Upload evaluate_models.ipynb
Browse files- evaluate_models.ipynb +172 -70
evaluate_models.ipynb
CHANGED
|
@@ -2,92 +2,122 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
|
|
|
| 5 |
"id": "initial_id",
|
| 6 |
"metadata": {
|
| 7 |
"collapsed": true
|
| 8 |
},
|
|
|
|
| 9 |
"source": [
|
| 10 |
"import os\n",
|
|
|
|
| 11 |
"\n",
|
| 12 |
-
"IS_COLAB = True if
|
| 13 |
"if IS_COLAB:\n",
|
| 14 |
" # this needs to run before all other imports\n",
|
| 15 |
-
" os.environ[
|
| 16 |
"\n",
|
| 17 |
"import mteb\n",
|
|
|
|
|
|
|
|
|
|
| 18 |
"from sentence_transformers import SentenceTransformer"
|
| 19 |
-
]
|
| 20 |
-
"outputs": [],
|
| 21 |
-
"execution_count": null
|
| 22 |
},
|
| 23 |
{
|
|
|
|
|
|
|
| 24 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
"source": [
|
| 27 |
"MODELS = {\n",
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
|
|
|
| 31 |
" },\n",
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
|
|
|
| 35 |
" },\n",
|
| 36 |
-
"
|
| 37 |
-
"
|
| 38 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
" },\n",
|
| 40 |
-
" 'mt-paper': {\n",
|
| 41 |
-
" 'name': 'MongoDB/mdbr-leaf-mt',\n",
|
| 42 |
-
" 'revision': 'c342f945a6855346bd5f48d5ee8b7e39120b0ce9',\n",
|
| 43 |
-
" }\n",
|
| 44 |
"}"
|
| 45 |
-
]
|
| 46 |
-
"id": "f0189ff1e7814a5a",
|
| 47 |
-
"outputs": [],
|
| 48 |
-
"execution_count": null
|
| 49 |
},
|
| 50 |
{
|
| 51 |
-
"metadata": {},
|
| 52 |
"cell_type": "markdown",
|
|
|
|
|
|
|
| 53 |
"source": [
|
| 54 |
-
"
|
| 55 |
"* set the output folder and\n",
|
| 56 |
"* select one of the models defined above\n",
|
| 57 |
"* desired benchmark"
|
| 58 |
-
]
|
| 59 |
-
"id": "371c6122efdf476a"
|
| 60 |
},
|
| 61 |
{
|
| 62 |
-
"metadata": {},
|
| 63 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
"source": [
|
| 65 |
-
"output_folder = f\"../../data/results/publish/\"\n",
|
|
|
|
| 66 |
"\n",
|
| 67 |
-
"model_selection = MODELS[
|
| 68 |
"benchmark_name = \"BEIR\"\n",
|
| 69 |
"\n",
|
| 70 |
"# model_selection = MODELS['mt-prod']\n",
|
| 71 |
"# benchmark_name = \"MTEB(eng, v2)\""
|
| 72 |
-
]
|
| 73 |
-
"id": "58d52a330febb9ac",
|
| 74 |
-
"outputs": [],
|
| 75 |
-
"execution_count": null
|
| 76 |
},
|
| 77 |
{
|
| 78 |
-
"metadata": {},
|
| 79 |
"cell_type": "markdown",
|
| 80 |
-
"
|
| 81 |
-
"
|
|
|
|
|
|
|
|
|
|
| 82 |
},
|
| 83 |
{
|
|
|
|
|
|
|
|
|
|
| 84 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
"source": [
|
| 87 |
-
"model = SentenceTransformer(\n",
|
| 88 |
-
" model_selection['name'],\n",
|
| 89 |
-
" revision=model_selection['revision']\n",
|
| 90 |
-
")\n",
|
| 91 |
"\n",
|
| 92 |
"# alternative:\n",
|
| 93 |
"# meta = mteb.get_model_meta(\n",
|
|
@@ -95,25 +125,14 @@
|
|
| 95 |
"# revision=model_selection['revision']\n",
|
| 96 |
"# )\n",
|
| 97 |
"# model = meta.load_model()"
|
| 98 |
-
]
|
| 99 |
-
"id": "d6f13945a94f7a85",
|
| 100 |
-
"outputs": [],
|
| 101 |
-
"execution_count": null
|
| 102 |
},
|
| 103 |
{
|
| 104 |
-
"metadata": {},
|
| 105 |
"cell_type": "code",
|
| 106 |
-
"
|
| 107 |
-
|
| 108 |
-
"evaluation = mteb.MTEB(tasks=benchmark)"
|
| 109 |
-
],
|
| 110 |
-
"id": "c716c6344f9cd939",
|
| 111 |
-
"outputs": [],
|
| 112 |
-
"execution_count": null
|
| 113 |
-
},
|
| 114 |
-
{
|
| 115 |
"metadata": {},
|
| 116 |
-
"
|
| 117 |
"source": [
|
| 118 |
"%%time\n",
|
| 119 |
