 |
+
"""
|
| 48 |
+
A dynamic cache that encompasses 2 sets of caches:
|
| 49 |
+
1. attention cache with a short seq_len (determined by the chunk_size parameter):
|
| 50 |
+
- key_cache: [batch_size, num_heads, chunk_size, head_dim]
|
| 51 |
+
- value_cache: [batch_size, num_heads, chunk_size, head_dim]
|
| 52 |
+
- gating_cache: [batch_size, num_heads, chunk_size]
|
| 53 |
+
2. fixed-size state-based cache:
|
| 54 |
+
- state: [batch_size, num_heads, state_dim, head_dim]
|
| 55 |
+
- sum_of_keys: [batch_size, num_heads, state_dim]
|
| 56 |
+
|
| 57 |
+
where state_dim is determined by the power of expansion for power attention.
|
| 58 |
+
"""
|
| 59 |
+
def __init__(self, config: BrumbyConfig, batch_size: int, dtype=torch.bfloat16, device=None):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.config = config
|
| 62 |
+
self.batch_size = batch_size
|
| 63 |
+
self.device = device
|
| 64 |
+
self.dtype = dtype
|
| 65 |
+
self.chunk_size = config.chunk_size
|
| 66 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 67 |
+
self.p = config.p
|
| 68 |
+
self.state_dim = compute_expanded_dim(self.head_dim, deg=self.p)
|
| 69 |
+
|
| 70 |
+
self.states = [None for _ in range(config.num_hidden_layers)]
|
| 71 |
+
self.sum_of_keys = [None for _ in range(config.num_hidden_layers)]
|
| 72 |
+
self.key_cache = [torch.tensor([[]] * batch_size, device=device, dtype=dtype) for _ in range(config.num_hidden_layers)]
|
| 73 |
+
self.value_cache = [torch.tensor([[]] * batch_size, device=device, dtype=dtype) for _ in range(config.num_hidden_layers)]
|
| 74 |
+
self.gate_cache = [torch.tensor([[]] * batch_size, device=device, dtype=torch.float32) for _ in range(config.num_hidden_layers)]
|
| 75 |
+
|
| 76 |
+
def clean_cache(self, layer_idx: int) -> None:
|
| 77 |
+
self.key_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=self.dtype)
|
| 78 |
+
self.value_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=self.dtype)
|
| 79 |
+
self.gate_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=torch.float32)
|
| 80 |
+
|
| 81 |
+
def update_cache(
|
| 82 |
+
self,
|
| 83 |
+
key_states: torch.Tensor,
|
| 84 |
+
value_states: torch.Tensor,
|
| 85 |
+
gate_states: torch.Tensor,
|
| 86 |
+
layer_idx: int,
|
| 87 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
| 88 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 89 |
+
if self.key_cache[layer_idx].shape[-1] == 0:
|
| 90 |
+
self.key_cache[layer_idx] = key_states
|
| 91 |
+
self.value_cache[layer_idx] = value_states
|
| 92 |
+
self.gate_cache[layer_idx] = gate_states
|
| 93 |
+
else:
|
| 94 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
|
| 95 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
|
| 96 |
+
self.gate_cache[layer_idx] = torch.cat([self.gate_cache[layer_idx], gate_states], dim=2)
|
| 97 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx], self.gate_cache[layer_idx], self.states[layer_idx], self.sum_of_keys[layer_idx]
|
| 98 |
+
|
| 99 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
| 100 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 101 |
+
for layer_idx in range(len(self.key_cache)):
|
| 102 |
+
device = self.key_cache[layer_idx].device
|
| 103 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
| 104 |
+
device = self.value_cache[layer_idx].device
|
| 105 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
| 106 |
+
device = self.gate_cache[layer_idx].device
|
| 107 |
+
self.gate_cache[layer_idx] = self.gate_cache[layer_idx].index_select(0, beam_idx.to(device))
|
| 108 |
+
device = self.states[layer_idx].device
|
| 109 |
+
self.states[layer_idx] = self.states[layer_idx].index_select(0, beam_idx.to(device))
|
| 110 |
+
device = self.sum_of_keys[layer_idx].device
|
| 111 |
+
self.sum_of_keys[layer_idx] = self.sum_of_keys[layer_idx].index_select(0, beam_idx.to(device))
|
| 112 |
+
|
| 113 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
| 114 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
| 115 |
+
# take any layer that contains cache and not empty tensor
|
| 116 |
+
if layer_idx is None:
|
| 117 |
+
layer_idx = 0
|
| 118 |
+
if layer_idx >= len(self.key_cache):
|
| 119 |
+
return 0
|
| 120 |
+
# Check if the cache for this layer is empty
|
| 121 |
+
if self.key_cache[layer_idx].numel() == 0:
|
| 122 |
+
return 0
|
| 123 |
+
return self.key_cache[layer_idx].shape[-2]
|
| 124 |
+
|
| 125 |
+
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor]]:
|
| 126 |
+
raise NotImplementedError("PowerAttentionDynamicCache does not have a legacy cache equivalent.")
|
| 127 |
+
|
| 128 |
+
@classmethod
|
| 129 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "PowerAttentionDynamicCache":
|
| 130 |
+
raise NotImplementedError("PowerAttentionDynamicCache does not have a legacy cache equivalent.")
|
| 131 |
+
|
| 132 |
+
def update_state(self, layer_idx: int, new_state: torch.Tensor, new_sum_of_keys: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 133 |
+
self.states[layer_idx] = new_state
|
| 134 |
+
self.sum_of_keys[layer_idx] = new_sum_of_keys
|
| 135 |
+
return self.states[layer_idx], self.sum_of_keys[layer_idx]
|
| 136 |
+
|
| 137 |
+
def reset(self):
|
| 138 |
+
self.states.zero_()
|
| 139 |
+
self.sum_of_keys.zero_()
|
| 140 |
+
self.key_cache.zero_()
|
| 141 |
+
self.value_cache.zero_()
|
| 142 |
+
self.gate_cache.zero_()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 147 |
+
class BrumbyRMSNorm(nn.Module):
|
| 148 |
+
def __init__(self, hidden_size, eps: float = 1e-6) -> None:
|
| 149 |
+
"""
|
| 150 |
+
BrumbyRMSNorm is equivalent to T5LayerNorm
|
| 151 |
+
"""
|
| 152 |
+
super().__init__()
|
| 153 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 154 |
+
self.variance_epsilon = eps
|
| 155 |
+
|
| 156 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 157 |
+
input_dtype = hidden_states.dtype
|
| 158 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 159 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 160 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 161 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 162 |
+
|
| 163 |
+
def extra_repr(self):
|
| 164 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class BrumbyMLP(nn.Module):
|
| 168 |
+
def __init__(self, config):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.config = config
|
| 171 |
+
self.hidden_size = config.hidden_size
|
| 172 |
+
self.intermediate_size = config.intermediate_size
|
| 173 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 174 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 175 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 176 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 177 |
+
|
| 178 |
+
def forward(self, x):
|
| 179 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 180 |
+
return down_proj
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def rotate_half(x):
|
| 184 |
+
"""Rotates half the hidden dims of the input."""
|
| 185 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 186 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 187 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 191 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
q (`torch.Tensor`): The query tensor.
|
| 195 |
+
k (`torch.Tensor`): The key tensor.
|
| 196 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 197 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 198 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 199 |
+
Deprecated and unused.
