| #version: 0.2 | |
| _ { | |
| ^ { | |
| } \ | |
| m a | |
| \ [ | |
| t h | |
| ma th | |
| } ( | |
| } ^{ | |
| \ ] | |
| r a | |
| i n | |
| } ) | |
| } _{ | |
| i g | |
| l e | |
| t a | |
| a l | |
| { \ | |
| \[ \ | |
| m e | |
| , \ | |
| Ġ \ | |
| f ra | |
| } } | |
| a r | |
| math b | |
| fra c | |
| _{ \ | |
| f t | |
| }\ ] | |
| = \ | |
| t i | |
| ( \ | |
| d e | |
| ig h | |
| p h | |
| r igh | |
| a m | |
| } { | |
| e ta | |
| ) \ | |
| ^{ \ | |
| c al | |
| le ft | |
| righ t | |
| r i | |
| math cal | |
| }( \ | |
| - \ | |
| s i | |
| } , | |
| } }\ | |
| mathb b | |
| o t | |
| + \ | |
| l o | |
| s u | |
| d ot | |
| p ri | |
| pri me | |
| . \] | |
| t o | |
| p si | |
| | \ | |
| mathb f | |
| }^{ \ | |
| ph a | |
| al pha | |
| le q | |
| r m | |
| } ,\ | |
| d a | |
| am b | |
| amb da | |
| v ar | |
| lo n | |
| math rm | |
| n a | |
| }) \ | |
| l ambda | |
| psi lon | |
| l a | |
| am ma | |
| l ta | |
| su m | |
| e psilon | |
| b ig | |
| }_{ \ | |
| g a | |
| me ga | |
| ) \] | |
| ph i | |
| t e | |
| } + | |
| n g | |
| ti l | |
| til de | |
| ig ma | |
| c dot | |
| o p | |
| } = | |
| } - | |
| q u | |
| in t | |
| m u | |
| ti me | |
| time s | |
| b o | |
| x t | |
| ng le | |
| te xt | |
| n d | |
| l l | |
| ^{ - | |
| p ar | |
| a d | |
| } =\ | |
| b eta | |
| ti al | |
| par tial | |
| e r | |
| qu ad | |
| e q | |
| ft y | |
| in fty | |
| th eta | |
| }) \] | |
| s igma | |
| a t | |
| g amma | |
| to r | |
| l in | |
| e ra | |
| era tor | |
| op erator | |
| na me | |
| operator name | |
| lin e | |
| b ar | |
| h at | |
| h o | |
| ta u | |
| e g | |
| bo l | |
| var epsilon | |
| de lta | |
| r ho | |
| e nd | |
| | _{ | |
| b eg | |
| beg in | |
| w i | |
| { ( | |
| b m | |
| } +\ | |
| s e | |
| p i | |
| dot s | |
| wi de | |
| , \] | |
| x i | |
| } {\ | |
| Ġ & | |
| ) ^{ | |
| ra y | |
| e ll | |
| Ġ 0 | |
| a p | |
| } .\] | |
| ) = | |
| } | | |
| v er | |
| }} { | |
| ) }\ | |
| g eq | |
| o mega | |
| ) =\ | |
| t ri | |
| } -\ | |
| } }( | |
| r o | |
| o ver | |
| O mega | |
| & \ | |
| B ig | |
| math s | |
| h i | |
| b la | |
| na bla | |
| fra k | |
| math frak | |
| ma tri | |
| matri x | |
| var phi | |
| over line | |
| l dots | |
| s q | |
| n u | |
| r t | |
| ^{ * | |
| [ \ | |
| sq rt | |
| Ġ 1 | |
| \ \ | |
| D e | |
| ra ngle | |
| d s | |
| De lta | |
| } }^{ | |
| | ^{ | |
| } }\] | |
| la ngle | |
| l i | |
| ar ray | |
| Ġ \[ | |
| se t | |
| ta r | |
| o times | |
| c o | |
| } : | |
| y m | |
| } ] | |
| G amma | |
| wide tilde | |
| ym bol | |
| bol ds | |
| bolds ymbol | |
| }, \] | |
| }^{ ( | |
| Ġ \[\ | |
| { ) | |
| maths f | |
| ro w | |
| Ġ C | |
| lo g | |
| p a | |
| Ġ { | |
| }^{ * | |
| \ | | |
| }^{ - | |
| Ġ x | |
| m in | |
| \[ ( | |
| cdot s | |
| Ġ 2 | |
| }\ , | |
| \ { | |
| wide hat | |
| u s | |
| Ġ i | |
| ) ) | |
| k ap | |
| kap pa | |
| \ , | |
| r c | |
| c ap | |
| \ |_{ | |
| tar row | |
| q quad | |
| P hi | |
| } }(\ | |
| }\ \ | |
| li m | |
| }) ^{ | |
| su b | |
| ; \ | |
| }) = | |
| p matrix | |
| }} {\ | |
| {( }\ | |
| c i | |
| o r | |
| ) .\] | |
| z eta | |
| L ambda | |
| Ġ f | |
| ^{ ( | |
| ci rc | |
| Ġ t | |
| } & | |
| righ tarrow | |
| c hi | |
| u n | |
| ) - | |
| } }_{ | |
| Ġ n | |
| c u | |
| Ġ } | |
| Ġ a | |
| ) ,\ | |
| ) , | |
| de r | |
| }) =\ | |
| un der | |
| ) + | |
| cu p | |
| s la | |
| v e | |
| Ġ }\ | |
| } [ | |
| } |\ | |
| Ġ u | |
| }\ | | |
| { | | |
| \ {\ | |
| n t | |
| } / | |
| ] \ | |
| S igma | |
| Ġ d | |
| Ġ = | |
| p ro | |
| su p | |
| si m | |
| c r | |
| su bar | |
| subar ray | |
| } }) | |
| Ġ =\ | |
| ) ( | |
| < \ | |
| maths cr | |
| big g | |
| ) } | |
| : =\ | |
| r e | |
| ma x | |
| Ġ L | |
| }\ |_{ | |
| {( } | |
| }\ ,\ | |
| sla nt | |
| b matrix | |
| ) }{ | |
| under line | |
| Ġ A | |
| bo x | |
| \ }\] | |
| Ġ B | |
| \ |\ | |
| e d | |
| Ġ S | |
| Ġ _{ | |
| n eq | |
| g e | |
| Ġ k | |
| d i | |
| ) +\ | |
| b f | |
| . . | |
| Ġ H | |
| sub set | |
| i j | |
| Ġ\ \ | |
| p m | |
| ) -\ | |
| c c | |
| d x | |
| ) ^{\ | |
| ) ,\] | |
| pro d | |
| 1 2 | |
| \[ (\ | |
| Ġ c | |
| Ġ T | |
| ! \ | |
| i d | |
| Ġ ( | |
| Ġ s | |
| P si | |
| i t | |
| Ġ e | |
| _{ * | |
| Ġ X | |
| c a | |
| c k | |
| Ġ p | |
| } &\ | |
| ^{ -\ | |
| l us | |
| \ ,\ | |
| min us | |
| }} ,\ | |
| ed ge | |
| . \ | |
| ] \] | |
| w edge | |
| set minus | |
| { )}\ | |
| op lus | |
| co lon | |
| ) )\ | |
| s p | |
| Ġ I | |
| _{ - | |
| se s | |
| Ġ v | |
| ca ses | |
| } }^{\ | |
| o m | |
| ) }( | |
| Ġ M | |
| leq slant | |
| }) _{ | |
| Ġ N | |
| m box | |
| 1 0 | |
| f o | |
| Ġ\[ = | |
| Ġ V | |
| s s | |
| ) | | |
| ra ll | |
| fo rall | |
| e x | |
| / \ | |
| ( - | |
| li t | |
| to p | |
| }: =\ | |
| }} =\ | |
| }} .\] | |
| }) .\] | |
| sp lit | |
| }) }\ | |
| : \ | |
| ) _{ | |
| \[ | | |
| ve c | |
| ex p | |
| Ġ\ ( | |
| s tar | |
| Ġ y | |
| }^{ + | |
| Ġ D | |
| m id | |
| Ġ r | |
| Ġ E | |
| u l | |
| )\ , | |
| { [ | |
| Ġ m | |
| }} = | |
| }) ,\ | |
| ) }\] | |
| Ġ R | |
| _{ ( | |
| Ġ j | |
| d t | |
| }| ^{ | |
| }\ }\] | |
| s in | |
| P i | |
| }) - | |
| \[\ | | |
| Ġ F | |
| 1 1 | |
| b ul | |
| T h | |
| te q | |
| se teq | |
| }} +\ | |
| Ġ\[ =\ | |
| 0 0 | |
| }} }\ | |
| Th eta | |
| it s | |
| lim its | |
| s t | |
| ^{ + | |
| _{ + | |
| sub seteq | |
| Ġ P | |
| le ss | |
| s h | |
| less sim | |
| Ġ G | |
| { ] | |
| i f | |
| }\ |\ | |
| Ġ - | |
| Ġ K | |
| ) )\] | |
| Ġ {\ | |
| } [\ | |
| }} , | |
| }) + | |
| Ġ b | |
| Ġ g | |
| Ġ h | |
| \[\ { | |
| p s | |
| ) ^{- | |
| h line | |
| : = | |
| lon g | |
| p t | |
| ma ps | |
| } ; | |
| maps to | |
| }) ( | |
| }) ^{\ | |
| }) , | |
| } })\ | |
| i v | |
| \ }\ | |
| f lo | |
| }} + | |
| Ġ w | |
| flo or | |
| }= ( | |
| co s | |
| Ġ z | |
| ) }{\ | |
| ) :=\ | |
| }: \ | |
| o n | |
| co ng | |
| } > | |
| le t | |
| Ġ $ | |
| Ġ U | |
| }) +\ | |
| bul let | |
| \| _{\ | |
| Ġ 3 | |
| }) -\ | |