"results = evaluation.run(\n",
|
|
@@ -122,28 +141,32 @@
|
|
| 122 |
" output_folder=output_folder,\n",
|
| 123 |
" overwrite_results=True,\n",
|
| 124 |
")"
|
| 125 |
-
]
|
| 126 |
-
"id": "9bd44e88fc360663",
|
| 127 |
-
"outputs": [],
|
| 128 |
-
"execution_count": null
|
| 129 |
},
|
| 130 |
{
|
| 131 |
-
"metadata": {},
|
| 132 |
"cell_type": "markdown",
|
| 133 |
-
"
|
| 134 |
-
"
|
|
|
|
|
|
|
|
|
|
| 135 |
},
|
| 136 |
{
|
| 137 |
-
"metadata": {},
|
| 138 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
"source": [
|
| 140 |
-
"if model_selection[
|
| 141 |
" # quora is closer to a sentence similarity task than a retrieval one, as queries aren't proper user queries\n",
|
| 142 |
" # we thus embed them without the typical query prompt\n",
|
| 143 |
" model.prompts = {}\n",
|
| 144 |
-
" tasks = mteb.get_tasks(
|
| 145 |
-
" \
|
| 146 |
-
"
|
|
|
|
|
|
|
| 147 |
"\n",
|
| 148 |
" evaluation = mteb.MTEB(tasks=tasks)\n",
|
| 149 |
" results = evaluation.run(\n",
|
|
@@ -152,10 +175,89 @@
|
|
| 152 |
" output_folder=output_folder,\n",
|
| 153 |
" overwrite_results=True,\n",
|
| 154 |
" )"
|
| 155 |
-
]
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
"outputs": [],
|
| 158 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
}
|
| 160 |
],
|
| 161 |
"metadata": {
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
"id": "initial_id",
|
| 7 |
"metadata": {
|
| 8 |
"collapsed": true
|
| 9 |
},
|
| 10 |
+
"outputs": [],
|
| 11 |
"source": [
|
| 12 |
"import os\n",
|
| 13 |
+
"from typing import Dict, List\n",
|
| 14 |
"\n",
|
| 15 |
+
"IS_COLAB = True if \"GOOGLE_CLOUD_PROJECT\" in os.environ else False\n",
|
| 16 |
"if IS_COLAB:\n",
|
| 17 |
" # this needs to run before all other imports\n",
|
| 18 |
+
" os.environ[\"HF_HOME\"] = \"/content/cache/\" # to avoid running out of disk space\n",
|
| 19 |
"\n",
|
| 20 |
"import mteb\n",
|
| 21 |
+
"import numpy as np\n",
|
| 22 |
+
"import torch\n",
|
| 23 |
+
"from mteb.encoder_interface import PromptType\n",
|
| 24 |
"from sentence_transformers import SentenceTransformer"
|
| 25 |
+
]
|
|
|
|
|
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"id": "5325acfb",
|
| 30 |
"metadata": {},
|
| 31 |
+
"source": [
|
| 32 |
+
"### Notebook Configuration"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
"cell_type": "code",
|
| 37 |
+
"execution_count": null,
|
| 38 |
+
"id": "f0189ff1e7814a5a",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
"source": [
|
| 42 |
"MODELS = {\n",
|
| 43 |
+
" \"ir-prod\": {\n",
|
| 44 |
+
" \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
|
| 45 |
+
" \"revision\": \"2e46f5aac796e621d51f678c306a66ede4712ecb\",\n",
|
| 46 |
+
" \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
|
| 47 |
" },\n",
|
| 48 |
+
" \"ir-paper\": {\n",
|
| 49 |
+
" \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
|
| 50 |
+
" \"revision\": \"ea98995e96beac21b820aa8ad9afaa6fd29b243d\",\n",
|
| 51 |
+
" \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
|
| 52 |
" },\n",
|
| 53 |
+
" \"mt-prod\": {\n",
|
| 54 |
+
" \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
|
| 55 |
+
" \"revision\": \"66c47ba6d753efc208d54412b5af6c744a39a4df\",\n",
|
| 56 |
+
" \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
|
| 57 |
+
" },\n",
|
| 58 |
+
" \"mt-paper\": {\n",
|