|
| 200 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 201 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 202 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 203 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 204 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 205 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 206 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 207 |
+
Returns:
|
| 208 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 209 |
+
"""
|
| 210 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 211 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 212 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 213 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 214 |
+
return q_embed, k_embed
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 218 |
+
"""
|
| 219 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 220 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 221 |
+
"""
|
| 222 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 223 |
+
if n_rep == 1:
|
| 224 |
+
return hidden_states
|
| 225 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 226 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def eager_attention_forward(
|
| 230 |
+
module: nn.Module,
|
| 231 |
+
query: torch.Tensor,
|
| 232 |
+
key: torch.Tensor,
|
| 233 |
+
value: torch.Tensor,
|
| 234 |
+
attention_mask: Optional[torch.Tensor],
|
| 235 |
+
scaling: float,
|
| 236 |
+
dropout: float = 0.0,
|
| 237 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 238 |
+
):
|
| 239 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 240 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 241 |
+
|
| 242 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 243 |
+
if attention_mask is not None:
|
| 244 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 245 |
+
attn_weights = attn_weights + causal_mask
|
| 246 |
+
|
| 247 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 248 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 249 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 250 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 251 |
+
|
| 252 |
+
return attn_output, attn_weights
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class BrumbyAttention(nn.Module):
|
| 256 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 257 |
+
|
| 258 |
+
def __init__(self, config: BrumbyConfig, layer_idx: int):
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.config = config
|
| 261 |
+
self.layer_idx = layer_idx
|
| 262 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 263 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 264 |
+
self.scaling = self.head_dim**-0.5
|
| 265 |
+
self.attention_dropout = config.attention_dropout
|
| 266 |
+
self.is_causal = True
|
| 267 |
+
self.use_exp = config.use_exp
|
| 268 |
+
self.prefill_chunk_size = config.prefill_chunk_size
|
| 269 |
+
self.chunk_size = config.chunk_size
|
| 270 |
+
self.switch_over_seq_len = config.switch_over_seq_len
|
| 271 |
+
|
| 272 |
+
self.q_proj = nn.Linear(
|
| 273 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 274 |
+
)
|
| 275 |
+
self.k_proj = nn.Linear(
|
| 276 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 277 |
+
)
|
| 278 |
+
self.v_proj = nn.Linear(
|
| 279 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 280 |
+
)
|
| 281 |
+
self.g_proj = nn.Linear(
|
| 282 |
+
config.hidden_size, config.num_key_value_heads, bias=config.attention_bias
|
| 283 |
+
)
|
| 284 |
+
self.o_proj = nn.Linear(
|
| 285 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 286 |
+
)
|
| 287 |
+
self.q_norm = BrumbyRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
| 288 |
+
self.k_norm = BrumbyRMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
|
| 289 |
+
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
|
| 290 |
+
|
| 291 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 292 |
+
def forward(
|
| 293 |
+
self,
|
| 294 |
+
hidden_states: torch.Tensor,
|
| 295 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 296 |
+
attention_mask: Optional[torch.Tensor],
|
| 297 |
+
past_key_values: Optional[PowerAttentionDynamicCache] = None,
|
| 298 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 299 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 300 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 301 |
+
input_shape = hidden_states.shape[:-1]
|
| 302 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 303 |
+
|
| 304 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 305 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 306 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 307 |
+
gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2)
|
| 308 |
+
gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32))
|
| 309 |
+
|
| 310 |
+
cos, sin = position_embeddings
|
| 311 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 312 |
+
|
| 313 |
+
if past_key_values is not None:
|
| 314 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 315 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 316 |
+
key_states, value_states, gate_states, state, sum_of_keys = past_key_values.update_cache(key_states, value_states, gate_states, self.layer_idx, cache_kwargs)
|
| 317 |
+
|
| 318 |
+
if self.use_exp:
|
| 319 |
+
attention_interface: Callable = eager_attention_forward
|
| 320 |
+
if self.config._attn_implementation != "eager":
|
| 321 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 322 |
+
|
| 323 |
+
attn_output, attn_weights = attention_interface(
|
| 324 |
+
self,
|
| 325 |
+
query_states,
|
| 326 |
+
key_states,
|
| 327 |
+
value_states,
|
| 328 |
+
attention_mask,
|
| 329 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 330 |
+
scaling=self.scaling,
|
| 331 |
+
sliding_window=self.sliding_window, # diff with Llama
|
| 332 |
+
**kwargs,
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
elif query_states.shape[2] == 1:
|
| 336 |
+
key_len = key_states.shape[2]
|
| 337 |
+
attn_output, state, sum_of_keys = power_retention_inference(
|
| 338 |
+
query_states.transpose(1, 2),
|
| 339 |
+
key_states.transpose(1, 2),
|
| 340 |
+
value_states.transpose(1, 2),
|
| 341 |
+
gate_states.transpose(1, 2),
|
| 342 |
+
initial_state=state,
|
| 343 |
+
sum_of_keys=sum_of_keys,
|
| 344 |
+
deg=2,
|
| 345 |
+
scale=self.scaling,
|
| 346 |
+
switch_over_seq_len=self.chunk_size,
|
| 347 |
+
)
|
| 348 |
+
if self.chunk_size is not None and key_len >= self.chunk_size:
|
| 349 |
+
past_key_values.clean_cache(self.layer_idx)
|
| 350 |
+
past_key_values.update_state(self.layer_idx, state, sum_of_keys)
|
| 351 |
+
|
| 352 |
+
attn_weights = None
|
| 353 |
+
|
| 354 |
+
else:
|
| 355 |
+
key_len = key_states.shape[2]
|
| 356 |
+
attn_output = power_retention(
|
| 357 |
+
query_states.transpose(1, 2),
|
| 358 |
+
key_states.transpose(1, 2),
|
| 359 |
+
value_states.transpose(1, 2),
|
| 360 |
+
gate_states.transpose(1, 2),
|
| 361 |
+
deg=2,
|
| 362 |
+
scale=self.scaling,
|
| 363 |
+
chunk_size=self.prefill_chunk_size, # enable chunked prefilling by default
|
| 364 |
+
switch_over_seq_len=self.switch_over_seq_len,
|
| 365 |
+
)
|
| 366 |
+
attn_weights = None
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 370 |
+
attn_output = self.o_proj(attn_output)
|
| 371 |
+
return attn_output, attn_weights
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class BrumbyDecoderLayer(nn.Module):
|
| 375 |
+
def __init__(self, config: BrumbyConfig, layer_idx: int):
|
| 376 |
+
super().__init__()
|
| 377 |
+
self.hidden_size = config.hidden_size
|
| 378 |
+
|
| 379 |
+
self.self_attn = BrumbyAttention(config=config, layer_idx=layer_idx)
|
| 380 |
+
|
| 381 |
+
self.mlp = BrumbyMLP(config)
|
| 382 |
+
self.input_layernorm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 383 |
+
self.post_attention_layernorm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 384 |
+
self.attention_type = config.layer_types[layer_idx]
