Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,150 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
### Direct Use
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
### Recommendations
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
|
| 121 |
#### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
|
| 141 |
## Environmental Impact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- sentiment-analysis
|
| 5 |
+
- imdb
|
| 6 |
+
- text-classification
|
| 7 |
+
- distilbert
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
datasets:
|
| 10 |
+
- stanfordnlp/imdb
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- precision
|
| 16 |
+
- recall
|
| 17 |
+
- f1
|
| 18 |
+
base_model:
|
| 19 |
+
- distilbert/distilbert-base-uncased
|
| 20 |
+
pipeline_tag: text-classification
|
| 21 |
---
|
| 22 |
|
| 23 |
+
# Model Card for DistilBERT Fine-Tuned on IMDB Sentiment Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
## Model Details
|
| 26 |
|
| 27 |
### Model Description
|
| 28 |
|
| 29 |
+
This model is a fine-tuned version of `distilbert-base-uncased` on the **IMDB movie reviews dataset** for **binary sentiment classification** (positive vs. negative). The model has been trained to classify movie reviews into either **positive (1)** or **negative (0)** sentiments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
- **Developed by:** Nikke Salonen
|
| 32 |
+
- **Finetuned from model:** `distilbert-base-uncased`
|
| 33 |
+
- **Language(s):** English
|
| 34 |
+
- **License:** Apache 2.0
|
| 35 |
|
| 36 |
+
### Model Sources
|
| 37 |
+
- **Repository:** https://huggingface.co/NikkeS/imdb-distilbert/
|
| 38 |
+
- **Dataset:** [IMDB Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
|
|
|
|
|
|
|
| 39 |
|
| 40 |
## Uses
|
| 41 |
|
|
|
|
|
|
|
| 42 |
### Direct Use
|
| 43 |
+
- Sentiment analysis of **English text reviews**.
|
| 44 |
+
- Can be used for **opinion mining** on movie reviews and similar datasets.
|
| 45 |
|
| 46 |
+
### Downstream Use
|
| 47 |
+
- Can be **fine-tuned further** for sentiment classification in other domains (e.g., product reviews, social media sentiment analysis).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
### Out-of-Scope Use
|
| 50 |
+
- Not suitable for **languages other than English**.
|
| 51 |
+
- Not recommended for **high-stakes decision-making** without human oversight.
|
|
|
|
|
|
|
| 52 |
|
| 53 |
## Bias, Risks, and Limitations
|
| 54 |
|
| 55 |
+
- The model is **trained on IMDB reviews**, so it may **not generalize well** to other types of sentiment analysis tasks.
|
| 56 |
+
- May exhibit **biases present in the training data**.
|
| 57 |
+
- Sentiment classification **depends heavily on context**, and the model may misinterpret sarcasm or complex sentences.
|
| 58 |
|
| 59 |
### Recommendations
|
| 60 |
+
- Users should **evaluate the model** on their specific datasets before deploying in production.
|
| 61 |
+
- If biases are detected, consider **fine-tuning on a more diverse dataset**.
|
| 62 |
|
| 63 |
+
## How to Use the Model
|
| 64 |
|
| 65 |
+
```python
|
| 66 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 67 |
+
import torch
|
| 68 |
|
| 69 |
+
# Load the fine-tuned model from Hugging Face Hub
|
| 70 |
+
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/imdb-distilbert")
|
| 71 |
+
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/imdb-distilbert")
|
| 72 |
|
| 73 |
+
def predict_sentiment(review):
|
| 74 |
+
inputs = tokenizer(review, return_tensors="pt", truncation=True, padding=True, max_length=256)
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
logits = model(**inputs).logits
|
| 77 |
+
prediction = torch.argmax(logits, dim=1).item()
|
| 78 |
+
return "Positive" if prediction == 1 else "Negative"
|
| 79 |
|
| 80 |
+
# Example Usage
|
| 81 |
+
print(predict_sentiment("This movie was absolutely fantastic!"))
|
| 82 |
+
print(predict_sentiment("The acting was terrible, and the story made no sense."))
|
| 83 |
+
```
|
| 84 |
|
| 85 |
## Training Details
|
| 86 |
|
| 87 |
### Training Data
|
| 88 |
+
- The model was fine-tuned on the **IMDB dataset** (50,000 labeled movie reviews).
|
| 89 |
+
- The dataset is **balanced** (25,000 positive and 25,000 negative reviews).
|
|
|
|
|
|
|
| 90 |
|
| 91 |
### Training Procedure
|
| 92 |
+
#### Preprocessing
|
| 93 |
+
- Tokenized using `distilbert-base-uncased` tokenizer.
|
| 94 |
+
- Applied **dynamic padding, truncation, and a max sequence length of 256**.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
#### Training Hyperparameters
|
| 97 |
+
- **Learning rate:** `5e-5`
|
| 98 |
+
- **Batch size:** `16`
|
| 99 |
+
- **Epochs:** `2`
|
| 100 |
+
- **Optimizer:** AdamW
|
| 101 |
+
- **Loss Function:** Cross-Entropy Loss
|
| 102 |
|
| 103 |
+
#### Compute Infrastructure
|
| 104 |
+
- **Hardware:** Google Colab T4 GPU
|
| 105 |
+
- **Precision:** Mixed precision (`fp16=True` for efficiency)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
## Evaluation
|
| 108 |
|
|
|
|
|
|
|
| 109 |
### Testing Data, Factors & Metrics
|
|
|
|
| 110 |
#### Testing Data
|
| 111 |
+
- The model was evaluated on a **10,000-sample test set** from the IMDB dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
#### Metrics
|
| 114 |
+
- **Accuracy:** 92,4%
|
| 115 |
+
- **Precision, Recall, F1-score:**
|
| 116 |
+
- **Precision:** 92,4%
|
| 117 |
+
- **Recall:** 92.3%
|
| 118 |
+
- **F1-score:** 92.3%
|
| 119 |
|
| 120 |
+
## Model Examination
|
| 121 |
+
- The model performs well on **general sentiment classification** but may struggle with **sarcasm, irony, or very short reviews**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
## Environmental Impact
|
| 124 |
+
- **Hardware Type:** Google Colab T4 GPU
|
| 125 |
+
- **Training Time:** ~1 hour
|
| 126 |
+
- **CO2 Emission Estimate:** [Use ML Impact Calculator](https://mlco2.github.io/impact#compute)
|
| 127 |
+
|
| 128 |
+
## Citation
|
| 129 |
+
If you use this model, please cite:
|
| 130 |
+
```bibtex
|
| 131 |
+
@article{salonen2025imdb-distilbert,
|
| 132 |
+
title={Fine-tuned DistilBERT for Sentiment Analysis on IMDB Reviews},
|
| 133 |
+
author={Nikke Salonen},
|
| 134 |
+
year={2025}
|
| 135 |
+
}
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## More Information
|
| 139 |
+
- **Hugging Face Model Page:** https://huggingface.co/NikkeS/imdb-distilbert/.
|
| 140 |
+
- **Dataset:** [IMDB Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
|
| 141 |
+
|
| 142 |
+
## Model Card Authors
|
| 143 |
+
- [Nikke Salonen]
|
| 144 |
+
|
| 145 |
+
## Contact
|
| 146 |
+
For questions or issues, contact **[email protected]**.
|
| 147 |
|
| 148 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
This model card provides all necessary details, including **training info, evaluation results, and usage instructions**. Let me know if you'd like any modifications before uploading to **Hugging Face Hub**!
|