| o d | |
| long rightarrow | |
| Ġ q | |
| e qu | |
| Ġ W | |
| equ iv | |
| Ġ ^{ | |
| } }_{\ | |
| t frac | |
| \[ |\ | |
| \[\ |\ | |
| s ta | |
| re l | |
| \ ) | |
| } })\] | |
| {\ | | |
| p er | |
| }) ,\] | |
| ,\ \ | |
| b in | |
| ^{* }\ | |
| ) |\ | |
| bin om | |
| }} | | |
| }} ,\] | |
| } < | |
| Ġa nd | |
| c e | |
| sta ck | |
| stack rel | |
| l n | |
| .. . | |
| }} - | |
| = ( | |
| g g | |
| { - | |
| }_{ + | |
| per p | |
| }] \ | |
| di m | |
| }} }{ | |
| {) }\] | |
| {\ { | |
| ) / | |
| {| }\ | |
| )\ \ | |
| ,\ , | |
| | _{\ | |
| }} -\ | |
| f or | |
| & - | |
| ve e | |
| v dots | |
| Ġ Q | |
| } ;\ | |
| }( - | |
| \[ [ | |
| i o | |
| Ġ Y | |
| , - | |
| }\ ) | |
| io ta | |
| gg er | |
| da gger | |
| 1 3 | |
| Ġ J | |
| }] \] | |
| a nd | |
| ( -\ | |
| t r | |
| Ġ 4 | |
| var theta | |
| }) )\] | |
| ^{* } | |
| Ġf or | |
| Ġ (\ | |
| in f | |
| }) ^{- | |
| }^{* }\ | |
| 1 6 | |
| i l | |
| }) }{ | |
| R e | |
| Ġ& \ | |
| ) }_{ | |
| }/ \ | |
| s ma | |
| c h | |
| 2 2 | |
| )\ ,\ | |
| ) ] | |
| n ot | |
| )\ |_{ | |
| \ }.\] | |
| }: = | |
| sma ll | |
| }}\ , | |
| Ġ -\ | |
| d y | |
| } <\ | |
| ( ( | |
| var rho | |
| de t | |
| {[ }\ | |
| }) )\ | |
| \ |^{ | |
| t t | |
| ^{* }( | |
| } ^ | |
| Ġ\ (\ | |
| ) |^{ | |
| me q | |
| si meq | |
| }=\ { | |
| {) } | |
| },\ \ | |
| big cup | |
| }+ ( | |
| ) }(\ | |
| }\| _{\ | |
| ) (\ | |
| tri a | |
| }) | | |
| }\ |^{ | |
| small matrix | |
| Ġ Z | |
| }{ ( | |
| }) } | |
| geq slant | |
| \[ {\ | |
| e m | |
| 2 1 | |
| x rightarrow | |
| b a | |
| )= ( | |
| { {\ | |
| Ġ l | |
| \[\ {\ | |
| eq q | |
| - ( | |
| colon eqq | |
| {) }^{ | |
| }{ | | |
| > \ | |
| Ġ al | |
| }} } | |
| l floor | |
| + ( | |
| Big g | |
| r floor | |
| }_{ ( | |
| + | | |
| }) }\] | |
| }^{ (\ | |
| Ġ in | |
| a b | |
| ) & | |
| ) },\ | |
| })\ , | |
| }} {( | |
| ) }=\ | |
| }\ }_{ | |
| 2 3 | |
| pt y | |
| 1 4 | |
| ] }\ | |
| em pty | |
| ] ^{ | |
| ,\ ,\ | |
| empty set | |
| Ġal l | |
| ) }^{ | |
| ar p | |
| ] _{ | |
| }} |\ | |
| Ġ }( | |
| 2 4 | |
| ... , | |
| Ġ o | |
| }}^{ ( | |
| H om | |
| _{ [ | |
| , ( | |
| T r | |
| } |_{ | |
| 1 5 | |
| | \] | |
| o l | |
| ) }= | |
| 2 0 | |
| sla sh | |
| ba ck | |
| de g | |
| } .\ | |
| ] .\] | |
| back slash | |
| }\ }\ | |
| ) := | |
| }}\ | | |
| ) }.\] | |
| Ġi f | |
| }( [ | |
| }( ( | |
| ) _{\ | |
| Ġ + | |
| }= (\ | |
| math tt | |
| Ġ\[ +\ | |
| } _ | |
| ), ( | |
| * * | |
| { }_{ | |
| di v | |
| }) _{\ | |
| }) }{\ | |
| }^{* } | |
| X i | |
| k er | |
| b ra | |
| { { | |
| pro x | |
| in g | |
| / ( | |
| }_{ - | |
| }) (\ | |
| ) )= | |
| ] = | |
| }= -\ | |
| u t | |
| Ġ _{\ | |
| \ !\ | |
| ( | | |
| Ġi s | |
| Ġ ^{\ | |
| b le | |
| }}\ \ | |
| I m | |
| }}\ ,\ | |
| ) }, | |
| }\, .\] | |
| }^{* }( | |
| ) > | |
| tria ngle | |
| Ġ +\ | |
| {[ } | |
| big l | |
| big r | |
| big oplus | |
| ) )^{ | |
| Ġ 5 | |
| }}^{ - | |
| x y | |
| ) &\ | |
| }} }\] | |
| _{ -\ | |
| ap prox | |
| })\ \ | |
| d z | |
| {) }.\] | |
| ^{ (\ | |
| Ġ |\ | |
| ) ! | |
| Ġ }^{ | |
| }\ !\ | |
| ] =\ | |
| ar row | |
| Ġ1 0 | |
| { (\ | |
| ho o | |
| \[ -\ | |
| | | | |
| \[ = | |
| \[ =\ | |
| h bar | |
| }= - | |
| \ },\] | |
| \ ! | |
| Ġ O | |
| 2 5 | |
| }}{ {\ | |
| | ^{\ | |
| p re | |
| ) : | |
| m od | |
| bul ar | |
| ta bular | |
| ) }+\ | |
| _{ | | |
| m p | |
| sh arp | |
| ^{* }_{ | |
| }^{ -\ | |
| | = | |
| }}^{ * | |
| | }\ | |
| }} [ | |
| { }^{\ | |
| }- ( | |
| ta ble | |
| \[ [\ | |
| {\{ }\ | |
| cc cc | |
| }_{ * | |
| ] , | |
| S p | |
| ) )=\ | |
| Ġ }_{ | |
| 0 1 | |
| 3 2 | |
| }) |\ | |
| {| } | |
| Ġ 6 | |
| Ġ | | |
| e c | |
| o th | |
| over set | |
| { |\ | |
| re f | |
| }( {\ | |
| }}\ |\ | |
| pre c | |
| ch e | |
| }) }^{ | |
| o w | |
| 1 8 | |
| } * | |
| }\ { | |
| },\ , | |
| bra ce | |
| }\ ; | |
| d dots | |
| ( [ | |
| _{* }\ | |
| ) }}\ | |
| not in | |
| Ġo f | |
| d u | |
| che ck | |
| a st | |
| Ġ th | |
| { = | |
| a s | |
| })= ( | |
| a g | |
| }} }{\ | |
| ) < | |
| ] ,\ | |
| \ ; | |
| , &\ | |
| var pi | |
| }} }( | |
| = -\ | |
| |\ , | |
| Ġ )\ | |
| ] ,\] | |
| U psilon | |
| }} & | |
| xi st | |
| ) }+ | |
| i k | |
| }^{ [ | |
| ow n | |
| under brace | |
| x x | |
| }\ ! | |
| } $ | |
| xist s | |
| Ġ }{ | |
| ) }- | |
| }, ..., | |
| {\{ } | |
| }) ) | |
| 1 7 | |
| = - | |
| j k | |
| \, .\] | |
| ig n | |
| d own | |
| G L | |
| e n | |
| under set | |
| [ - | |
| s c | |
| lim sup | |
| + |\ | |
| ti on | |
| 3 4 | |
| 9 9 | |
| ar e | |
| })\ |_{ | |
| =\ { | |
| _{ (\ | |
| i p | |
| rc e | |
| sup p | |
| }) }( | |
| }| \] | |
| )= -\ | |
| 2 7 | |
| wi th | |
| ar g | |
| {] }\ | |
| }) :=\ | |
| e xists | |
| d r | |
| ) })\ | |
| \ },\ | |
| ^{* }(\ | |
| i i | |
| \[ - | |
| }\, ,\] | |
| rce il | |
| R igh | |
| }] = | |
| 3 3 | |
| Righ tarrow | |
| ce il | |
| l ceil | |
| Ġ\[ + | |
| }} &\ | |
| )) .\] | |
| ) },\] | |
| m n | |
| ) }-\ | |
| }| = | |
| I d | |
| } })^{ | |
| )\ }\] | |
| }] _{ | |
| {\| }\ | |
| co n | |
| wi se | |
| - | | |
| })\ ,\ | |
| & & | |
| a n | |
| }+\ | | |
| = (\ | |
| 1 9 | |
| big cap | |
| ] } | |
| { }^{ | |
| &\ \ | |
| er wise | |
| P r | |
| }\ ;\ | |
| d frac | |
| )\ | | |
| }) / | |
| down arrow | |
| )^{ * | |
| \ }}\ | |
| ra l | |
| bol d | |
| bold math | |
| Ġ :=\ | |
| ! }\ | |
| te r | |
| sq cup | |
| di ag | |
| s qu | |
| le f | |
| ) <\ | |
| hoo k | |
| Ġ\ ,\ | |
| ),\ \ | |
| },\ ,\ | |
| text bf | |
| 4 5 | |
| hook rightarrow | |
| di st | |
| Ġ 8 | |
| _{\ { | |
| lo c | |
| Ġ [ | |
| Ġ }}\ | |
| ) }_{\ | |
| ( (\ | |
| Ġ\ | | |
| ; \] | |
| e t | |
| Ġ$ \ | |
| Ġ }(\ | |
| ( {\ | |
| {) },\] | |
| t in | |
| I I | |
| {) }^{\ | |
| lef tarrow | |
| tria ng | |
| ) })\] | |
| tin y | |
| di am | |
| )+ ( | |
| ver t | |
| triang leq | |
| e s | |
| !\ !\ | |
| }( | | |
| {\| }_{ | |
| 3 0 | |
| Ġ\ , | |
| }| _{\ | |
| 3 6 | |
| r l | |
| er t | |
| }) ] | |
| ^{ [ | |
| {] }\] | |
| d v | |
