Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Spider-TriviaQA: Question Encoder
|
| 2 |
+
|
| 3 |
+
This is the question encoder of the model fine-tuned on TriviaQA (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708).
|
| 4 |
+
|
| 5 |
+
## Usage
|
| 6 |
+
|
| 7 |
+
We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both.
|
| 8 |
+
|
| 9 |
+
**Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token
|
| 10 |
+
type ids are all 0-s.
|
| 11 |
+
|
| 12 |
+
An example usage:
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from transformers import AutoTokenizer, DPRQuestionEncoder
|
| 16 |
+
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-trivia-question-encoder")
|
| 18 |
+
model = DPRQuestionEncoder.from_pretrained("NAACL2022/spider-trivia-question-encoder")
|
| 19 |
+
|
| 20 |
+
question = "Who is the villain in lord of the rings"
|
| 21 |
+
input_dict = tokenizer(question, return_tensors="pt")
|
| 22 |
+
del input_dict["token_type_ids"]
|
| 23 |
+
|
| 24 |
+
outputs = model(**input_dict)
|
| 25 |
+
```
|