|
| 385 |
+
|
| 386 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 387 |
+
def forward(
|
| 388 |
+
self,
|
| 389 |
+
hidden_states: torch.Tensor,
|
| 390 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 391 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 392 |
+
past_key_values: Optional[Cache] = None,
|
| 393 |
+
use_cache: Optional[bool] = False,
|
| 394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 395 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 396 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 397 |
+
) -> torch.Tensor:
|
| 398 |
+
residual = hidden_states
|
| 399 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 400 |
+
# Self Attention
|
| 401 |
+
hidden_states, _ = self.self_attn(
|
| 402 |
+
hidden_states=hidden_states,
|
| 403 |
+
attention_mask=attention_mask,
|
| 404 |
+
position_ids=position_ids,
|
| 405 |
+
past_key_values=past_key_values,
|
| 406 |
+
use_cache=use_cache,
|
| 407 |
+
cache_position=cache_position,
|
| 408 |
+
position_embeddings=position_embeddings,
|
| 409 |
+
**kwargs,
|
| 410 |
+
)
|
| 411 |
+
hidden_states = residual + hidden_states
|
| 412 |
+
|
| 413 |
+
# Fully Connected
|
| 414 |
+
residual = hidden_states
|
| 415 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 416 |
+
hidden_states = self.mlp(hidden_states)
|
| 417 |
+
hidden_states = residual + hidden_states
|
| 418 |
+
return hidden_states
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
@auto_docstring
|
| 422 |
+
class BrumbyPreTrainedModel(PreTrainedModel):
|
| 423 |
+
config: BrumbyConfig
|
| 424 |
+
base_model_prefix = "model"
|
| 425 |
+
supports_gradient_checkpointing = True
|
| 426 |
+
_no_split_modules = ["BrumbyDecoderLayer"]
|
| 427 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 428 |
+
_supports_flash_attn = True
|
| 429 |
+
_supports_sdpa = True
|
| 430 |
+
_supports_flex_attn = True
|
| 431 |
+
|
| 432 |
+
_can_compile_fullgraph = True
|
| 433 |
+
_supports_attention_backend = True
|
| 434 |
+
_can_record_outputs = {
|
| 435 |
+
"hidden_states": BrumbyDecoderLayer,
|
| 436 |
+
"attentions": BrumbyAttention,
|
| 437 |
+
}
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
class BrumbyRotaryEmbedding(nn.Module):
|
| 441 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 442 |
+
|
| 443 |
+
def __init__(self, config: BrumbyConfig, device=None):
|
| 444 |
+
super().__init__()
|
| 445 |
+
# BC: "rope_type" was originally "type"
|
| 446 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 447 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 448 |
+
else:
|
| 449 |
+
self.rope_type = "default"
|
| 450 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 451 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 452 |
+
|
| 453 |
+
self.config = config
|
| 454 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 455 |
+
|
| 456 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 457 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 458 |
+
self.original_inv_freq = self.inv_freq
|
| 459 |
+
|
| 460 |
+
@torch.no_grad()
|
| 461 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 462 |
+
def forward(self, x, position_ids):
|
| 463 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 464 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 465 |
+
|
| 466 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 467 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 468 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 469 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 470 |
+
cos = emb.cos() * self.attention_scaling
|
| 471 |
+
sin = emb.sin() * self.attention_scaling
|
| 472 |
+
|
| 473 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
@auto_docstring
|
| 477 |
+
class BrumbyModel(BrumbyPreTrainedModel):
|
| 478 |
+
def __init__(self, config: BrumbyConfig):
|
| 479 |
+
super().__init__(config)
|
| 480 |
+
self.padding_idx = config.pad_token_id
|
| 481 |
+
self.vocab_size = config.vocab_size
|
| 482 |
+
|
| 483 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 484 |
+
self.layers = nn.ModuleList(
|
| 485 |
+
[BrumbyDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 486 |
+
)
|
| 487 |
+
self.norm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 488 |
+
self.rotary_emb = BrumbyRotaryEmbedding(config=config)
|
| 489 |
+
self.gradient_checkpointing = False
|
| 490 |
+
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
|
| 491 |
+
|
| 492 |
+
# Initialize weights and apply final processing
|
| 493 |
+
self.post_init()
|
| 494 |
+
|
| 495 |
+
@check_model_inputs
|
| 496 |
+
@auto_docstring
|
| 497 |
+
def forward(
|
| 498 |
+
self,
|
| 499 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 500 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 501 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 502 |
+
past_key_values: Optional[PowerAttentionDynamicCache] = None,
|
| 503 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 504 |
+
use_cache: Optional[bool] = None,
|
| 505 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 506 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 507 |
+
) -> BaseModelOutputWithPast:
|
| 508 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 509 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 510 |
+
|
| 511 |
+
if inputs_embeds is None:
|
| 512 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 513 |
+
|
| 514 |
+
if use_cache and past_key_values is None:
|
| 515 |
+
raise ValueError("Brumby requires an initialized `PowerAttentionDynamicCache` to return a cache. None was provided, so no cache will be returned.")
|
| 516 |
+
|
| 517 |
+
if cache_position is None:
|
| 518 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 519 |
+
cache_position = torch.arange(
|
| 520 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
if position_ids is None:
|
| 524 |
+
position_ids = cache_position.unsqueeze(0)
|
| 525 |
+
|
| 526 |
+
causal_mask = self._update_causal_mask(
|
| 527 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions=False
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
hidden_states = inputs_embeds
|
| 531 |
+
|
| 532 |
+
# create position embeddings to be shared across the decoder layers
|
| 533 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 534 |
+
|
| 535 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 536 |
+
hidden_states = decoder_layer(
|
| 537 |
+
hidden_states,
|
| 538 |
+
attention_mask=causal_mask,
|
| 539 |
+
position_ids=position_ids,
|
| 540 |
+
past_key_values=past_key_values,
|
| 541 |
+
use_cache=use_cache,
|
| 542 |
+
cache_position=cache_position,
|
| 543 |
+
position_embeddings=position_embeddings,
|
| 544 |
+
**kwargs,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
hidden_states = self.norm(hidden_states)
|
| 548 |
+
return BaseModelOutputWithPast(
|
| 549 |
+
last_hidden_state=hidden_states,
|
| 550 |
+
past_key_values=past_key_values if use_cache else None,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
def _update_causal_mask(
|
| 554 |
+
self,
|
| 555 |
+
attention_mask: torch.Tensor,
|
| 556 |
+
input_tensor: torch.Tensor,
|
| 557 |
+
cache_position: torch.Tensor,
|
| 558 |
+
past_key_values: Cache,
|
| 559 |
+
output_attentions: bool = False,
|
| 560 |
+
):
|
| 561 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 562 |
+
if attention_mask is not None and past_key_values is not None:
|
| 563 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
| 564 |
+
if is_padding_right:
|
| 565 |
+
raise ValueError(
|
| 566 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 567 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
|
| 568 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 569 |
+
)
|
| 570 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 571 |
+
return attention_mask
|
| 572 |
+
return None
|
| 573 |
+
|
| 574 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 575 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 576 |