| 59 |
+
" \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
|
| 60 |
+
" \"revision\": \"c342f945a6855346bd5f48d5ee8b7e39120b0ce9\",\n",
|
| 61 |
+
" \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
|
| 62 |
" },\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
"}"
|
| 64 |
+
]
|
|
|
|
|
|
|
|
|
|
| 65 |
},
|
| 66 |
{
|
|
|
|
| 67 |
"cell_type": "markdown",
|
| 68 |
+
"id": "371c6122efdf476a",
|
| 69 |
+
"metadata": {},
|
| 70 |
"source": [
|
| 71 |
+
"In the cell below:\n",
|
| 72 |
"* set the output folder and\n",
|
| 73 |
"* select one of the models defined above\n",
|
| 74 |
"* desired benchmark"
|
| 75 |
+
]
|
|
|
|
| 76 |
},
|
| 77 |
{
|
|
|
|
| 78 |
"cell_type": "code",
|
| 79 |
+
"execution_count": null,
|
| 80 |
+
"id": "58d52a330febb9ac",
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [],
|
| 83 |
"source": [
|
| 84 |
+
"# output_folder = f\"../../data/results/publish/\"\n",
|
| 85 |
+
"output_folder = f\"/content/data/results/publish/\"\n",
|
| 86 |
"\n",
|
| 87 |
+
"model_selection = MODELS[\"ir-prod\"]\n",
|
| 88 |
"benchmark_name = \"BEIR\"\n",
|
| 89 |
"\n",
|
| 90 |
"# model_selection = MODELS['mt-prod']\n",
|
| 91 |
"# benchmark_name = \"MTEB(eng, v2)\""
|
| 92 |
+
]
|
|
|
|
|
|
|
|
|
|
| 93 |
},
|
| 94 |
{
|
|
|
|
| 95 |
"cell_type": "markdown",
|
| 96 |
+
"id": "1b4367afc1278e",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"source": [
|
| 99 |
+
"### Run Evals"
|
| 100 |
+
]
|
| 101 |
},
|
| 102 |
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": null,
|
| 105 |
+
"id": "c716c6344f9cd939",
|
| 106 |
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"benchmark = mteb.get_benchmark(benchmark_name)\n",
|
| 110 |
+
"evaluation = mteb.MTEB(tasks=benchmark)"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"id": "d6f13945a94f7a85",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
"source": [
|
| 120 |
+
"model = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
|
|
|
|
|
|
|
|
|
|
| 121 |
"\n",
|
| 122 |
"# alternative:\n",
|
| 123 |
"# meta = mteb.get_model_meta(\n",
|
|
|
|
| 125 |
"# revision=model_selection['revision']\n",
|
| 126 |
"# )\n",
|
| 127 |
"# model = meta.load_model()"
|
| 128 |
+
]
|
|
|
|
|
|
|
|
|
|
| 129 |
},
|
| 130 |
{
|
|
|
|
| 131 |
"cell_type": "code",
|
| 132 |
+
"execution_count": null,
|
| 133 |
+
"id": "9bd44e88fc360663",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
"source": [
|
| 137 |
"%%time\n",
|
| 138 |
"results = evaluation.run(\n",
|
|
|
|
| 141 |
" output_folder=output_folder,\n",
|
| 142 |
" overwrite_results=True,\n",
|
| 143 |
")"
|
| 144 |
+
]
|
|
|
|
|
|
|
|
|
|
| 145 |
},
|
| 146 |
{
|
|
|
|
| 147 |
"cell_type": "markdown",
|
| 148 |
+
"id": "733e52ca41cf92a7",
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"source": [
|
| 151 |
+
"Evaluate Quora"
|
| 152 |
+
]
|
| 153 |
},
|
| 154 |
{
|
|
|
|
| 155 |
"cell_type": "code",
|
| 156 |
+
"execution_count": null,
|
| 157 |
+
"id": "61aea9a04468202f",
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
"source": [
|
| 161 |
+
"if model_selection[\"name\"].endswith(\"ir\"):\n",
|
| 162 |
" # quora is closer to a sentence similarity task than a retrieval one, as queries aren't proper user queries\n",
|
| 163 |
" # we thus embed them without the typical query prompt\n",
|
| 164 |
" model.prompts = {}\n",