| n k | |
| i s | |
| {( }( | |
| er e | |
| }> \ | |
| p r | |
| ta n | |
| }, ( | |
| } })= | |
| [ ( | |
| )\ ) | |
| 2 8 | |
| )^{ -\ | |
| k l | |
| Ġd x | |
| }) }.\] | |
| ^{- ( | |
| c d | |
| }=\ {\ | |
| squ are | |
| V ert | |
| , & | |
| Ġ on | |
| }}\ |_{ | |
| _{* }( | |
| Ġ 7 | |
| }+\ |\ | |
| 4 0 | |
| li min | |
| limin f | |
| 5 6 | |
| }^{+ }\ | |
| | ( | |
| )= - | |
| A B | |
| . }\ | |
| Big l | |
| Big r | |
| left rightarrow | |
| }\ {\ | |
| }) & | |
| lo r | |
| s f | |
| ) }}{ | |
| da sh | |
| } })=\ | |
| }+ | | |
| {| }_{ | |
| }^{* }(\ | |
| }+ (\ | |
| }^{* }\] | |
| $ \ | |
| i m | |
| }, &\ | |
| \ {( | |
| c l | |
| |\ ,\ | |
| L o | |
| }\ }.\] | |
| r r | |
| 4 8 | |
| oth erwise | |
| }_{ [ | |
| }^{+ }( | |
| ( |\ | |
| ) /\ | |
| o dot | |
| ^{* }\] | |
| C o | |
| | } | |
| )= (\ | |
| pa n | |
| , | | |
| 2 6 | |
| 3 5 | |
| }}{ | | |
| 3 1 | |
| \ ;\ | |
| de f | |
| }( -\ | |
| \, ,\] | |
| ) }) | |
| }} :=\ | |
| f f | |
| & -\ | |
| ) :\ | |
| )=\ { | |
| a c | |
| _{ |\ | |
| sin h | |
| }{ |\ | |
| ] ( | |
| ign ed | |
| * \ | |
| al igned | |
| }| | | |
| }} [\ | |
| }| }\ | |
| }) > | |
| )}\ , | |
| Ġ& =\ | |
| ^{* }, | |
| co sh | |
| A ut | |
| 3 7 | |
| _{* } | |
| Ġ\ |\ | |
| mu l | |
| ] _{\ | |
| L e | |
| s k | |
| V ar | |
| }& = | |
| )\, .\] | |
| S L | |
| }= [ | |
| , [ | |
| )\ |_{\ | |
| 5 0 | |
| }] =\ | |
| h ere | |
| , ..., | |
| }} }(\ | |
| 10 0 | |
| ] }\] | |
| var sigma | |
| par row | |
| )\ |\ | |
| n i | |
| }) &\ | |
| 6 4 | |
| | ^{- | |
| | + | |
| Ġ 9 | |
| u p | |
| {) }= | |
| {) }=\ | |
| }) : | |
| v ol | |
| 00 0 | |
| u parrow | |
| }& - | |
| ] + | |
| cc c | |
| ) }| | |
| {\ }}\] | |
| pm od | |
| h box | |
| if f | |
| ] ^{\ | |
| ) ]\ | |
| (\ | | |
| \ } | |
| i c | |
| )}{ ( | |
| | }{ | |
| * { | |
| }) )= | |
| ) }} | |
| \ }^{ | |
| ) [ | |
| _{ {}_{ | |
| }}}{ {\ | |
| Ġ\[ -\ | |
| }}( - | |
| }, - | |
| }) |^{ | |
| su cc | |
| , -\ | |
| i int | |
| E xt | |
| , + | |
| ] }( | |
| 2 9 | |
| p q | |
| b b | |
| | - | |
| # \ | |
| arp o | |
| ^{+ }( | |
| }} : | |
| }}) .\] | |
| {\ }}.\] | |
| }:=\ { | |
| Ġ with | |
| Ġth e | |
| ) )}\ | |
| ) .\ | |
| la t | |
| )) - | |
| ^{* })\ | |
| }^{ +\ | |
| ra nk | |
| i x | |
| over rightarrow | |
| Ġ ** | |
| bigg r | |
| ral le | |
| box times | |
| 0 5 | |
| ralle l | |
| ] )\] | |
| {( - | |
| pa rallel | |
| ] +\ | |
| {)}\ , | |
| }] ^{ | |
| {= }}\ | |
| s g | |
| }, {\ | |
| )) ,\] | |
| bigg l | |
| in ter | |
| ) ; | |
| u v | |
| }) < | |
| c t | |
| 7 5 | |
| _{+ }( | |
| o nd | |
| }\, ,\ | |
| math op | |
| }, & | |
| Ġ= -\ | |
| Ġ or | |
| 0 2 | |
| Ġ }^{\ | |
| mul ti | |
| }( (\ | |
| Ġ co | |
| Sp ec | |
| }) )^{ | |
| \ }_{ | |
| cu rl | |
| , * | |
| {\| } | |
| Ġ to | |
| : \, | |
| od d | |
| )| \] | |
| inter cal | |
| f lat | |
| }) )=\ | |
| 4 4 | |
| ^{* }_{\ | |
| 3 8 | |
| )\ ; | |
| ve n | |
| }), ( | |
| \ }} | |
| + }\ | |
| B o | |
| )- ( | |
| u psilon | |
| }} :\ | |
| }} }^{ | |
| Lo ng | |
| 9 6 | |
| hoo se | |
| Ġa n | |
| G r | |
| )}\ \ | |
| ] { | |
| c hoose | |
| , {\ | |
| | |\ | |
| ) }^{\ | |
| | < | |
| s pan | |
| r times | |
| {] } | |
| Le ft | |
| eq ref | |
| or d | |
| | =\ | |
| {\ }}\ | |
| ) |_{ | |
| _{+ }\ | |
| {| }^{ | |
| Ġ\ { | |
| }}) _{ | |
| Ġ{ - | |
| S ym | |
| r ing | |
| | +\ | |
| ra d | |
| Ġ := | |
| Left rightarrow | |
| A d | |
| )) _{ | |
| }) }=\ | |
| ] )\ | |
| }) ).\] | |
| B bb | |
| )) ,\ | |
| Bbb k | |
| . }\] | |
| \ % | |
| }+ |\ | |
| ) ]\] | |
| }| ^{\ | |
| }_{\ { | |
| E nd | |
| }- (\ | |
| }/ ( | |
| m o | |
| )\ |^{ | |
| l y | |
| sk ip | |
| - (\ | |
| + (\ | |
| Bo x | |
| ;\ ;\ | |
| })\ }\] | |
| Ġ }{\ | |
| D u | |
| 6 0 | |
| }) }(\ | |
| {) }+\ | |
| ^{+ }_{ | |
| | |_{ | |
| j i | |
| math ring | |
| , (\ | |
| Ġ= ( | |
| Ġ ) | |
| \[ +\ | |
| ^{+ }\ | |
| v dash | |
| t u | |
| n o | |
| }_{+ }^{ | |
| sg n | |
| }} }.\] | |
| } . | |
| +\ | | |
| ^{* }}\ | |
| n e | |
| }{ }^{ | |
| }\, ( | |
| 9 8 | |
| r k | |
| }}) ^{\ | |
| 0 4 | |
| )\, ,\] | |
| big wedge | |
| }) <\ | |
| Ġ },\ | |
| math it | |
| }| |_{ | |
| S O | |
| ] \\ | |
| =\ ,\ | |
| }^{* },\ | |
| })= (\ | |
| (\ |\ | |
| \, ,\ | |
| | .\] | |
| o me | |
| oth ing | |
| _{* }(\ | |
| }_{ (\ | |
| n othing | |
| var nothing | |
| t s | |
| b re | |
| )) + | |
| h e | |
| M od | |
| (\ { | |
| Ġ\ |_{ | |
| ^{ {}^{\ | |
| i r | |
| }} / | |
| * }\ | |
| [ -\ | |
| }& -\ | |
| {) }_{ | |
| }(\ { | |
| ... ,\ | |
| _{ {\ | |
| }) := | |
| }^{- }( | |
| }} <\ | |
| d dot | |
| h skip | |
| }^{- }\ | |
| Ġ ^{- | |
| }) /\ | |
| prec eq | |
| 0 3 | |
| g cd | |
| \| \] | |
| })+ ( | |
| }( |\ | |
| , +\ | |
| o ut | |
| n eg | |
| }| |\ | |
| { -\ | |
| )) -\ | |
| }; \] | |
| ker n | |
| re s | |
| z e | |
| \[\ {( | |
| }] .\] | |
| }}\ }\] | |
| Ġ })\ | |
| Ġ& = | |
| co l | |
| }) },\] | |
| }* \ | |
| 7 8 | |
| { $ | |
| )) ^{\ | |
| diam ond | |
| bre ve | |
| _{* }^{ | |
| }: =( | |
| g r | |
| var kappa | |
| { }_{\ | |
| sup set | |
| 7 6 | |
| !\ ! | |
| I nd | |
| d om | |
| rc l | |
| )^{ ( | |
| }) :\ | |
| l vert | |
| \, ( | |
| a x | |
| ] -\ | |
| _{- }( | |
| }}^{ + | |
| )) +\ | |
| ! } | |
| }] }\ | |
| {) }+ | |
| r vert | |
| - |\ | |
| }{ }_{ | |
| bm od | |
| }) }= | |
| )| = | |
| ,\ ; | |
| b c | |
| w here | |
| e v | |
| }& =\ | |
| }_{+ }\ | |
| li es | |
| }} < | |
| long mapsto | |
| i mp | |
| }{ (\ | |
| Ġ }, | |
| 4 9 | |
| o int | |
| i math | |
| }\ },\ | |
| })\ |^{ | |
| | > | |
| K er | |
| 4 6 | |
| {( }-\ | |
| & ( | |
| e ss | |
| }}\, .\] | |
| }^{* }, | |
| Ġ :\ | |
| ^{- }( | |
| & &\ | |
| ] - | |
| 8 0 | |
| l Vert | |
| \ }=\ | |
| 3 9 | |
| Ġ\( ( | |
| )& = | |
| )) ( | |
| Ġs ome | |
| L i | |
| r Vert | |
| }) ]\ | |
| ! [ | |
| Ġth at | |
| ) ^ | |
| 7 9 | |
| 5 5 | |
| Re s | |
| _{- }\ | |
| _{+ }^{ | |
| {( }(\ | |
| Ġ }_{\ | |
| Ġ }} | |
| Ġ }- | |
| ) }|\ | |
| Ġa s | |
| {\ |\ | |
| in d | |