+
# to infer the attention mask.
|
| 577 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 578 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 579 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
| 580 |
+
|
| 581 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 582 |
+
if (
|
| 583 |
+
self.config._attn_implementation == "sdpa"
|
| 584 |
+
and not (using_static_cache or using_sliding_window_cache)
|
| 585 |
+
and not output_attentions
|
| 586 |
+
):
|
| 587 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 588 |
+
attention_mask,
|
| 589 |
+
inputs_embeds=input_tensor,
|
| 590 |
+
past_key_values_length=past_seen_tokens,
|
| 591 |
+
sliding_window=self.config.sliding_window,
|
| 592 |
+
is_training=self.training,
|
| 593 |
+
):
|
| 594 |
+
return None
|
| 595 |
+
|
| 596 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 597 |
+
min_dtype = torch.finfo(dtype).min
|
| 598 |
+
sequence_length = input_tensor.shape[1]
|
| 599 |
+
# SlidingWindowCache or StaticCache
|
| 600 |
+
if using_sliding_window_cache or using_static_cache:
|
| 601 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 602 |
+
# DynamicCache or no cache
|
| 603 |
+
else:
|
| 604 |
+
target_length = (
|
| 605 |
+
attention_mask.shape[-1]
|
| 606 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 607 |
+
else past_seen_tokens + sequence_length + 1
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 611 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 612 |
+
attention_mask,
|
| 613 |
+
sequence_length=sequence_length,
|
| 614 |
+
target_length=target_length,
|
| 615 |
+
dtype=dtype,
|
| 616 |
+
device=device,
|
| 617 |
+
cache_position=cache_position,
|
| 618 |
+
batch_size=input_tensor.shape[0],
|
| 619 |
+
config=self.config,
|
| 620 |
+
past_key_values=past_key_values,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
if (
|
| 624 |
+
self.config._attn_implementation == "sdpa"
|
| 625 |
+
and attention_mask is not None
|
| 626 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
| 627 |
+
and not output_attentions
|
| 628 |
+
):
|
| 629 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 630 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 631 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 632 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 633 |
+
|
| 634 |
+
return causal_mask
|
| 635 |
+
|
| 636 |
+
@staticmethod
|
| 637 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 638 |
+
attention_mask: torch.Tensor,
|
| 639 |
+
sequence_length: int,
|
| 640 |
+
target_length: int,
|
| 641 |
+
dtype: torch.dtype,
|
| 642 |
+
device: torch.device,
|
| 643 |
+
cache_position: torch.Tensor,
|
| 644 |
+
batch_size: int,
|
| 645 |
+
config: BrumbyConfig,
|
| 646 |
+
past_key_values: Cache,
|
| 647 |
+
):
|
| 648 |
+
"""
|
| 649 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 650 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
attention_mask (`torch.Tensor`):
|
| 654 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 655 |
+
sequence_length (`int`):
|
| 656 |
+
The sequence length being processed.
|
| 657 |
+
target_length (`int`):
|
| 658 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 659 |
+
dtype (`torch.dtype`):
|
| 660 |
+
The dtype to use for the 4D attention mask.
|
| 661 |
+
device (`torch.device`):
|
| 662 |
+
The device to place the 4D attention mask on.
|
| 663 |
+
cache_position (`torch.Tensor`):
|
| 664 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 665 |
+
batch_size (`torch.Tensor`):
|
| 666 |
+
Batch size.
|
| 667 |
+
config (`Qwen3Config`):
|
| 668 |
+
The model's configuration class
|
| 669 |
+
past_key_values (`Cache`):
|
| 670 |
+
The cache class that is being used currently to generate
|
| 671 |
+
"""
|
| 672 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 673 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 674 |
+
causal_mask = attention_mask
|
| 675 |
+
else:
|
| 676 |
+
min_dtype = torch.finfo(dtype).min
|
| 677 |
+
causal_mask = torch.full(
|
| 678 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 679 |
+
)
|
| 680 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 681 |
+
if config.sliding_window is not None:
|
| 682 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
| 683 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
| 684 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
| 685 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
| 686 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
| 687 |
+
)
|
| 688 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
| 689 |
+
causal_mask *= diagonal_attend_mask
|
| 690 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 691 |
+
if attention_mask is not None:
|
| 692 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 693 |
+
if attention_mask.shape[-1] > target_length:
|
| 694 |
+
attention_mask = attention_mask[:, :target_length]
|
| 695 |
+
mask_length = attention_mask.shape[-1]
|
| 696 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 697 |
+
causal_mask.device
|
| 698 |
+
)
|
| 699 |
+
padding_mask = padding_mask == 0
|
| 700 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 701 |
+
padding_mask, min_dtype
|
| 702 |
+
)
|
| 703 |
+
return causal_mask
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
@auto_docstring
|
| 707 |
+
class BrumbyForCausalLM(BrumbyPreTrainedModel, GenerationMixin):
|
| 708 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 709 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 710 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 711 |
+
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__(config)
|
| 714 |
+
self.model = BrumbyModel(config)
|
| 715 |
+
self.vocab_size = config.vocab_size
|
| 716 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 717 |
+
|
| 718 |
+
# Initialize weights and apply final processing
|
| 719 |
+
self.post_init()
|
| 720 |
+
|
| 721 |
+
def prepare_inputs_for_generation(
|
| 722 |
+
self,
|
| 723 |
+
input_ids,
|
| 724 |
+
past_key_values=None,
|
| 725 |
+
attention_mask=None,
|
| 726 |
+
inputs_embeds=None,
|
| 727 |
+
cache_position=None,
|
| 728 |
+
position_ids=None,
|
| 729 |
+
use_cache=True,
|
| 730 |
+
**kwargs,
|
| 731 |
+
):
|
| 732 |
+
# Copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
|
| 733 |
+
# Overwitten -- uses `past_key_values` as opposed to `past_key_values`
|
| 734 |
+
empty_past_kv = past_key_values is None
|
| 735 |
+
|
| 736 |
+
# First pass
|
| 737 |
+
if not isinstance(past_key_values, PowerAttentionDynamicCache):
|
| 738 |
+
past_key_values = PowerAttentionDynamicCache(self.config, input_ids.shape[0], self.dtype, device=self.device)
|
| 739 |
+
|
| 740 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 741 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 742 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 743 |
+
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
|
| 744 |
+
# (we can't check exception 3 while compiling)
|
| 745 |
+
if not empty_past_kv:
|
| 746 |
+
if (
|
| 747 |
+
inputs_embeds is not None # Exception 1
|
| 748 |
+
or cache_position[-1] >= input_ids.shape[1] # Exception 3
|
| 749 |
+
):
|
| 750 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 751 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 752 |
+
input_ids = input_ids[:, cache_position]
|
| 753 |
+
else:
|
| 754 |
+
past_key_values = PowerAttentionDynamicCache(
|
| 755 |
+
self.config, input_ids.shape[0], self.dtype, device=self.device
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
if attention_mask is not None and position_ids is None:
|
| 759 |
+
# create position_ids on the fly for batch generation
|
| 760 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 761 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 762 |
+
if not empty_past_kv:
|
| 763 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 764 |
+
|
| 765 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 766 |
+
if inputs_embeds is not None and empty_past_kv:
|
| 767 |
+
# TODO(pjin): workaround fix for properly extending inputs_embeds;
|
| 768 |
+
# longer term, may be better handled elsewhere in .generate().
|
| 769 |
+
if input_ids is not None and inputs_embeds.shape[1] < input_ids.shape[1]:
|
| 770 |
+
new_token_embeds = self.get_input_embeddings()(input_ids[:,inputs_embeds.shape[1]:])
|
| 771 |
+
inputs_embeds = torch.cat([inputs_embeds, new_token_embeds], dim=1)
|
| 772 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 773 |
+
else:
|
| 774 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
| 775 |
+
|
| 776 |
+
model_inputs.update(
|
| 777 |
+
{
|
| 778 |
+
"position_ids": position_ids,
|
| 779 |
+
"past_key_values": past_key_values,
|
| 780 |
+
"use_cache": use_cache,
|
| 781 |
+
"attention_mask": attention_mask,
|
| 782 |
+
"cache_position": cache_position,
|
| 783 |
+
}
|
| 784 |
+
)
|
| 785 |
+
return model_inputs
|
| 786 |
+
|
| 787 |
+
@can_return_tuple
|
| 788 |
+
@auto_docstring
|
| 789 |
+
def forward(
|
| 790 |
+
self,
|
| 791 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 792 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 793 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 794 |
+
past_key_values: Optional[PowerAttentionDynamicCache] = None,
|
| 795 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 796 |
+
labels: Optional[torch.LongTensor] = None,
|
| 797 |
+
use_cache: Optional[bool] = None,
|
| 798 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 799 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 800 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 801 |
+
) -> CausalLMOutputWithPast:
|
| 802 |
+
r"""
|
| 803 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 804 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 805 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 806 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 807 |
+
|
| 808 |
+
Example:
|
| 809 |
+
|
| 810 |
+
```python
|
| 811 |
+
>>> from transformers import AutoTokenizer, BrumbyForCausalLM
|
| 812 |
+
|
| 813 |
+
>>> model = BrumbyForCausalLM.from_pretrained("Qwen/Brumby-8B")
|
| 814 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Brumby-8B")
|
| 815 |
+
|
| 816 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 817 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 818 |
+
|
| 819 |
+
>>> # Generate
|
| 820 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 821 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 822 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 823 |
+
```"""
|
| 824 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 825 |
+
input_ids=input_ids,
|
| 826 |
+
attention_mask=attention_mask,
|
| 827 |
+
position_ids=position_ids,
|
| 828 |
+
past_key_values=past_key_values,
|
| 829 |
+
inputs_embeds=inputs_embeds,
|
| 830 |
+
use_cache=use_cache,
|
| 831 |
+
cache_position=cache_position,
|
| 832 |
+
**kwargs,
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
hidden_states = outputs.last_hidden_state
|
| 836 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 837 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 838 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 839 |
+
|
| 840 |
+
loss = None
|
| 841 |
+
if labels is not None:
|
| 842 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 843 |
+
|
| 844 |
+
return CausalLMOutputWithPast(
|
| 845 |
+
loss=loss,
|
| 846 |
+
logits=logits,
|
| 847 |
+
past_key_values=outputs.past_key_values,
|
| 848 |
+
hidden_states=outputs.hidden_states,
|
| 849 |
+
attentions=outputs.attentions,
|
| 850 |
+
)
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
__all__ = [
|
| 854 |
+
"BrumbyForCausalLM",
|
| 855 |
+
"BrumbyPreTrainedModel",
|
| 856 |
+
"BrumbyModel",
|
| 857 |
+
]
|
quant_log.csv
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
layer,module,loss,samples,damp,time
|
| 2 |
+
0,self_attn.v_proj,0.0000000055,0.05000,4.851
|
| 3 |
+
0,self_attn.k_proj,0.0000000067,0.05000,4.868
|
| 4 |
+
0,self_attn.q_proj,0.0000000245,0.05000,4.875
|
| 5 |
+
0,self_attn.o_proj,0.0000001023,0.05000,1.463
|
| 6 |
+
0,mlp.gate_proj,0.0000014832,0.05000,3.275
|
| 7 |
+
0,mlp.up_proj,0.0000012088,0.05000,3.334
|
| 8 |
+
0,mlp.down_proj,0.0000007021,0.05000,5.384
|
| 9 |
+
1,self_attn.q_proj,0.0000000516,0.05000,4.584
|
| 10 |
+
1,self_attn.v_proj,0.0000000140,0.05000,4.683
|
| 11 |
+
1,self_attn.k_proj,0.0000000128,0.05000,4.723
|
| 12 |
+
1,self_attn.o_proj,0.0000001024,0.05000,1.334
|
| 13 |
+
1,mlp.up_proj,0.0000235446,0.05000,3.642
|
| 14 |
+
1,mlp.gate_proj,0.0000679487,0.05000,3.677
|
| 15 |
+
1,mlp.down_proj,0.0000010552,0.05000,5.334
|
| 16 |
+
2,self_attn.k_proj,0.0000000361,0.05000,4.120
|
| 17 |
+
2,self_attn.v_proj,0.0000000386,0.05000,4.189
|
| 18 |
+
2,self_attn.q_proj,0.0000001411,0.05000,4.244
|
| 19 |
+
2,self_attn.o_proj,0.0000002282,0.05000,1.332
|
| 20 |
+
2,mlp.gate_proj,0.0000977210,0.05000,3.152
|
| 21 |
+
2,mlp.up_proj,0.0000492783,0.05000,3.153
|
| 22 |
+
2,mlp.down_proj,0.0000008231,0.05000,5.410
|
| 23 |
+
3,self_attn.q_proj,0.0000003171,0.05000,4.748
|
| 24 |
+
3,self_attn.k_proj,0.0000000801,0.05000,4.758
|
| 25 |
+
3,self_attn.v_proj,0.0000000896,0.05000,4.779
|
| 26 |
+
3,self_attn.o_proj,0.0000002193,0.05000,1.414
