Uploaded bai-64 Mind!
Browse files- v1-BETA/analysis.py +246 -0
- v1-BETA/bai-64 Mind v1.h5 +3 -0
- v1-BETA/requirements.txt +8 -0
v1-BETA/analysis.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import seaborn as sns
|
| 4 |
+
from tensorflow import keras
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
class InnerSpeechAnalyzer:
|
| 8 |
+
def __init__(self, model_path='path/to/your/model.h5'):
|
| 9 |
+
try:
|
| 10 |
+
self.model = keras.models.load_model(model_path)
|
| 11 |
+
print(f"Model yüklendi / Model loaded: {model_path}")
|
| 12 |
+
except:
|
| 13 |
+
print(f"Model dosyası bulunamadı / Not found model file: {model_path}")
|
| 14 |
+
self.model = None
|
| 15 |
+
|
| 16 |
+
def analyze_model_architecture(self):
|
| 17 |
+
if self.model is None:
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
print("Model Mimarisi / Model Architecture:")
|
| 21 |
+
print("=" * 50)
|
| 22 |
+
self.model.summary()
|
| 23 |
+
|
| 24 |
+
# Model layer analizi / Model layer analysis
|
| 25 |
+
total_params = self.model.count_params()
|
| 26 |
+
trainable_params = sum([np.prod(v.shape) for v in self.model.trainable_variables])
|
| 27 |
+
|
| 28 |
+
print(f"\nToplam Parametre Sayısı / Total Parameter: {total_params:,}")
|
| 29 |
+
print(f"Eğitilebilir Parametre / Trainable Parameter: {trainable_params:,}")
|
| 30 |
+
|
| 31 |
+
layer_types = {}
|
| 32 |
+
for layer in self.model.layers:
|
| 33 |
+
layer_type = type(layer).__name__
|
| 34 |
+
layer_types[layer_type] = layer_types.get(layer_type, 0) + 1
|
| 35 |
+
|
| 36 |
+
print("\nLayer Türleri:")
|
| 37 |
+
for layer_type, count in layer_types.items():
|
| 38 |
+
print(f" {layer_type}: {count}")
|
| 39 |
+
|
| 40 |
+
def create_real_time_predictor(self):
|
| 41 |
+
if self.model is None:
|
| 42 |
+
print("Model yüklenmemiş! / Model not loaded!")
|
| 43 |
+
return
|
| 44 |
+
|
| 45 |
+
class RealTimePredictor:
|
| 46 |
+
def __init__(self, model):
|
| 47 |
+
self.model = model
|
| 48 |
+
self.classes = ['Up', 'Down', 'Left', 'Right']
|
| 49 |
+
|
| 50 |
+
def predict_thought(self, eeg_data):
|
| 51 |
+
"""
|
| 52 |
+
EEG verisinden düşünceyi tahmin eder / Predicts thought from EEG data
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
eeg_data: (n_timepoints, n_channels) şeklinde EEG verisi / EEG data in shape (n_timepoints, n_channels)
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
predicted_word: Tahmin edilen kelime / Predicted word
|
| 59 |
+
confidence: Güven skoru / Confidence score
|
| 60 |
+
"""
|
| 61 |
+
eeg_batch = np.expand_dims(eeg_data, axis=0) # (1, n_timepoints, n_channels)
|
| 62 |
+
|
| 63 |
+
predictions = self.model.predict(eeg_batch, verbose=0)
|
| 64 |
+
|
| 65 |
+
predicted_class_idx = np.argmax(predictions[0])
|
| 66 |
+
confidence = predictions[0][predicted_class_idx]
|
| 67 |
+
predicted_word = self.classes[predicted_class_idx]
|
| 68 |
+
|
| 69 |
+
return predicted_word, confidence
|
| 70 |
+
|
| 71 |
+
def get_all_predictions(self, eeg_data):
|
| 72 |
+
eeg_batch = np.expand_dims(eeg_data, axis=0)
|
| 73 |
+
predictions = self.model.predict(eeg_batch, verbose=0)
|
| 74 |
+
|
| 75 |
+
results = {}
|
| 76 |
+
for i, class_name in enumerate(self.classes):
|
| 77 |
+
results[class_name] = predictions[0][i]
|
| 78 |
+
|
| 79 |
+
return results
|
| 80 |
+
|
| 81 |
+
predictor = RealTimePredictor(self.model)
|
| 82 |
+
print("Gerçek zamanlı tahminleyici hazır! / Real-time predictor is ready!")