| ) >\ | |
| }} > | |
| ] ; | |
| ) }}{\ | |
| pro j | |
| = [ | |
| k j | |
| 0 6 | |
| Ġ de | |
| }\ },\] | |
| e l | |
| ))\ , | |
| ^{* }- | |
| imp lies | |
| }}) ( | |
| A x | |
| Ġ }+\ | |
| {| }_{\ | |
| }),\ \ | |
| }] ( | |
| ^{* },\ | |
| , |\ | |
| ^{* })\] | |
| d V | |
| })=\ { | |
| Ġ * | |
| l g | |
| }^{* })\ | |
| ) ;\ | |
| Ġ }+ | |
| 4 2 | |
| }=\ {( | |
| .. .\ | |
| r u | |
| }, (\ | |
| }}{ (\ | |
| Ġ }| | |
| ge n | |
| Ġ odd | |
| {) }( | |
| ] }{ | |
| }) ]\] | |
| ]\ ! | |
| | <\ | |
| d R | |
| Ġ {( | |
| bra ck | |
| }} |^{ | |
| h d | |
| ; \\ | |
| & * | |
| {= }} | |
| ), &\ | |
| n n | |
| Ġ\[ - | |
| }^{+ }\] | |
| ^{* }) | |
| 8 8 | |
| r eg | |
| {) },\ | |
| s o | |
| )}\ ,\ | |
| d W | |
| }] ,\ | |
| \ }, | |
| d w | |
| {] }.\] | |
| }| + | |
| r s | |
| ij k | |
| ym p | |
| V ol | |
| }| +| | |
| =\ , | |
| }} ] | |
| 4 3 | |
| \},\ { | |
| })= -\ | |
| ) }}\] | |
| }}= ( | |
| 00 00 | |
| brack et | |
| Ġd t | |
| t w | |
| }] _{\ | |
| re d | |
| ) })^{ | |
| Ġe ven | |
| }] , | |
| Ġ su | |
| \{ - | |
| l s | |
| }^{* }=\ | |
| }, -\ | |
| }[ ( | |
| }} },\ | |
| ar c | |
| \ }= | |
| th arpo | |
| Ġ& +\ | |
| w p | |
| \[( - | |
| }}) ,\] | |
| Ġ\[= -\ | |
| }} }=\ | |
| {\ }},\] | |
| }) }+\ | |
| S h | |
| | (\ | |
| -\ ! | |
| ), & | |
| }\| \] | |
| 4 7 | |
| n p | |
| 4 1 | |
| : \,\ | |
| Ġ con | |
| }] + | |
| {) }^{- | |
| })\, .\] | |
| R ic | |
| as ymp | |
| : ( | |
| T V | |
| \[ + | |
| )/ ( | |
| u mn | |
| }) [ | |
| big vee | |
| })\ |\ | |
| Ġ )^{ | |
| \ })\] | |
| Ġ / | |
| text tt | |
| Ġan y | |
| \[| | | |
| 0 8 | |
| )} &\ | |
| }) },\ | |
| d f | |
| _{ [\ | |
| )}{ | | |
| }| =\ | |
| g tr | |
| {- }\ | |
| r n | |
| }}) }\ | |
| ec t | |
| s ign | |
| })\ | | |
| no limits | |
| }= [\ | |
| {) }-\ | |
| +\ |\ | |
| 9 5 | |
| text sc | |
| }^{+ } | |
| ,\ { | |
| D i | |
| | +| | |
| }}) ,\ | |
| ^{* }=\ | |
| ) }& | |
| p e | |
| }}+\ | | |
| ^{+ }}\ | |
| }\ ,\] | |
| dx dt | |
| o nu | |
| {| }\] | |
| X Y | |
| tharpo onu | |
| tharpoonu p | |
| }\ .\] | |
| col umn | |
| K L | |
| mo de | |
| },\ ; | |
| 7 7 | |
| L ip | |
| )}\ |_{ | |
| }} }^{\ | |
| }, [ | |
| triangle right | |
| }}{ { | |
| 6 6 | |
| Ġ= - | |
| ver y | |
| , }\\ | |
| )\ ! | |
| Ġ\[ ( | |
| multi column | |
| \, |\, | |
| gtr sim | |
| Ġ def | |
| )) }{ | |
| }= {\ | |
| )] ^{ | |
| _{+ } | |
| d m | |
| )\ }\ | |
| {)}\ \ | |
| }| }{ | |
| na tu | |
| ;\ ; | |
| 7 2 | |
| Ġ\[= ( | |
| e xt | |
| | }{\ | |
| )! }\ | |
| }}}{ {=}}\ | |
| \{ | | |
| \| ( | |
| dx dy | |
| })= - | |
| natu ral | |
| Ġe very | |
| & = | |
| }, ...,\ | |
| [ (\ | |
| }) )_{ | |
| }^{* }_{ | |
| }] ^{\ | |
| righ tharpoonup | |
| }}{ |\ | |
| n m | |
| d g | |
| w t | |
| p th | |
| & &\\ | |
| Ġ }-\ | |
| })- ( | |
| {)}\ ,\ | |
| ho m | |
| }}) ^{- | |
| =\ {\ | |
| y y | |
| ^{* }} | |
| sup seteq | |
| C on | |
| B C | |
| 5 8 | |
| }| - | |
| Ġ{ * | |
| tan h | |
| \[ {}_{ | |
| )) , | |
| }^{ {}^{\ | |
| }_{ > | |
| }} := | |
| }^{* })\] | |
| }) ),\] | |
| )}\ | | |
| }} ]\] | |
| ^{- }\ | |
| Ġd i | |
| Ġ ds | |
| | )\ | |
| }}^{* }\ | |
| }} ]\ | |
| }}^{ (\ | |
| 0 7 | |
| Long rightarrow | |
| \ })\ | |
| } ! | |
| }) }+ | |
| 12 3 | |
| S U | |
| })| \] | |
| }^{* }}\ | |
| Pi c | |
| small setminus | |
| }- | | |
| }^{+ }(\ | |
| }\, |\, | |
| s l | |
| )^{ | | |
| g h | |
| }} /\ | |
| \[ {}^{ | |
| y z | |
| })\ |_{\ | |
| ^{* }= | |
| P ro | |
| + } | |
| G al | |
| }) .\ | |
| }}) - | |
| ^{ | | |
| }} },\] | |
| })}{ ( | |
| }\, (\ | |
| }}+\ |\ | |
| }\ }}\ | |
| v box | |
| )\ }_{ | |
| ^{+ } | |
| Ġ1 2 | |
| mathb in | |
| big otimes | |
| u ph | |
| on right | |
| arpo onright | |
| uph arpoonright | |
| Ġ re | |
| {- } | |
| succ eq | |
| }} ^ | |
| e a | |
| d p | |
| ) }}( | |
| 6 8 | |
| 5 7 | |
| )) ^{- | |
| ^{\ # | |
| Ġ )}\ | |
| s m | |
| }] )\] | |
| e igh | |
| }] ,\] | |
| |\ ! | |
| 5 4 | |
| h en | |
| v al | |
| }}\ ) | |
| )\ }.\] | |
| mode ls | |
| }: ( | |
| ) $ | |
| s ym | |
| = | | |
| c tion | |
| }= (- | |
| i se | |
| ^{* }}( | |
| }}) +\ | |
| }) |_{ | |
| }| ( | |
| ], [ | |
| })\ ) | |
| t x | |
| }{\ | | |
| }^{* }= | |
| }}) + | |
| {) }- | |
| m b | |
| }) }_{ | |
| 9 0 | |
| Long leftrightarrow | |
| \ }}\] | |
| Ġ& & | |
| }) ^{*}\ | |
| ^{- }_{ | |
| }} }_{ | |
| }}\, ,\] | |
| ) }[ | |
| }} }+\ | |
| re e | |
| }| .\] | |
| Ġsu ch | |
| H S | |
| t y | |
| +\ ! | |
| t ra | |
| )) )\] | |
| | )^{ | |
| })^{ -\ | |
| Ġw here | |
| b y | |
| )& =\ | |
| k i | |
| / (\ | |
| { , | |
| u b | |
| }(\ | | |
| }| +\ | |
| [ [ | |
| ti ve | |
| }= | | |
| Ġ1 6 | |
| C H | |
| c y | |
| op t | |
| C P | |
| }} ; | |
| 9 7 | |
| Co v | |
| i b | |
| \[( ( | |
| g rad | |
| }| < | |
| ),\ , | |
| })\ }_{ | |
| \ }\\ | |
| T M | |
| }} }= | |
| big sqcup | |
| ( [\ | |
| }{ }^{\ | |
| }}) -\ | |
| n s | |
| )_{ + | |
| }:= (\ | |
| x z | |
| ) [\ | |
| ! ( | |
| { {( | |
| {\| }_{\ | |
| ; .\] | |
| _{\ {\ | |
| }{ }{ | |
| {( }- | |
| }=\ | | |
| O p | |
| ] (\ | |
| }) )}\ | |
| d S | |
| }( [\ | |
| j j | |
| l k | |
| 6 7 | |
| ^{* }+ | |
| }] +\ | |
| | }\] | |
| cccc c | |
| }_{+ }\] | |
| $ }\ | |
| ge ts | |
| 6 5 | |
| Ġ }}{ | |
| ) {\ | |
| S E | |
| )^{* }\ | |
| \[\| ( | |
| }:=\ {\ | |
| Ġt r | |
| _{- }^{ | |
| |^{ -\ | |
| C h | |
| Ġ ^{( | |
| })^{ ( | |
| \ .\] | |
| ] }(\ | |
| }} ;\ | |
| )) }{\ | |
| ru le | |
| \, (\ | |
| i y | |
| }}= (\ | |
| }}{\ | | |
| })\, ,\] | |
| Ġ }) | |
| }}\ |_{\ | |
| ) }:=\ | |
| Ġ }\, | |
| Ġ( - | |
| te d | |
| }] )\ | |
| Ġ= (\ | |
| {( }| | |
| d X | |
| )=\ {\ | |
| d B | |
| e ff | |
| con v | |
| \[| |\ | |
| S t | |
| }- {\ | |
| }} .\ | |
| k n | |
| }},\ \ | |
| Ġ& && | |
| }}= -\ | |
| ):=\ { | |
| A C | |
| }| > | |
| \{ -\ | |
| pr op | |
| _{- } | |
| )+ (\ | |
| Ġ\ (- | |
| 0 9 | |
| dot eq | |
| )= [ | |
| Ġo th | |
| i a | |
| }}( ( | |
| Ġd y | |
| }} |_{ | |
| x p | |
| he ad | |
| })+ (\ | |
| ^{+ }_{\ | |