|
| 27 |
+
3,mlp.gate_proj,0.0001480885,0.05000,3.153
|
| 28 |
+
3,mlp.up_proj,0.0000745903,0.05000,3.224
|
| 29 |
+
3,mlp.down_proj,0.0000013200,0.05000,5.582
|
| 30 |
+
4,self_attn.v_proj,0.0000001349,0.05000,5.075
|
| 31 |
+
4,self_attn.q_proj,0.0000004968,0.05000,5.101
|
| 32 |
+
4,self_attn.k_proj,0.0000001217,0.05000,5.105
|
| 33 |
+
4,self_attn.o_proj,0.0000003706,0.05000,1.499
|
| 34 |
+
4,mlp.up_proj,0.0001282589,0.05000,3.353
|
| 35 |
+
4,mlp.gate_proj,0.0002110812,0.05000,3.373
|
| 36 |
+
4,mlp.down_proj,0.0000014401,0.05000,5.379
|
| 37 |
+
5,self_attn.q_proj,0.0000005028,0.05000,4.952
|
| 38 |
+
5,self_attn.v_proj,0.0000001383,0.05000,4.969
|
| 39 |
+
5,self_attn.k_proj,0.0000001241,0.05000,4.978
|
| 40 |
+
5,self_attn.o_proj,0.0000003825,0.05000,1.373
|
| 41 |
+
5,mlp.up_proj,0.0000865598,0.05000,3.568
|
| 42 |
+
5,mlp.gate_proj,0.0001970606,0.05000,3.592
|
| 43 |
+
5,mlp.down_proj,0.0000036706,0.05000,5.314
|
| 44 |
+
6,self_attn.v_proj,0.0000002469,0.05000,4.978
|
| 45 |
+
6,self_attn.q_proj,0.0000008867,0.05000,5.061
|
| 46 |
+
6,self_attn.k_proj,0.0000002098,0.05000,5.067
|
| 47 |
+
6,self_attn.o_proj,0.0000005215,0.05000,1.377
|
| 48 |
+
6,mlp.up_proj,0.0001740953,0.05000,2.960
|
| 49 |
+
6,mlp.gate_proj,0.0003093244,0.05000,3.049
|
| 50 |
+
6,mlp.down_proj,0.0000451711,0.05000,5.501
|
| 51 |
+
7,self_attn.q_proj,0.0000032589,0.05000,4.941
|
| 52 |
+
7,self_attn.k_proj,0.0000007494,0.05000,4.953
|
| 53 |
+
7,self_attn.v_proj,0.0000008548,0.05000,4.969
|
| 54 |
+
7,self_attn.o_proj,0.0000011350,0.05000,1.371
|
| 55 |
+
7,mlp.gate_proj,0.0002542938,0.05000,3.356
|
| 56 |
+
7,mlp.up_proj,0.0001292021,0.05000,3.370
|
| 57 |
+
7,mlp.down_proj,0.0000053761,0.05000,5.684
|
| 58 |
+
8,self_attn.v_proj,0.0000008264,0.05000,4.899
|
| 59 |
+
8,self_attn.q_proj,0.0000030318,0.05000,4.924
|
| 60 |
+
8,self_attn.k_proj,0.0000007100,0.05000,4.975
|
| 61 |
+
8,self_attn.o_proj,0.0000013708,0.05000,1.409
|
| 62 |
+
8,mlp.up_proj,0.0000463701,0.05000,3.645
|
| 63 |
+
8,mlp.gate_proj,0.0000779276,0.05000,3.699
|
| 64 |
+
8,mlp.down_proj,0.0000070508,0.05000,5.465
|
| 65 |
+
9,self_attn.v_proj,0.0000006791,0.05000,5.006
|
| 66 |
+
9,self_attn.q_proj,0.0000025509,0.05000,5.023
|
| 67 |
+
9,self_attn.k_proj,0.0000006144,0.05000,5.032
|
| 68 |
+
9,self_attn.o_proj,0.0000013103,0.05000,1.424
|
| 69 |
+
9,mlp.gate_proj,0.0000426071,0.05000,3.332
|
| 70 |
+
9,mlp.up_proj,0.0000384853,0.05000,3.368
|
| 71 |
+
9,mlp.down_proj,0.0000094974,0.05000,5.585
|
| 72 |
+
10,self_attn.k_proj,0.0000008871,0.05000,5.058
|
| 73 |
+
10,self_attn.v_proj,0.0000010250,0.05000,5.070
|
| 74 |
+
10,self_attn.q_proj,0.0000039080,0.05000,5.100
|
| 75 |
+
10,self_attn.o_proj,0.0000023923,0.05000,1.394
|
| 76 |
+
10,mlp.gate_proj,0.0000476698,0.05000,2.910
|
| 77 |
+
10,mlp.up_proj,0.0000438941,0.05000,2.918
|
| 78 |
+
10,mlp.down_proj,0.0000099568,0.05000,5.422
|
| 79 |
+
11,self_attn.v_proj,0.0000016619,0.05000,5.104
|
| 80 |
+
11,self_attn.q_proj,0.0000061273,0.05000,5.127
|
| 81 |
+
11,self_attn.k_proj,0.0000014110,0.05000,5.151
|
| 82 |
+
11,self_attn.o_proj,0.0000034863,0.05000,1.411
|
| 83 |
+
11,mlp.up_proj,0.0000549275,0.05000,3.648
|
| 84 |
+
11,mlp.gate_proj,0.0000592392,0.05000,3.697
|
| 85 |
+
11,mlp.down_proj,0.0000136331,0.05000,5.316
|
| 86 |
+
12,self_attn.k_proj,0.0000015385,0.05000,4.950
|
| 87 |
+
12,self_attn.v_proj,0.0000017779,0.05000,4.997
|
| 88 |
+
12,self_attn.q_proj,0.0000064274,0.05000,5.019
|
| 89 |
+
12,self_attn.o_proj,0.0000026011,0.05000,1.423
|
| 90 |
+
12,mlp.gate_proj,0.0000721614,0.05000,3.257
|
| 91 |
+
12,mlp.up_proj,0.0000664742,0.05000,3.284
|
| 92 |
+
12,mlp.down_proj,0.0000165714,0.05000,5.587
|
| 93 |
+
13,self_attn.v_proj,0.0000035299,0.05000,4.510
|
| 94 |
+
13,self_attn.q_proj,0.0000127921,0.05000,4.531
|
| 95 |
+
13,self_attn.k_proj,0.0000029702,0.05000,4.564
|
| 96 |
+
13,self_attn.o_proj,0.0000040227,0.05000,1.394
|
| 97 |
+
13,mlp.up_proj,0.0000723846,0.05000,2.925
|
| 98 |
+
13,mlp.gate_proj,0.0000838850,0.05000,2.940
|
| 99 |
+
13,mlp.down_proj,0.0000187251,0.05000,5.496
|
| 100 |
+
14,self_attn.v_proj,0.0000024263,0.05000,4.790
|
| 101 |
+
14,self_attn.q_proj,0.0000085204,0.05000,4.817
|
| 102 |
+
14,self_attn.k_proj,0.0000020249,0.05000,4.848
|
| 103 |
+
14,self_attn.o_proj,0.0000040741,0.05000,1.353
|
| 104 |
+
14,mlp.gate_proj,0.0000798361,0.05000,2.961
|
| 105 |
+
14,mlp.up_proj,0.0000716579,0.05000,2.974
|
| 106 |
+
14,mlp.down_proj,0.0000192025,0.05000,5.455
|
| 107 |
+
15,self_attn.v_proj,0.0000024046,0.05000,4.509
|
| 108 |
+
15,self_attn.k_proj,0.0000021407,0.05000,4.558
|
| 109 |
+
15,self_attn.q_proj,0.0000092248,0.05000,4.569
|
| 110 |
+
15,self_attn.o_proj,0.0000045808,0.05000,1.348
|
| 111 |
+
15,mlp.up_proj,0.0000751190,0.05000,3.045
|
| 112 |
+
15,mlp.gate_proj,0.0000782121,0.05000,3.079
|
| 113 |
+
15,mlp.down_proj,0.0000209370,0.05000,5.471
|
| 114 |
+
16,self_attn.q_proj,0.0000100945,0.05000,5.142
|
| 115 |
+
16,self_attn.v_proj,0.0000027845,0.05000,5.142
|
| 116 |
+
16,self_attn.k_proj,0.0000023761,0.05000,5.241
|
| 117 |
+
16,self_attn.o_proj,0.0000062379,0.05000,1.380
|
| 118 |
+
16,mlp.up_proj,0.0000748809,0.05000,2.870
|
| 119 |
+
16,mlp.gate_proj,0.0000727667,0.05000,2.884