|
| 83 |
+
print("Kullanım: predictor.predict_thought(eeg_data) / Usage: predictor.predict_thought(eeg_data)")
|
| 84 |
+
|
| 85 |
+
return predictor
|
| 86 |
+
|
| 87 |
+
def simulate_brain_computer_interface(self, n_tests=20):
|
| 88 |
+
"""
|
| 89 |
+
Beyin-Bilgisayar Arayüzü simülasyonu / Simulates Brain-Computer Interface
|
| 90 |
+
"""
|
| 91 |
+
if self.model is None:
|
| 92 |
+
print("Model yüklenmemiş! / Model not loaded!")
|
| 93 |
+
return
|
| 94 |
+
|
| 95 |
+
print("Beyin-Bilgisayar Arayüzü Simülasyonu / Brain-Computer Interface Simulation")
|
| 96 |
+
print("=" * 40)
|
| 97 |
+
|
| 98 |
+
predictor = self.create_real_time_predictor()
|
| 99 |
+
classes = ['Up', 'Down', 'Left', 'Right']
|
| 100 |
+
|
| 101 |
+
results = []
|
| 102 |
+
|
| 103 |
+
for test in range(n_tests):
|
| 104 |
+
# Rastgele gerçek sınıf seç / Randomly select true class
|
| 105 |
+
true_class = np.random.choice(classes)
|
| 106 |
+
true_idx = classes.index(true_class)
|
| 107 |
+
|
| 108 |
+
# Bu sınıf için sentetik EEG verisi oluştur / Generate synthetic EEG data for this class
|
| 109 |
+
n_channels, n_timepoints = 64, 250
|
| 110 |
+
eeg_signal = np.zeros((n_timepoints, n_channels))
|
| 111 |
+
|
| 112 |
+
for channel in range(n_channels):
|
| 113 |
+
t = np.linspace(0, 1, n_timepoints)
|
| 114 |
+
|
| 115 |
+
# Sınıfa özgü aktivasyon paternleri / Class-specific activation patterns
|
| 116 |
+
base_signal = np.sin(2 * np.pi * 10 * t)
|
| 117 |
+
|
| 118 |
+
if true_class == 'Up' and channel < n_channels // 4:
|
| 119 |
+
base_signal *= 2.0
|
| 120 |
+
elif true_class == 'Down' and channel >= 3 * n_channels // 4:
|
| 121 |
+
base_signal *= 2.0
|
| 122 |
+
elif true_class == 'Left' and channel % 2 == 0:
|
| 123 |
+
base_signal *= 1.5
|
| 124 |
+
elif true_class == 'Right' and channel % 2 == 1:
|
| 125 |
+
base_signal *= 1.5
|
| 126 |
+
|
| 127 |
+
# Gürültü ekle / Add noise
|
| 128 |
+
noise = 0.1 * np.random.randn(n_timepoints)
|
| 129 |
+
eeg_signal[:, channel] = base_signal + noise
|
| 130 |
+
|
| 131 |
+
# Tahmin yap / Make prediction
|
| 132 |
+
predicted_word, confidence = predictor.predict_thought(eeg_signal)
|
| 133 |
+
|
| 134 |
+
results.append({
|
| 135 |
+
'test_no': test + 1,
|
| 136 |
+
'true_class': true_class,
|
| 137 |
+
'predicted_class': predicted_word,
|
| 138 |
+
'confidence': confidence,
|
| 139 |
+
'correct': true_class == predicted_word
|
| 140 |
+
})
|
| 141 |
+
|
| 142 |
+
print(f"Test {test+1:2d}: Gerçek / Real={true_class:>5}, Tahmin / Prediction={predicted_word:>5}, "
|
| 143 |
+
f"Güven / Confidence={confidence:.3f}, {'✓' if true_class == predicted_word else '✗'}")
