Update README.md
Browse files
README.md
CHANGED
|
@@ -12,7 +12,7 @@ base_model:
|
|
| 12 |
- Qwen/Qwen2.5-Coder-3B
|
| 13 |
---
|
| 14 |
|
| 15 |
-
# VeriReason-Qwen2.5-
|
| 16 |
|
| 17 |
For implementation details, visit our GitHub repository: [VeriReason](https://github.com/NellyW8/VeriReason)
|
| 18 |
|
|
@@ -42,7 +42,7 @@ You can use the model with the transformers library:
|
|
| 42 |
import torch
|
| 43 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 44 |
|
| 45 |
-
model_name = "Nellyw888/VeriReason-Qwen2.5-
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 48 |
model.eval()
|
|
|
|
| 12 |
- Qwen/Qwen2.5-Coder-3B
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# VeriReason-Qwen2.5-3b-RTLCoder-Verilog-GRPO-reasoning-tb
|
| 16 |
|
| 17 |
For implementation details, visit our GitHub repository: [VeriReason](https://github.com/NellyW8/VeriReason)
|
| 18 |
|
|
|
|
| 42 |
import torch
|
| 43 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 44 |
|
| 45 |
+
model_name = "Nellyw888/VeriReason-Qwen2.5-3b-RTLCoder-Verilog-GRPO-reasoning-tb"
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 48 |
model.eval()
|