|
| 120 |
+
16,mlp.down_proj,0.0000219730,0.05000,5.353
|
| 121 |
+
17,self_attn.k_proj,0.0000028254,0.05000,4.584
|
| 122 |
+
17,self_attn.q_proj,0.0000126655,0.05000,4.615
|
| 123 |
+
17,self_attn.v_proj,0.0000032815,0.05000,4.642
|
| 124 |
+
17,self_attn.o_proj,0.0000061028,0.05000,1.371
|
| 125 |
+
17,mlp.gate_proj,0.0000801209,0.05000,3.312
|
| 126 |
+
17,mlp.up_proj,0.0000837841,0.05000,3.340
|
| 127 |
+
17,mlp.down_proj,0.0000245772,0.05000,5.519
|
| 128 |
+
18,self_attn.v_proj,0.0000047651,0.05000,4.578
|
| 129 |
+
18,self_attn.k_proj,0.0000041778,0.05000,4.587
|
| 130 |
+
18,self_attn.q_proj,0.0000184517,0.05000,4.621
|
| 131 |
+
18,self_attn.o_proj,0.0000063895,0.05000,1.366
|
| 132 |
+
18,mlp.up_proj,0.0000915147,0.05000,3.025
|
| 133 |
+
18,mlp.gate_proj,0.0000842209,0.05000,3.032
|
| 134 |
+
18,mlp.down_proj,0.0000275443,0.05000,5.559
|
| 135 |
+
19,self_attn.k_proj,0.0000049127,0.05000,4.855
|
| 136 |
+
19,self_attn.v_proj,0.0000055556,0.05000,4.940
|
| 137 |
+
19,self_attn.q_proj,0.0000216752,0.05000,4.962
|
| 138 |
+
19,self_attn.o_proj,0.0000083279,0.05000,1.398
|
| 139 |
+
19,mlp.up_proj,0.0001011631,0.05000,2.898
|
| 140 |
+
19,mlp.gate_proj,0.0000937019,0.05000,2.930
|
| 141 |
+
19,mlp.down_proj,0.0000327259,0.05000,5.399
|
| 142 |
+
20,self_attn.v_proj,0.0000109982,0.05000,4.754
|
| 143 |
+
20,self_attn.k_proj,0.0000086623,0.05000,4.805
|
| 144 |
+
20,self_attn.q_proj,0.0000405637,0.05000,4.808
|
| 145 |
+
20,self_attn.o_proj,0.0000105337,0.05000,1.392
|
| 146 |
+
20,mlp.gate_proj,0.0000998617,0.05000,3.189
|
| 147 |
+
20,mlp.up_proj,0.0001093770,0.05000,3.217
|
| 148 |
+
20,mlp.down_proj,0.0000415528,0.05000,5.438
|
| 149 |
+
21,self_attn.k_proj,0.0000117670,0.05000,4.439
|
| 150 |
+
21,self_attn.q_proj,0.0000514724,0.05000,4.453
|
| 151 |
+
21,self_attn.v_proj,0.0000140596,0.05000,4.516
|
| 152 |
+
21,self_attn.o_proj,0.0000151081,0.05000,1.453
|
| 153 |
+
21,mlp.gate_proj,0.0001088591,0.05000,2.926
|
| 154 |
+
21,mlp.up_proj,0.0001167877,0.05000,2.938
|
| 155 |
+
21,mlp.down_proj,0.0000477426,0.05000,5.551
|
| 156 |
+
22,self_attn.v_proj,0.0000117180,0.05000,4.538
|
| 157 |
+
22,self_attn.k_proj,0.0000094837,0.05000,4.573
|
| 158 |
+
22,self_attn.q_proj,0.0000441959,0.05000,4.617
|
| 159 |
+
22,self_attn.o_proj,0.0000190037,0.05000,1.410
|
| 160 |
+
22,mlp.up_proj,0.0001366769,0.05000,3.587
|
| 161 |
+
22,mlp.gate_proj,0.0001259929,0.05000,3.622
|
| 162 |
+
22,mlp.down_proj,0.0000632469,0.05000,5.323
|
| 163 |
+
23,self_attn.v_proj,0.0000206423,0.05000,5.066
|
| 164 |
+
23,self_attn.q_proj,0.0000767674,0.05000,5.099
|
| 165 |
+
23,self_attn.k_proj,0.0000157870,0.05000,5.111
|
| 166 |
+
23,self_attn.o_proj,0.0000160790,0.05000,1.398
|
| 167 |
+
23,mlp.up_proj,0.0001518091,0.05000,3.378
|
| 168 |
+
23,mlp.gate_proj,0.0001383609,0.05000,3.395
|
| 169 |
+
23,mlp.down_proj,0.0000856998,0.05000,5.398
|
| 170 |
+
24,self_attn.v_proj,0.0000329967,0.05000,5.030
|
| 171 |
+
24,self_attn.k_proj,0.0000237478,0.05000,5.054
|
| 172 |
+
24,self_attn.q_proj,0.0001217306,0.05000,5.056
|
| 173 |
+
24,self_attn.o_proj,0.0000220392,0.05000,1.360
|
| 174 |
+
24,mlp.gate_proj,0.0001632924,0.05000,3.625
|
| 175 |
+
24,mlp.up_proj,0.0001751961,0.05000,3.657
|
| 176 |
+
24,mlp.down_proj,0.0000941419,0.05000,5.674
|
| 177 |
+
25,self_attn.k_proj,0.0000201400,0.05000,4.789
|
| 178 |
+
25,self_attn.q_proj,0.0000949212,0.05000,4.936
|
| 179 |
+
25,self_attn.v_proj,0.0000253956,0.05000,4.953
|
| 180 |
+
25,self_attn.o_proj,0.0000235002,0.05000,1.350
|
| 181 |
+
25,mlp.up_proj,0.0002028768,0.05000,3.754
|
| 182 |
+
25,mlp.gate_proj,0.0001922596,0.05000,3.767
|
| 183 |
+
25,mlp.down_proj,0.0001267621,0.05000,5.595
|
| 184 |
+
26,self_attn.k_proj,0.0000225750,0.05000,4.881
|
| 185 |
+
26,self_attn.v_proj,0.0000295418,0.05000,4.921
|
| 186 |
+
26,self_attn.q_proj,0.0001108223,0.05000,4.949
|
| 187 |
+
26,self_attn.o_proj,0.0000265471,0.05000,1.385
|
| 188 |
+
26,mlp.up_proj,0.0002334800,0.05000,3.388
|
| 189 |
+
26,mlp.gate_proj,0.0002268478,0.05000,3.422
|
| 190 |
+
26,mlp.down_proj,0.0001893703,0.05000,5.634
|
| 191 |
+
27,self_attn.q_proj,0.0001638606,0.05000,5.063
|
| 192 |
+
27,self_attn.v_proj,0.0000431965,0.05000,5.074
|
| 193 |
+
27,self_attn.k_proj,0.0000341267,0.05000,5.090
|
| 194 |
+
27,self_attn.o_proj,0.0000498931,0.05000,1.395
|
| 195 |
+
27,mlp.up_proj,0.0002877421,0.05000,3.456
|
| 196 |
+
27,mlp.gate_proj,0.0002798097,0.05000,3.483
|
| 197 |
+
27,mlp.down_proj,0.0002758613,0.05000,5.413
|
| 198 |
+
28,self_attn.q_proj,0.0002983511,0.05000,5.019
|
| 199 |
+
28,self_attn.k_proj,0.0000565795,0.05000,5.021
|
| 200 |
+
28,self_attn.v_proj,0.0000813798,0.05000,5.037
|
| 201 |
+
28,self_attn.o_proj,0.0000459752,0.05000,1.567
|
| 202 |
+
28,mlp.gate_proj,0.0003511385,0.05000,3.554
|
| 203 |
+
28,mlp.up_proj,0.0003660403,0.05000,3.605
|
| 204 |
+
28,mlp.down_proj,0.0003470357,0.05000,5.451
|
| 205 |
+
29,self_attn.v_proj,0.0000988175,0.05000,4.698
|
| 206 |
+
29,self_attn.q_proj,0.0003714425,0.05000,4.765
|
| 207 |
+
29,self_attn.k_proj,0.0000788545,0.05000,4.812
|
| 208 |
+
29,self_attn.o_proj,0.0000517854,0.05000,1.332
|
| 209 |
+
29,mlp.up_proj,0.0004072312,0.05000,3.735
|
| 210 |
+