|
| 144 |
+
|
| 145 |
+
df_results = pd.DataFrame(results)
|
| 146 |
+
accuracy = df_results['correct'].mean()
|
| 147 |
+
avg_confidence = df_results['confidence'].mean()
|
| 148 |
+
|
| 149 |
+
print(f"\nSonuçlar / Results:")
|
| 150 |
+
print(f"Doğruluk / Accuracy: {accuracy:.3f} ({accuracy*100:.1f}%)")
|
| 151 |
+
print(f"Ortalama Güven / Average Confidence: {avg_confidence:.3f}")
|
| 152 |
+
|
| 153 |
+
print(f"\nSınıf Bazlı Performans / Class Based Performance:")
|
| 154 |
+
for class_name in classes:
|
| 155 |
+
class_results = df_results[df_results['true_class'] == class_name]
|
| 156 |
+
class_accuracy = class_results['correct'].mean() if len(class_results) > 0 else 0
|
| 157 |
+
print(f" {class_name}: {class_accuracy:.3f}")
|
| 158 |
+
|
| 159 |
+
return df_results
|
| 160 |
+
|
| 161 |
+
def create_visualization_dashboard(self):
|
| 162 |
+
"""
|
| 163 |
+
Model performansı için görselleştirme dashboard'u / Creates a visualization dashboard for model performance
|
| 164 |
+
"""
|
| 165 |
+
print("Model Analiz Dashboard'u / Model Analysis Dashboard")
|
| 166 |
+
print("=" * 30)
|
| 167 |
+
|
| 168 |
+
results_df = self.simulate_brain_computer_interface(n_tests=100)
|
| 169 |
+
|
| 170 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
|
| 171 |
+
|
| 172 |
+
# 1. Doğruluk Dağılımı / Accuracy Distribution
|
| 173 |
+
accuracy_by_class = results_df.groupby('true_class')['correct'].mean()
|
| 174 |
+
axes[0, 0].bar(accuracy_by_class.index, accuracy_by_class.values)
|
| 175 |
+
axes[0, 0].set_title('Sınıf Bazlı Doğruluk')
|
| 176 |
+
axes[0, 0].set_ylabel('Doğruluk')
|
| 177 |
+
axes[0, 0].set_ylim(0, 1)
|
| 178 |
+
|
| 179 |
+
# 2. Güven Skoru Dağılımı / Confidence Score Distribution
|
| 180 |
+
axes[0, 1].hist(results_df['confidence'], bins=20, alpha=0.7)
|
| 181 |
+
axes[0, 1].set_title('Güven Skoru Dağılımı / Confidence Score Distribution')
|
| 182 |
+
axes[0, 1].set_xlabel('Güven Skoru / Confidence Score')
|
| 183 |
+
axes[0, 1].set_ylabel('Frekans / Frequency')
|
| 184 |
+
|
| 185 |
+
# 3. Confusion Matrix
|
| 186 |
+
from sklearn.metrics import confusion_matrix
|
| 187 |
+
cm = confusion_matrix(results_df['true_class'], results_df['predicted_class'],
|
| 188 |
+
labels=['Up', 'Down', 'Left', 'Right'])
|
| 189 |
+
|
| 190 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
| 191 |
+
xticklabels=['Up', 'Down', 'Left', 'Right'],
|
| 192 |
+
yticklabels=['Up', 'Down', 'Left', 'Right'],
|
| 193 |
+
ax=axes[1, 0])
|
| 194 |
+
axes[1, 0].set_title('Confusion Matrix')
|
| 195 |
+
axes[1, 0].set_ylabel('Gerçek / True Class')
|
| 196 |
+
axes[1, 0].set_xlabel('Tahmin / Predicted Class')