| g l | |
| ,\ ;\ | |
| {(}\ | | |
| lo w | |
| }^{* }- | |
| a v | |
| \ ,\] | |
| }\;\ ; | |
| ) * | |
| }{ * | |
| {] },\] | |
| Ġ1 1 | |
| tw o | |
| }}+ ( | |
| in i | |
| 5 2 | |
| }}) _{\ | |
| }) }^{\ | |
| I n | |
| )) )\ | |
| eigh t | |
| 5 9 | |
| | -\ | |
| ^{- (\ | |
| ^{ |\ | |
| Ġ1 4 | |
| ) })_{ | |
| u e | |
| }\, {\ | |
| }}{ {=}}\ | |
| d d | |
| }), (\ | |
| | ,\] | |
| }] - | |
| pa ce | |
| Li e | |
| }\!\ !\ | |
| d A | |
| }; \\ | |
| }^{* }-\ | |
| \[\ # | |
| }}\ !\ | |
| {] }^{ | |
| two head | |
| Ġ [\ | |
| twohead rightarrow | |
| )= (- | |
| u u | |
| )) }\] | |
| }}) )\] | |
| arg min | |
| {| }\,\ | |
| wi d | |
| e nt | |
| rn er | |
| ra ise | |
| u r | |
| :=\ { | |
| ] \, | |
| j l | |
| )| _{\ | |
| }| } | |
| ^{* })^{ | |
| }^{* })^{ | |
| â Ģ | |
| 7 0 | |
| }_{+ }( | |
| triangle left | |
| subset neq | |
| m k | |
| _{+ }(\ | |
| [\ ![ | |
| 6 3 | |
| Ġ\ {\ | |
| co rner | |
| }\ } | |
| )\ ;\ | |
| _{* }^{\ | |
| }_{ {\ | |
| wid th | |
| }}\ { | |
| in j | |
| ^{* * | |
| }) >\ | |
| 5 1 | |
| c op | |
| f g | |
| p o | |
| }^{- } | |
| \ # | |
| 6 9 | |
| \| =\ | |
| y x | |
| a u | |
| {| }\, | |
| )) } | |
| )}\ |\ | |
| B M | |
| }& ( | |
| b i | |
| c line | |
| N R | |
| Ġ2 8 | |
| \, , | |
| 5 3 | |
| }+ {\ | |
| F un | |
| }} }}\ | |
| }| +|\ | |
| Ġoth erwise | |
| a cu | |
| S T | |
| }) )- | |
| }) }}\ | |
| A lg | |
| . \\ | |
| ĠR e | |
| |\ !\ | |
| - $ | |
| $ }_{ | |
| ) })= | |
| ,\ | | |
| =\ ! | |
| )\, ,\ | |
| a le | |
| : [ | |
| }^{ | | |
| C l | |
| acu te | |
| D f | |
| M ap | |
| )= | | |
| gen frac | |
| d k | |
| )^{ + | |
| ] ;\ | |
| }\ })\] | |
| Ġ }\\ | |
| }] } | |
| }}}{ ( | |
| }| ^{- | |
| }^{+ }_{ | |
| b s | |
| }}_{ ( | |
| c ot | |
| Co h | |
| | ,\ | |
| Ġ |^{ | |
| }) ^{* | |
| Ġ& &\ | |
| }^{( - | |
| $ }\\ | |
| }[ - | |
| multi row | |
| }\,\ ,\ | |
| ), (\ | |
| =\ ;\ | |
| v matrix | |
| C C | |
| {(}\ |\ | |
| {\ }} | |
| Re p | |
| }_{ -\ | |
| Ġde pth | |
| C at | |
| ; ( | |
| 8 4 | |
| }\, |\,\ | |
| ))\ ,\ | |
| }}=\ { | |
| ] ,\\ | |
| }) ),\ | |
| k m | |
| }\; .\] | |
| 8 1 | |
| }) ^ | |
| }\ }_{\ | |
| }|= | | |
| S S | |
| },\ ;\ | |
| k k | |
| ] ^{- | |
| n r | |
| 2 00 | |
| ro d | |
| * } | |
| y s | |
| Ġ2 0 | |
| 8 6 | |
| Ġ }}( | |
| },\ { | |
| prop to | |
| }}) , | |
| H H | |
| i ze | |
| := ( | |
| \ _ | |
| }(\ |\ | |
| }^{* }+ | |
| d q | |
| {[ }( | |
| \[ { | |
| 8 9 | |
| {\{ }( | |
| T x | |
| ))\ \ | |
| ; \, | |
| {$ -$ | |
| }) )^{\ | |
| ),\ ,\ | |
| _{* }, | |
| v rule | |
| Ġ at | |
| }) }\| | |
| b d | |
| l times | |
| ):= ( | |
| -\ !\ | |
| Ġ width | |
| }| <\ | |
| cop rod | |
| }&= & | |
| }} }+ | |
| I J | |
| 12 8 | |
| }: [ | |
| }_{* }\ | |
| }\, | | |
| ra n | |
| }_{ | | |
| ) })=\ | |
| )| =\ | |
| \[( -\ | |
| up p | |
| + (- | |
| }, | | |
| }) )+ | |
| \{ (\ | |
| _{+ }^{\ | |
| ol y | |
| =\ !\ | |
| )- (\ | |
| | >\ | |
| \| (\ | |
| \, {\ | |
| )] = | |
| $ },\\ | |
| a ngle | |
| ar d | |
| i z | |
| }) }- | |
| Ġd iv | |
| 7 4 | |
| $ }.\] | |
| }[ (\ | |
| II I | |
| { } | |
| r hd | |
| ĠC h | |
| ] [ | |
| Ġm od | |
| ) ;\] | |
| Ġ} |\ | |
| }= |\ | |
| Ġh eight | |
| 10 00 | |
| \ }}( | |
| Ġ < | |
| a top | |
| f int | |
| }) }-\ | |
| }^{\ # | |
| b ot | |
| ĠT r | |
| )] _{ | |
| A A | |
| ll bracket | |
| \| _ | |
| proj lim | |
| var projlim | |
| Ġ se | |
| }\| ( | |
| ]= [ | |
| r d | |
| }) )+\ | |
| ^{+ }(\ | |
| | +|\ | |
| ta b | |
| 11 1 | |
| +\ ,\ | |
| \ }^{\ | |
| u nd | |
| { $\ | |
| in v | |
| }=\ |\ | |
| \!\ ! | |
| rr bracket | |
| 8 5 | |
| }] }\] | |
| }}{\ |\ | |
| \ (\ | |
| P er | |
| }} })\] | |
| - }\ | |
| ) }^{( | |
| }) )( | |
| ^{+ }\] | |
| }_{\ {\ | |
| Ġ un | |
| =\ {( | |
| d h | |
| }]\ ! | |
| }} }, | |
| }) )-\ | |
| \ ( | |
| ]\ }\] | |
| \| = | |
| }^{- }\] | |
| ĠC e | |
| Ġ= &\ | |
| c s | |
| l m | |
| )|\ , | |
| ] }{\ | |
| {( }|\ | |
| ^{+ }, | |
| D iff | |
| }_{* }( | |
| \! -\! | |
| }}\ ; | |
| }| |^{ | |
| })\ ; | |
| }] -\ | |
| }}}{ {=}} | |
| )\ .\] | |
| })| = | |
| \[ {}^{\ | |
| }^{\ , | |
| B S | |
| p p | |
| _{+ }, | |
| }) ;\ | |
| al g | |
| ] }_{ | |
| < | | |
| }}) )\ | |
| p lus | |
| Ġi d | |
| }[ | | |
| }\, :\, | |
| a a | |
| o minus | |
| . & | |
| raise box | |
| Ġ1 3 | |
| d n | |
| )} <\ | |
| )] =\ | |
| {] }=\ | |
| | / | |
| }}) (\ | |
| }) }\\ | |
| a y | |
| _{* }\] | |
| co lim | |
| j ect | |
| s pace | |
| }}( [ | |
| ! [\ | |
| Ġb y | |
| }\,\ , | |
| $ - | |
| }\ }= | |
| L S | |
| }^{+ },\ | |
| 8 7 | |
| ] }| | |
| S upp | |
| a ch | |
| _{ < | |
| A P | |
| }^{+ }}\ | |
| }^{* }) | |
| +\ !\ | |
| C F | |
| }^{* }_{\ | |
| }\ }=\ | |
| {( }[ | |
| )( - | |
| Ġ}\ ,\ | |
| ) . | |
| }}^{* } | |
| ] : | |
| Ġ loc | |
| }) ^{*} | |
| })^{ + | |
| a q | |
| }}\ ! | |
| . , | |
| }^{ [\ | |
| ] {\ | |
| }^{ |\ | |
| I rr | |
| P T | |
| }+ (- | |
| d P | |
| & =\ | |
| }- |\ | |
| }^{- }(\ | |
| }^{* }+\ | |
| si ze | |
| Ġ=\ { | |
| }^{+ }, | |
| C S | |
| 12 0 | |
| }&\ \ | |
| se arrow | |
| co mp | |
| }| }\] | |
| Ġ} [ | |
| ! }{ | |
| 45 27 | |
| Ġ1 00 | |
| })\ }\ | |
| }: | | |
| C N | |
| c m | |
| | ) | |
| arc tan | |
| D R | |
| })- (\ | |
| ĠG L | |
| I nt | |
| Ġi j | |
| Ġ me | |
| box plus | |
| 7 3 | |
| }} }-\ | |
| $ , | |
| Ġ[ ]{ | |
| }/ (\ | |
| 10 1 | |
| )) (\ | |
| )^{* } | |
| }| )\ | |
| ca le | |
| c n | |
| Ġ& -\ | |
| S et | |
| }) }| | |
| })_{ + | |
| f in | |
| Ġ ma | |
| ale ph | |
| +\ , | |
| | )\] | |
| }) ; | |
| }) [\ | |
| 9 4 | |
| * }( | |
| }(\ {\ | |
| _{* }}\ | |
| }\| =\ | |
| T or | |
| }} })\ | |
| n mid | |
| I C | |
| S H | |
| ] }=\ | |
| ^{* }-\ | |
| [ | | |
| \[\ ,\ | |
| Ġ& + | |
| ) )=( | |
| ^{- } | |
| )| }\ | |
| S tab | |
| , [\ | |
| }}^{* }( | |
| _{\ # | |
| \, | | |
| 6 1 | |
| d le | |
| l r | |
| e ven | |
| Ġ <\ | |
| B r | |
| )| ^{\ | |
| _{ {}_{\ | |
| }\, |\ | |
| b x | |
| B B | |
| \[\| (\ | |
| sub ject | |
| }\;\ ;\ | |
| Ġ1 5 | |
| M C | |
| } ... | |