29,mlp.gate_proj,0.0003876266,0.05000,3.765
|
| 211 |
+
29,mlp.down_proj,0.0004905408,0.05000,5.507
|
| 212 |
+
30,self_attn.q_proj,0.0005447937,0.05000,4.696
|
| 213 |
+
30,self_attn.v_proj,0.0001534902,0.05000,4.769
|
| 214 |
+
30,self_attn.k_proj,0.0001148308,0.05000,4.786
|
| 215 |
+
30,self_attn.o_proj,0.0000775836,0.05000,1.395
|
| 216 |
+
30,mlp.gate_proj,0.0004827204,0.05000,3.138
|
| 217 |
+
30,mlp.up_proj,0.0005053384,0.05000,3.150
|
| 218 |
+
30,mlp.down_proj,0.0005774746,0.05000,5.607
|
| 219 |
+
31,self_attn.k_proj,0.0001142838,0.05000,4.573
|
| 220 |
+
31,self_attn.v_proj,0.0001417302,0.05000,4.617
|
| 221 |
+
31,self_attn.q_proj,0.0005521921,0.05000,4.641
|
| 222 |
+
31,self_attn.o_proj,0.0000683407,0.05000,1.471
|
| 223 |
+
31,mlp.gate_proj,0.0005245574,0.05000,3.371
|
| 224 |
+
31,mlp.up_proj,0.0005602224,0.05000,3.391
|
| 225 |
+
31,mlp.down_proj,0.0007208518,0.05000,5.466
|
| 226 |
+
32,self_attn.k_proj,0.0002052982,0.05000,4.842
|
| 227 |
+
32,self_attn.q_proj,0.0009621031,0.05000,4.916
|
| 228 |
+
32,self_attn.v_proj,0.0002829138,0.05000,4.930
|
| 229 |
+
32,self_attn.o_proj,0.0000929007,0.05000,1.420
|
| 230 |
+
32,mlp.gate_proj,0.0005781620,0.05000,3.086
|
| 231 |
+
32,mlp.up_proj,0.0006268456,0.05000,3.146
|
| 232 |
+
32,mlp.down_proj,0.0007982043,0.05000,5.426
|
| 233 |
+
33,self_attn.v_proj,0.0003873876,0.05000,4.661
|
| 234 |
+
33,self_attn.q_proj,0.0013329935,0.05000,4.679
|
| 235 |
+
33,self_attn.k_proj,0.0002684569,0.05000,4.699
|
| 236 |
+
33,self_attn.o_proj,0.0001004743,0.05000,1.397
|
| 237 |
+
33,mlp.gate_proj,0.0006186912,0.05000,3.072
|
| 238 |
+
33,mlp.up_proj,0.0006873148,0.05000,3.080
|
| 239 |
+
33,mlp.down_proj,0.0008831521,0.05000,5.923
|
| 240 |
+
34,self_attn.k_proj,0.0004681831,0.05000,4.314
|
| 241 |
+
34,self_attn.q_proj,0.0022188602,0.05000,4.330
|
| 242 |
+
34,self_attn.v_proj,0.0006818156,0.05000,4.369
|
| 243 |
+
34,self_attn.o_proj,0.0001390811,0.05000,1.400
|
| 244 |
+
34,mlp.gate_proj,0.0006815079,0.05000,2.850
|
| 245 |
+
34,mlp.up_proj,0.0007714760,0.05000,2.856
|
| 246 |
+
34,mlp.down_proj,0.0010444433,0.05000,5.671
|
| 247 |
+
35,self_attn.v_proj,0.0009464067,0.05000,4.743
|
| 248 |
+
35,self_attn.q_proj,0.0028209405,0.05000,4.756
|
| 249 |
+
35,self_attn.k_proj,0.0005987322,0.05000,4.770
|
| 250 |
+
35,self_attn.o_proj,0.0001368956,0.05000,1.364
|
| 251 |
+
35,mlp.up_proj,0.0008114978,0.05000,3.085
|
| 252 |
+
35,mlp.gate_proj,0.0007047556,0.05000,3.087
|
| 253 |
+
35,mlp.down_proj,0.0012339309,0.05000,5.406
|
| 254 |
+
36,self_attn.k_proj,0.0005470300,0.05000,4.830
|
| 255 |
+
36,self_attn.q_proj,0.0024462599,0.05000,4.882
|
| 256 |
+
36,self_attn.v_proj,0.0008094013,0.05000,4.888
|
| 257 |
+
36,self_attn.o_proj,0.0002597887,0.05000,1.454
|
| 258 |
+
36,mlp.up_proj,0.0008480489,0.05000,3.371
|
| 259 |
+
36,mlp.gate_proj,0.0007133146,0.05000,3.388
|
| 260 |
+
36,mlp.down_proj,0.0015971187,0.05000,5.952
|
| 261 |
+
37,self_attn.q_proj,0.0035302981,0.05000,4.597
|
| 262 |
+
37,self_attn.k_proj,0.0007176153,0.05000,4.631
|
| 263 |
+
37,self_attn.v_proj,0.0012357151,0.05000,4.644
|
| 264 |
+
37,self_attn.o_proj,0.0002945466,0.05000,1.404
|
| 265 |
+
37,mlp.gate_proj,0.0007103522,0.05000,3.077
|
| 266 |
+
37,mlp.up_proj,0.0008592182,0.05000,3.084
|
| 267 |
+
37,mlp.down_proj,0.0022288549,0.05000,5.345
|
| 268 |
+
38,self_attn.v_proj,0.0011880093,0.05000,4.358
|
| 269 |
+
38,self_attn.q_proj,0.0031908930,0.05000,4.372
|
| 270 |
+
38,self_attn.k_proj,0.0006751707,0.05000,4.399
|
| 271 |
+
38,self_attn.o_proj,0.0003943942,0.05000,1.340
|
| 272 |
+
38,mlp.gate_proj,0.0008062866,0.05000,3.148
|
| 273 |
+
38,mlp.up_proj,0.0009217460,0.05000,3.174
|
| 274 |
+
38,mlp.down_proj,0.0034524150,0.05000,5.362
|
| 275 |
+
39,self_attn.k_proj,0.0002554454,0.05000,4.257
|
| 276 |
+
39,self_attn.v_proj,0.0003735272,0.05000,4.294
|
| 277 |
+
39,self_attn.q_proj,0.0012166777,0.05000,4.295
|
| 278 |
+
39,self_attn.o_proj,0.0003847522,0.05000,1.344
|
| 279 |
+
39,mlp.gate_proj,0.0009165438,0.05000,3.561
|
| 280 |
+
39,mlp.up_proj,0.0010139998,0.05000,3.578
|
| 281 |
+
39,mlp.down_proj,0.0066875947,0.05000,5.467
|
quantize_config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bits": 4,
|
| 3 |
+
"group_size": 32,
|
| 4 |
+
"desc_act": false,
|
| 5 |
+
"sym": true,
|
| 6 |
+
"lm_head": false,
|
| 7 |
+
"quant_method": "gptq",
|
| 8 |
+
"checkpoint_format": "gptq",
|
| 9 |
+
"pack_dtype": "int32",
|
| 10 |
+
"meta": {
|
| 11 |
+
"quantizer": [
|
| 12 |
+
"gptqmodel:5.1.0-dev"
|
| 13 |
+
],
|
| 14 |
+
"uri": "https://github.com/modelcloud/gptqmodel",
|
| 15 |
+
"damp_percent": 0.05,
|
| 16 |
+
"damp_auto_increment": 0.01,
|
| 17 |
+
"static_groups": false,
|
| 18 |
+
"true_sequential": true,
|
| 19 |
+
"mse": 0.0,
|
| 20 |
+
"v2": false,
|
| 21 |
+
"v2_alpha": 0.25,
|
| 22 |
+
"act_group_aware": true
|
| 23 |
+
},
|
| 24 |
+
"pack_impl": "cpu"
|
| 25 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": "<|endoftext|>"
|
| 25 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|endoftext|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 131072,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"split_special_tokens": false,
|
| 237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|