|
| 197 |
+
|
| 198 |
+
# 4. Güven vs Doğruluk / Confidence vs Accuracy
|
| 199 |
+
correct_confidences = results_df[results_df['correct'] == True]['confidence']
|
| 200 |
+
wrong_confidences = results_df[results_df['correct'] == False]['confidence']
|
| 201 |
+
|
| 202 |
+
axes[1, 1].hist([correct_confidences, wrong_confidences],
|
| 203 |
+
bins=15, alpha=0.7, label=['Doğru', 'Yanlış'])
|
| 204 |
+
axes[1, 1].set_title('Güven Skoru: Doğru vs Yanlış Tahminler / Confidence Score: Correct vs Incorrect Predictions')
|
| 205 |
+
axes[1, 1].set_xlabel('Güven Skoru / Confidence Score')
|
| 206 |
+
axes[1, 1].set_ylabel('Frekans / Frequency')
|
| 207 |
+
axes[1, 1].legend()
|
| 208 |
+
|
| 209 |
+
plt.tight_layout()
|
| 210 |
+
plt.savefig('dashboard.png', dpi=300, bbox_inches='tight')
|
| 211 |
+
plt.close()
|
| 212 |
+
|
| 213 |
+
print("Dashboard kaydedildi / Dashboard saved: dashboard.png")
|
| 214 |
+
|
| 215 |
+
return results_df
|
| 216 |
+
|
| 217 |
+
def main():
|
| 218 |
+
"""
|
| 219 |
+
Ana analiz fonksiyonu / Main analysis function
|
| 220 |
+
"""
|
| 221 |
+
print("bai-64 Mind Model Analizi / bai-64 Mind Model Analysis")
|
| 222 |
+
print("=" * 40)
|
| 223 |
+
|
| 224 |
+
analyzer = InnerSpeechAnalyzer('path/to/your/model.h5')
|
| 225 |
+
|
| 226 |
+
if analyzer.model is not None:
|
| 227 |
+
# Model mimarisini analiz et / Analyze model architecture
|
| 228 |
+
analyzer.analyze_model_architecture()
|
| 229 |
+
|
| 230 |
+
print("\n" + "="*50)
|
| 231 |
+
|
| 232 |
+
# Gerçek zamanlı tahminleyici oluştur / Create real-time predictor
|
| 233 |
+
predictor = analyzer.create_real_time_predictor()
|
| 234 |
+
|
| 235 |
+
print("\n" + "="*50)
|
| 236 |
+
|
| 237 |
+
# Beyin-bilgisayar arayüzü simülasyonu / Simulate brain-computer interface
|
| 238 |
+
analyzer.create_visualization_dashboard()
|
| 239 |
+
|
| 240 |
+
print("\nAnaliz tamamlandı! Görselleştirmeler kaydedildi. / Analysis completed! Visualizations saved.")
|
| 241 |
+
|
| 242 |
+
else:
|
| 243 |
+
print("Model dosyası bulunamadı. Önce modeli eğitin. / Model file not found. Train the model first.")
|
| 244 |
+
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
main()
|
v1-BETA/bai-64 Mind v1.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:240e8cedce8ec49f5daca3e435ab69ba3587559a46edbfcf7155368663376652
|
| 3 |
+
size 5731672
|
v1-BETA/requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow>=2.8.0,<3.0.0
|
| 2 |
+
scikit-learn>=1.0.0
|
| 3 |
+
numpy>=1.21.0
|
| 4 |
+
scipy>=1.7.0
|
| 5 |
+
pandas>=1.3.0
|
| 6 |
+
mne>=1.0.0
|
| 7 |
+
matplotlib>=3.5.0
|
| 8 |
+
seaborn>=0.11.0
|