| ] },\ | |
| }[ [ | |
| S pan | |
| }) }+\| | |
| \, |\,\ | |
| ) }).\] | |
| )\ ,\] | |
| ^{+ }} | |
| ) !\ | |
| D F | |
| Ġ\[ (\ | |
| 37 8 | |
| )| }{ | |
| sin g | |
| R S | |
| \| .\] | |
| Ġd z | |
| C A | |
| }-\ | | |
| }] (\ | |
| _{\ | | |
| z z | |
| {] }= | |
| }) }, | |
| H ess | |
| Ġ }=\ | |
| ) }=( | |
| me nt | |
| h t | |
| _{* })\ | |
| }} }- | |
| )| .\] | |
| n c | |
| ma l | |
| |\ \ | |
| i e | |
| }}= - | |
| n h | |
| }]= [ | |
| ^{( - | |
| }\ }} | |
| Ġ op | |
| _{- }, | |
| Ġ ad | |
| ] )= | |
| _{- }(\ | |
| }[\ |\ | |
| _{\ , | |
| Ġ\[= - | |
| _{+ }\] | |
| ^{* }\|_{ | |
| Ġ }= | |
| b e | |
| Ġ are | |
| ) }: | |
| ! }\] | |
| }^{* }} | |
| M N | |
| }}, &\ | |
| bla ck | |
| 9 2 | |
| }\ }, | |
| c x | |
| mid dle | |
| Ġ\[= (\ | |
| }}( {\ | |
| curl y | |
| }}\ }_{ | |
| ] }^{ | |
| : (\ | |
| { / | |
| {\| }^{ | |
| C R | |
| | |^{ | |
| }_{ {}_{ | |
| C M | |
| S P | |
| \{ |\ | |
| }|\ , | |
| 6 2 | |
| a se | |
| s cale | |
| * _{ | |
| = }\ | |
| )}+\ | | |
| }\, =\,\ | |
| to m | |
| ) }}{{\ | |
| Ġ min | |
| C D | |
| k h | |
| Ġ ra | |
| B A | |
| 22 6 | |
| ab c | |
| }}}{ { | |
| }_{+ }}\ | |
| }\!\ ! | |
| inj lim | |
| var injlim | |
| Ġ }}^{ | |
| }) })\] | |
| )^{ |\ | |
| ^{* }+\ | |
| \{\ | | |
| )| |_{ | |
| l hd | |
| ,\,\ ,\ | |
| }}{ {=}} | |
| over leftarrow | |
| M at | |
| 7 1 | |
| w hen | |
| )) |\ | |
| }}) }\] | |
| Ġe ach | |
| ^{*}\ |^{ | |
| {] }+\ | |
| \[| ( | |
| }| }{\ | |
| s a | |
| |= | | |
| }}) }{ | |
| Ġ âĢ | |
| _{ > | |
| | }{| | |
| }\ })\ | |
| }\ # | |
| }{ }_{\ | |
| cu r | |
| }}\ |^{ | |
| ) })^{\ | |
| }= \] | |
| F ix | |
| })=\ {\ | |
| }\,\ | | |
| =\ ; | |
| Ġ : | |
| mb er | |
| < +\ | |
| Ġ te | |
| Sp in | |
| }} _ | |
| te x | |
| A u | |
| }| ,\ | |
| d F | |
| )| <\ | |
| Ġ bo | |
| 00 1 | |
| }) ]^{ | |
| ]\ ,\ | |
| ) }}.\] | |
| | |_{\ | |
| . .\] | |
| si on | |
| \[\ #\ | |
| ini te | |
| Ġ }^{( | |
| Bigg r | |
| }+ \] | |
| )\ },\] | |
| }}\ }\ | |
| k t | |
| _{+ }}\ | |
| A v | |
| \; .\] | |
| (\ ,\ | |
| 9 3 | |
| s r | |
| )= \] | |
| )& ( | |
| }&= &\ | |
| Ġ }}{\ | |
| M L | |
| ] }, | |
| {)}\, .\] | |
| 25 6 | |
| scale box | |
| H F | |
| \[( {\ | |
| o de | |
| }), &\ | |
| Ġ )- | |
| k x | |
| Ġ max | |
| &* \\ | |
| ^{* }}\] | |
| 4 99 | |
| ] )=\ | |
| })& = | |
| 8 3 | |
| ^{- | | |
| )| | | |
| }] }( | |
| }})\ , | |
| Di am | |
| }}\ {\ | |
| }: (\ | |
| }{* }{ | |
| m s | |
| {) }_{\ | |
| Ġ- ( | |
| ng e | |
| ĠS p | |
| : | | |
| )\ !\ | |
| }) {\ | |
| im ize | |
| en space | |
| \ }+\ | |
| Bigg l | |
| ^{* }}{ | |
| Ġs t | |
| B P | |
| ^{* }}^{ | |
| = |\ | |
| \[\{ (\ | |
| }{ $\ | |
| )} > | |
| ... & | |
| )] .\] | |
| m i | |
| u ll | |
| }) ^{*}\] | |
| curly eq | |
| ne w | |
| 1 12 | |
| tion s | |
| F il | |
| ro r | |
| N S | |
| Ġ\ |_{\ | |
| t p | |
| m m | |
| ho l | |
| {[ }{ | |
| S I | |
| : , | |
| - } | |
| ] /( | |
| | , | |
| }: \, | |
| $ ,}\\ | |
| N N | |
| Ġ pa | |
| \ }&\ | |
| }| ,| | |
| B V | |
| }}^{ [ | |
| }\| = | |
| \[\ , | |
| 4527 56 | |
| Ġ ;\ | |
| | ^ | |
| }_{ [\ | |
| }\, , | |
| b u | |
| ] }= | |
| )}\, .\] | |
| }[\ | | |
| ^{* })= | |
| }] ,[ | |
| tra ce | |
| )= {\ | |
| }\},\ { | |
| ^{ ! | |
| S D | |
| \| +\ | |
| 9 1 | |
| a k | |
| _{+ }- | |
| al l | |
| })}\ |\ | |
| | {\ | |
| con st | |
| th e | |
| Ġ ),\ | |
| )! } | |
| \ }\}\] | |
| R F | |
| t ot | |
| }) /( | |
| (\ {\ | |
| })_{ ( | |
| ]\ ) | |
| Ġ\ |^{ | |
| s n | |
| R T | |
| ^{* })=\ | |
| }^{\ { | |
| }^{- ( | |
| )= |\ | |
| t v | |
| _{ , | |
| c ri | |
| l t | |
| }}) } | |
| c b | |
| su it | |
| )} < | |
| p n | |
| }\| (\ | |
| | -| | |
| ng th | |
| }} >\ | |
| ĠH om | |
| }| (\ | |
| }}( -\ | |
| [\ |\ | |
| [\ | | |
| P D | |
| }] \\ | |
| {[}{ ]}{ | |
| Ġn ot | |
| cccc cccc | |
| ;\ ,\ | |
| }) }_{\ | |
| }_{* }(\ | |
| D v | |
| ar t | |
| )}{ (\ | |
| de d | |
| triangle down | |
| Ġ pro | |
| Ġ > | |
| }} }_{\ | |
| ) }}(\ | |
| M A | |
| }| ,\] | |
| Ġ le | |
| S C | |
| k r | |
| )) _{\ | |
| )^{* }\] | |
| {) }(\ | |
| Ġ{ + | |
| }+ [ | |
| long leftrightarrow | |
| }})\ \ | |
| )| +| | |
| }) }\,\ | |
| })\ }.\] | |
| Ġ )-\ | |
| Ġd u | |
| }\; ,\] | |
| { }^{( | |
| }{\ |\ | |
| i u | |
| j math | |
| }) }}{ | |
| Ġ1 8 | |
| Ġ }\] | |
| Ġ\( [ | |
| },\ {\ | |
| | ,| | |
| v v | |
| ch ar | |
| }) })\ | |
| A nn | |
| )| }{| | |
| X X | |
| v w | |
| p d | |
| B D | |
| { }\ | |
| ti c | |
| }|= |\ | |
| & (\ | |
| \ },\\ | |
| )_{ ( | |
| k p | |
| n x | |
| Pro j | |
| }}\ ;\ | |
| }, [\ | |
| }_{+ }(\ | |
| _{* },\ | |
| a f | |
| }| }{| | |
| }+ ... | |
| }}- ( | |
| co v | |
| \, :\, | |
| )}( - | |
| ) }^{- | |
| }< +\ | |
| }}( | | |
| ca n | |
| w r | |
| \,\ ,\ | |
| A D | |
| }) ))\] | |
| }& &\\ | |
| ĠI m | |
| ; }\\ | |
| )! }{ | |
| | }( | |
| a z | |
| ^{ [\ | |
| Ġ })^{ | |
| Diam ond | |
| }\| _ | |
| }} }} | |
| 12 5 | |
| \ }=\{ | |
| A R | |
| )\, =\,\ | |
| )! ( | |
| }:=\ {( | |
| y pe | |
| }| |_{\ | |
| ) })- | |
| C om | |
| C T | |
| {) }}{\ | |
| )} [\ | |
| t A | |
| xx x | |
| S R | |
| box ed | |
| }) }|\ | |
| }} }\| | |
| pha n | |
| 8 2 | |
| B un | |
| {) }}{ | |
| phan tom | |
| cy c | |
| Ġw hen | |
| fo rm | |
| }}\, ,\ | |
| ] ]\] | |
| }) }\, | |
| ),\ ; | |
| . } | |
| s d | |
| Ġ )+\ | |
| mul t | |
| }}) }{\ | |
| i h | |
| }} }| | |
| ^{- }(\ | |
| }^{* }\|_{ | |
| )) }^{ | |
| }^{+ }_{\ | |
| 226 378 | |
| ) }|^{ | |
| )\; .\] | |
| a ve | |
| ,\ |\ | |
| Ġn on | |
| / | | |
| }^{+ })\] | |
| )}\ }\] | |
| p le | |
| },\ |\ | |
| Ġ}\ | | |
| }}| _{\ | |
| ^{* }}(\ | |
| }) |_{\ | |
| d b | |
| Ġ{ -\ | |
| _{+ },\ | |
| n j | |
| S q | |
| 1 10 | |
| ) }}^{ | |
| r b | |
| )}{ |\ | |
| | }.\] | |
| }) )}\] | |
| g x | |
| f d | |
| .. .. | |
| Ġ1 7 | |
| y p | |
| D er | |
| a e | |
| D iv | |
| _{- }^{\ | |
| B G | |
| t z | |
| }-\ { | |
| T C | |
| { : | |
| }^{+ }=\ | |
| \ }\,.\] | |
| ig arrow | |
| right squ | |
| rightsqu igarrow | |