|
| 165 |
+
" tasks = mteb.get_tasks(\n",
|
| 166 |
+
" tasks=[\n",
|
| 167 |
+
" \"QuoraRetrieval\",\n",
|
| 168 |
+
" ]\n",
|
| 169 |
+
" )\n",
|
| 170 |
"\n",
|
| 171 |
" evaluation = mteb.MTEB(tasks=tasks)\n",
|
| 172 |
" results = evaluation.run(\n",
|
|
|
|
| 175 |
" output_folder=output_folder,\n",
|
| 176 |
" overwrite_results=True,\n",
|
| 177 |
" )"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "markdown",
|
| 182 |
+
"id": "6a6c164e",
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"source": [
|
| 185 |
+
"### Asymmetric Mode\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"Compute asymmetric mode scores: queries encoded by `leaf`, documents by the original teacher model."
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": null,
|
| 193 |
+
"id": "487ba349",
|
| 194 |
+
"metadata": {},
|
| 195 |
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"class AsymmetricModel:\n",
|
| 198 |
+
" def __init__(\n",
|
| 199 |
+
" self,\n",
|
| 200 |
+
" doc_model: SentenceTransformer,\n",
|
| 201 |
+
" query_model: SentenceTransformer,\n",
|
| 202 |
+
" ) -> None:\n",
|
| 203 |
+
" self.doc_model = doc_model\n",
|
| 204 |
+
" self.query_model = query_model\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" def encode(self, sentences: List[str], **kwargs) -> np.ndarray | torch.Tensor:\n",
|
| 207 |
+
" if \"prompt_type\" not in kwargs:\n",
|
| 208 |
+
" kwargs[\"prompt_type\"] = None\n",
|
| 209 |
+
"\n",
|
| 210 |
+
" match kwargs[\"prompt_type\"]:\n",
|
| 211 |
+
" case PromptType.query:\n",
|
| 212 |
+
" out = self.query_model.encode(sentences, prompt_name=\"query\", **kwargs)\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" case PromptType.document:\n",
|
| 215 |
+
" out = self.doc_model.encode(sentences, **kwargs)\n",
|
| 216 |
+
"\n",
|
| 217 |
+
" case None:\n",
|
| 218 |
+
" print(\"No prompt type: using query (leaf) model for encoding\")\n",
|
| 219 |
+
" out = self.query_model.encode(sentences, **kwargs)\n",
|
| 220 |
+
" case _:\n",
|
| 221 |
+
" raise ValueError(f\"Encoding unknown type: {kwargs['prompt_type']}\")\n",
|
| 222 |
+
"\n",
|
| 223 |
+
" if not isinstance(out, torch.Tensor):\n",
|
| 224 |
+
" out = torch.from_numpy(out)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
" out = out.to(\"cpu\")\n",
|
| 227 |
+
" return out"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "code",
|
| 232 |
+
"execution_count": null,
|
| 233 |
+
"id": "4162af7f",
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"leaf = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
|
| 238 |
+
"teacher = SentenceTransformer(model_selection[\"teacher\"])\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"asymm_model = AsymmetricModel(\n",
|
| 241 |
+
" query_model=leaf,\n",
|
| 242 |
+
" doc_model=teacher,\n",
|
| 243 |
+
")"
|
| 244 |
+
]
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"cell_type": "code",
|
| 248 |
+
"execution_count": null,
|
| 249 |
+
"id": "848d8a5f",
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"%%time\n",
|
| 254 |
+
"results = evaluation.run(\n",
|
| 255 |
+
" model=asymm_model,\n",
|
| 256 |
+
" verbosity=1,\n",
|
| 257 |
+
" output_folder=output_folder,\n",
|
| 258 |
+
" overwrite_results=True,\n",
|
| 259 |
+
")"
|
| 260 |
+
]
|
| 261 |
}
|
| 262 |
],
|
| 263 |
"metadata": {
|