| ) }/ | |
| Ġ2 4 | |
| lr corner | |
| R an | |
| k s | |
| {] }_{ | |
| ] ) | |
| + [ | |
| ] :\ | |
| r x | |
| Ġ }}(\ | |
| }),\ , | |
| }} }\, | |
| # \{ | |
| S M | |
| \! +\! | |
| $ .}\] | |
| ) }] | |
| e w | |
| u x | |
| , }\ | |
| L R | |
| _{ (- | |
| )) > | |
| Ġ }^{- | |
| \,\ , | |
| var Gamma | |
| }| )\] | |
| }| -\ | |
| min imize | |
| )}_{ ( | |
| }_{ |\ | |
| )] ^{\ | |
| D om | |
| }) ), | |
| ] .\ | |
| B L | |
| i ce | |
| E xp | |
| }_{- }\ | |
| ))\ |_{ | |
| Ġe x | |
| ne arrow | |
| = [\ | |
| \[( (\ | |
| }) }+\|\ | |
| :\ ; | |
| ra ph | |
| }, |\ | |
| }^{+ }} | |
| d Y | |
| ^{\ { | |
| . +\ | |
| Ġ\ !\ | |
| lit y | |
| Ġc h | |
| -\ | | |
| -\ , | |
| }_{- }( | |
| it y | |
| }_{+ })\] | |
| F r | |
| } !\ | |
| d c | |
| L M | |
| ro m | |
| $ },\] | |
| Ġ\[ +( | |
| \, ,\\ | |
| S ub | |
| p oly | |
| \, |\ | |
| }} }\,\ | |
| Ġ )=\ | |
| d l | |
| Ġ )^{\ | |
| ! }( | |
| }\| .\] | |
| }}, & | |
| )}+\ |\ | |
| )| |\ | |
| }] }{ | |
| }_{+ },\ | |
| Ġ )+ | |
| }) ]= | |
| }\, :\,\ | |
| Ġ )= | |
| }] [ | |
| ta l | |
| ^{- }, | |
| V dash | |
| ) }:\ | |
| }^{- }, | |
| )}\ }_{ | |
| P SL | |
| \ ), | |
| }[ |\ | |
| { [\ | |
| _{ { | |
| }},\ ,\ | |
| })\ ! | |
| }-\ |\ | |
| }}| | | |
| }}| \] | |
| }) ]_{ | |
| }^{* }.\] | |
| M P | |
| }^{+ })\ | |
| 5 00 | |
| D G | |
| -\ ,\ | |
| Ġ )( | |
| e rm | |
| Ġo ut | |
| Lo g | |
| i q | |
| \ }_{\ | |
| D a | |
| })= (- | |
| ti t | |
| sc ri | |
| Ġdi st | |
| b r | |
| ] / | |
| Ġ set | |
| il b | |
| )&= & | |
| BM O | |
| ac t | |
| fra me | |
| )| + | |
| }} ]_{ | |
| \ }+ | |
| _{- }\] | |
| }) _{*}\ | |
| }) )^{- | |
| Ġa b | |
| {] }\\ | |
| ) }),\ | |
| Ġ ^{-\ | |
| Ġ time | |
| ^{+ },\ | |
| Ġ\ # | |
| er f | |
| m l | |
| {[ }(\ | |
| 5 12 | |
| }), & | |
| A X | |
| P o | |
| )) | | |
| Ġ nu | |
| kl y | |
| ^{- }_{\ | |
| F S | |
| * }(\ | |
| a tion | |
| ap p | |
| }}=\ {\ | |
| },\ | | |
| Ġs a | |
| r ot | |
| tex tit | |
| P GL | |
| ea kly | |
| }| >\ | |
| prec curlyeq | |
| .. .\] | |
| de pth | |
| D M | |
| ) })-\ | |
| ^{\ , | |
| := (\ | |
| over brace | |
| P f | |
| }| -| | |
| Ġ int | |
| Ġ& - | |
| )| +\ | |
| }}\ !\!\ | |
| }^{\ ,\ | |
| o b | |
| T X | |
| Ġon ly | |
| Ġ ; | |
| c f | |
| < - | |
| s w | |
| ] }\| | |
| ] })\] | |
| S ing | |
| l j | |
| F ro | |
| ] })\ | |
| }^{* }}( | |
| + {\ | |
| N C | |
| B u | |
| a w | |
| j n | |
| {] }+ | |
| Ġ )}{ | |
| c p | |
| Ġ\ ! | |
| _{+ }+ | |
| }\,\ ,\, | |
| dash rightarrow | |
| R P | |
| }|\ ,\ | |
| ] }.\] | |
| \[[ ( | |
| ^{- }}\ | |
| }| )^{ | |
| }} }\\ | |
| [ |\ | |
| }}^{* }\] | |
| ] :=\ | |
| 0 10 | |
| }_{ < | |
| }},\ , | |
| ce s | |
| b t | |
| )) }.\] | |
| - (- | |
| }) )}{ | |
| D P | |
| + }( | |
| ^{* }.\] | |
| {) }}\ | |
| r g | |
| a su | |
| el se | |
| var Omega | |
| R m | |
| )) / | |
| < ( | |
| Di ag | |
| )| > | |
| L P | |
| ) })( | |
| \| ^{\ | |
| T f | |
| }) )\\ | |
| A e | |
| s x | |
| S A | |
| Ġ1 9 | |
| ) })^{- | |
| 0 75 | |
| }_{* }^{ | |
| }\, =\, | |
| }\! -\! | |
| ] \,.\] | |
| \, ,\, | |
| o rm | |
| _{- }}\ | |
| de s | |
| )! }{( | |
| I V | |
| }| / | |
| )\ |\] | |
| e f | |
| - [ | |
| le ment | |
| }\, ,\\ | |
| M SE | |
| ] ).\] | |
| }}( (\ | |
| Ġp o | |
| \,\ | | |
| = (- | |
| o sc | |
| C E | |
| ) }),\] | |
| ^{+ })\ | |
| er r | |
| })\, ,\ | |
| |\ { | |
| {) }, | |
| }^{- },\ | |
| N T | |
| 14 4 | |
| q t | |
| { +} | |
| }_{+ }} | |
| i T | |
| {] }^{\ | |
| }\ }}\] | |
| \;\ ;\ | |
| C e | |
| }) ]=\ | |
| Ġ\ }\ | |
| cur ve | |
| cccc cc | |
| } !}\ | |
| L T | |
| )=\ {( | |
| Ġ De | |
| }= -( | |
| ) }}=\ | |
| ! )^{ | |
| Ġe xists | |
| Ġ supp | |
| P S | |
| && &\\ | |
| x leftarrow | |
| ):= (\ | |
| P A | |
| Ġx y | |
| long leftarrow | |
| }\ }=\{ | |
| re a | |
| }),\ ,\ | |
| ! }{( | |
| ( { | |
| ĠC t | |
| q x | |
| ĠI I | |
| m d | |
| )= [\ | |
| A i | |
| se c | |
| \| }\ | |
| * }\] | |
| = {\ | |
| }* _{ | |
| math rel | |
| B K | |
| _{* }- | |
| =\ | | |
| \[ =( | |
| O b | |
| q r | |
| e p | |
| J ac | |
| }}}{ | | |
| Ġ\ ; | |
| ĠC o | |
| }\| +\ | |
| v i | |
| }\,\ |\ | |
| })}{ | | |
| se d | |
| a ff | |
| Ġ3 0 | |
| un ction | |
| ^{- }\] | |
| _{+ })\ | |
| Ġco mp | |
| _{[ - | |
| }}_{ - | |
| Ġh as | |
| ]+ [ | |
| Ġ3 2 | |
| ] }|\ | |
| Ġ\( -\ | |
| }}}{ {= | |
| co dim | |
| H ilb | |
| $ }.\ | |
| }) }<\ | |
| = : | |
| bi lity | |
| p k | |
| , . | |
| ; - | |
| }^{* }\\ | |
| c ho | |
| + }\] | |
| }\ ), | |
| Ġ\ ;\ | |
| )) <\ | |
| :=\ ,\ | |
| le m | |
| }} ]= | |
| j m | |
| C B | |
| }(\ ,\ | |
| - {\ | |
| }_{+ } | |
| ) }:= | |
| }} }|\ | |
| di sc | |
| _{\ |\ | |
| sp ec | |
| ij kl | |
| }\! +\! | |
| }}^{* }(\ | |
| r f | |
| }}\ .\] | |
| }) ;\] | |
| te g | |
| }\, .\ | |
| }^{+ }- | |
| var Phi | |
| m t | |
| . ,\] | |
| \, =\, | |
| ĠS L | |
| _{* })\] | |
| arc cos | |
| C t | |
| _{- },\ | |
| t d | |
| )| < | |
| ii i | |
| Ġ}\ |_{ | |
| }}+ (\ | |
| xy z | |
| * ( | |
| }= : | |
| f ree | |
| ] }^{\ | |
| )}\ ) | |
| Ġ}\ |\ | |
| }}, ( | |
| G F | |
| Ġ2 1 | |
| )|\ ,\ | |
| frame box | |
| r op | |
| n l | |
| ^{* })^{\ | |
| arrow right | |
| 12 4 | |
| })\ ;\ | |
| !\! / | |
| )|= | | |
| }) ))\ | |
| \|\ | | |
| }}^{ +}\ | |
| Ġ times | |
| row n | |
| co nt | |
| \[|\ { | |
| ar ge | |
| = } | |
| Ġ2 5 | |
| Ġd v | |
| er ror | |
| R eg | |
| = \] | |
| )) ) | |
| f i | |
| ] <\ | |
| ] &\ | |
| &= & | |
| 13 2 | |
| ro ng | |
| mo st | |
| ^{+ }- | |
| Ġ ))\ | |
| m r | |
| Ġ }}_{ | |
| \[| (\ | |
| co h | |
| N p | |
| F P | |
| }) )} | |
| * {\ | |
| V ect | |
| }^{* }}\] | |
| }) )}{\ | |
| -\ { | |
| .. , | |
| sta nt | |
| c z | |
| ĠS O | |
| t f | |
| D A | |
| C or | |
| T S | |
| 12 34 | |
| })= [ | |
| \[[ - | |
| _{\ {| | |
| _{* }^{- | |
| }([ - | |
| d dagger | |
| $ }}\ | |
| ! |\! | |
| ):=\ {\ | |
| f rown | |
| Ġd r | |
| up lus | |
| \[= -\ | |
| Sh v | |
| $ }\] | |
| }: \,\ | |
| u m | |
| )\, ( | |
| ti sf | |
| Ġf rom | |
| L L | |
| })\ .\] | |
| )}\ |_{\ | |
| Ġ\[ < | |
| T T | |
| o us | |
| E x | |
| {)}\, ,\] | |
| G H | |
| }: \\ | |
| l d | |
| }) (- | |
| Ġr eg | |
| [\ ,\ | |
| d L | |
| )+ | | |
| Ġs p | |
| \, .\ | |
| )\, |\, | |
| d H | |
| x u | |
| !\!\ !\!\ | |
| \ })= | |
| }}+ | | |
| Ġ&= &\ | |
| \!\ !\ | |
| ĠâĢ ĵ | |
| .& .& | |
| \[ < | |
| _{* }=\ | |
| {| }.\] | |
| Ġ\[\ | | |
| }\ {( | |
| }}^{ -\ | |
| T u | |
| }, ... | |
| T P | |
| )] ,\] | |
| Ġp oint | |
| P a | |
| {)} .\ | |
| Ġdi ag | |
| Ġ )} | |
| Ġte rm | |
| I P | |
| | )^{\ | |
| }] ^{- | |
| ) &- | |
| )=\ | | |
| S NR | |
| C r | |
| ) })+\ | |
| N L | |
| cho ice | |
| }}\ ,\] | |
| 0 11 | |
| scri pt | |
| e st | |
| _{* }} | |
| d M | |
| \, ,\,\ | |
| )) < | |
| ar y | |
| B R | |
| \[ -( | |
| M F | |
| v u | |
| Ġ$ ( | |
| Ġ2 3 | |
| k e | |
| ) }},\ | |
| }^{* }}{ | |
| ^{\ ,\ | |
| }}& -\ | |
| co th | |
| }\| }\ | |
| c ard | |
| Ġun i | |
| )}= -\ | |
| y c | |
| )}\, ,\] | |
| s y | |
| Ġ sub | |
| ^{ {\ | |
| g o | |
| ab le | |
| })\ ,\] | |
| &* &* | |
| math choice | |
| ; ,\] | |
| }_{* } | |
| tor s | |
| (\ , | |
| \ )} | |
| ,\ {\ | |
| 13 4 | |
| }) . | |
| Ġ ), | |
| ĠC r | |
| W F | |
| )] ( | |
| f r | |
| k d | |
| q p | |
| }, + | |
| 23 4 | |
| D L | |
| Ġ= (- | |
| {/ }\ | |
| Ġi t | |
| A S | |
| U V | |
| }_{+ }, | |
| p x | |
| (- ( | |
| x e | |
| Ġ\[\ |\ | |
| r ig | |
| ĠM e | |
| }) }} | |
| v ir | |
| }^{+ }= | |
| 4 00 | |
| }\|\ | | |
| { * | |
| h k | |
| I S | |
| con e | |
| s v | |
| e e | |
| )| +|\ | |
| }$ }.\] | |
| \{\ |\ | |
| }}=\ | | |
| ^{* }& | |
| 79 4 | |
| }) ].\] | |
| }]= [\ | |
| ^{* }: | |
| ^{* })^{- | |
| }\, ,\, | |
| n q | |
| ) },\\ | |
| ] }_{\ | |
| _{+ , | |
| }^{- }_{ | |
| Ġ +( | |
| ):= -\ | |
| }:= -\ | |
| re sp | |
| |= |\ | |
| }) }}{\ | |
| $ },\ | |
| ce n | |
| m j | |
| _{* }+ | |
| ] \|_{ | |
| res tri | |
| \| + | |
| D g | |
| )) &\ | |
| n T | |
| ^{* }\\ | |
| arg max | |
| }}= [ | |
| A t | |
| }\!\ !\!\ | |
| u w | |
| {\ }},\ | |
| 11 11 | |
| \{\ , | |
| ) }]\] | |
| ] }}\ | |
| ĠT he | |
| Ġ= [ | |
| Ġ2 2 | |
| ( (- | |
| }}( |\ | |
| L E | |
| }{ - | |
| )| }{\ | |
| \ }.\ | |
| _{ ! | |
| z x | |
| }:= [ | |
| }+... + | |
| \!\ !\!\ | |
| M M | |
| }= &\ | |
| _{- })\ | |
| \ }-\ | |
| 16 0 | |
| }^{* })=\ | |
| Ġ5 0 | |
| Ġ /\ | |
| )} ; | |
| {$-$ }}\ | |
| Ġ}\ { | |
| $ }} | |
| \ )) | |
| A rea | |
| Ġco nt | |
| Ġor der | |
| Ġb e | |
| a i | |
| de x | |
| P U | |
| ) })+ | |
| ^{* }:\ | |
| u c | |
| ĠI d | |
| R E | |
| ll ll | |
| \}\ ) | |
| Ġ lo | |
| ul ar | |
| }):=\ { | |
| Ġ4 0 | |
| \; ,\] | |
| in c | |
| Pro b | |
| P C | |
| | }}\ | |
| Da sh | |
| ) }},\] | |
| v Dash | |
| })& =\ | |
| + }^{ | |
| | )^{- | |
| Ġ )_{ | |
| L C | |
| }- [ | |
| }] ]\] | |
| g n | |
| l cm | |
| {| }+\ | |
| )( ( | |
| Ġi k | |
| {[ }| | |
| 3 00 | |
| un ded | |
| }[\ ![ | |
| a te | |
| _{* , | |
| dx d | |
| }^{* })= | |
| {] }-\ | |
| d N | |
| {] }( | |
| \ }|\ | |
| th er | |
| di s | |
| H C | |
| en ce | |
| }}| |\ | |
| \ #\ | |
| }}}\ |\ | |
| {(}\ ,\ | |
| k a | |
| }& (\ | |
| co ker | |
| ] /\ | |
| F l | |
| ba bility | |
| }\| + | |
| ] )^{ | |
| }]+ [ | |
| ,\,\ ,\,\ | |
| {[ }-\ | |
| }^{* * | |
| )| - | |
| * }^{ | |
| ra me | |
| \, =\,\ | |
| Ġf unction | |
| M or | |
| }] }{\ | |
| }) )_{\ | |
| Ġco m | |
| [\ , | |
| m ix | |
| )) |^{ | |
| _{+ }} | |
| \, :\,\ | |
| \| <\ | |
| E nt | |
| )&= &\ | |
| D T | |
| }=\{ (\ | |
| Ġs ta | |
| dash v | |
| )} ;\ | |
| ' { | |
| K K | |
| b l | |
| Ġ=\ {\ | |
| }}) |\ | |
| T op | |
| :=\ {\ | |
| se p | |
| Fro b | |
| 10 8 | |
| ): ( | |
| ) }]\ | |
| }) ^{*}( | |
| }} * | |
| P L | |
| h g | |
| su ch | |
| ] )}\ | |
| })= {\ | |
| t n | |
| p l | |
| B l | |
| Ġ\(\ { | |
| circ le | |
| z I | |
| sp t | |
| ) }}{( | |
| }} }}{ | |
| restri ction | |
| m x | |
| d Q | |
| _{+ }=\ | |
| )\, =\, | |
| })| =\ | |
| 12 1 | |
| c v | |
| a ma | |
| ! }.\] | |
| # }\ | |
| j s | |
| \| ,\] | |
| ĠC N | |
| _{* }) | |
| m c | |
| }| , | |
| }\| <\ | |
| w w | |
| d G | |
| )}\ |^{ | |
| [ {\ | |
| n b | |
| }\! =\! | |
| )\; ,\] | |
| A b | |
| ) }}= | |
| Ġf inite | |
| si de | |
| G W | |
| Ġ })}\ | |
| Ġp er | |
| }( { | |
| {] }\, | |
| script size | |
| ad j | |
| . ( | |
| em ma | |
| }= :\ | |
| }) }}\] | |
| ^{+ })\] | |
| S el | |
| r p | |
| }\ #\ | |
| M T | |
| }\, _{ | |
| D E | |
| 10 5 | |
| Con f | |
| })\ |\] | |
| }\, ,\,\ | |
| N m | |
| ` ` | |
| dx ds | |
| {\{ }-\ | |
| }}^{+ }( | |
| }} }}\] | |
| ol u | |
| }^{+ }-\ | |
| o f | |
| Ġe qu | |
| $ .}\ | |
| D D | |
| }{ [ | |
| \ }}(\ | |
| R R | |
| k q | |
| le x | |
| le ngth | |
| Le b | |
| er o | |
| dv ol | |
| Ġ ]\ | |
| ] |\ | |
| Ġ& . | |
| Ġ prime | |
| }^{+ }+ | |
| Ġs ym | |
| }\|\ |\ | |
| S G | |
| Ġd is | |
| , : | |
| p f | |
| O ut | |
| Ġnu mber | |
| Q u | |
| [\ ![\ | |
| ,* }\ | |
| z w | |
| Ġn o | |
| g p | |
| }\,\ ,\,\ | |
| Ġ â | |
| ama lg | |
| in e | |
| in u | |
| 13 5 | |
| ) })}\ | |
| A T | |
| )} .\ | |
| de n | |
| ] }\|\ | |
| \ }}| | |
| ] ]\ | |
| }\| +\| | |
| {[ }\|\ | |
| }: |\ | |
| . \, | |
| }})\ ,\ | |
| }^{- }=\ | |
| curve arrowright | |
| }\ }\\ | |
| Ġ\[ | | |
| Ġ2 7 | |
| Ġth ere | |
| }^{- }}\ | |
| Ġth en | |
| ^{* })- | |
| r y | |
| }}) / | |
| R M | |
| }^{ {\ | |
| }} *\ | |
| ,\ ,\, | |
| C ap | |
| P P | |
| C L | |
| ĠI n | |
| Ġ\[ [ | |
| )] _{\ | |
| }^{* }& | |
| \ }- | |
| ), - | |
| C n | |
| Ġ )}{\ | |
| R B | |
| Ġ par | |
| Ġn t | |
| v t | |
| P Q | |
| av g | |
| ra c | |
| ) *\ | |
| }) )\, | |
| }):= ( | |
| )< +\ | |
| i me | |
| Ġt ype | |
| {[ }\| | |
| }^{- })\ | |
| 499 794 | |
| a R | |
| form ly | |
| S ch | |
| d T | |
| ] \,,\] | |
| ^{- })\ | |
| }| ) | |
| l b | |
| )}= (\ | |
| Ġ || | |
| Ġâ ľ | |
| Con e | |
| ) _{- | |
| 12 2 | |
| ĠA ut | |
| low er | |
| })= \] | |
| }} ]=\ | |
| ] }+\ | |
| _{+ })\] | |
| H P | |
| }_{+ }^{\ | |
| )& -\ | |
| ),\ ;\ | |
| }$ }\\ | |
| Ġsa tisf | |
| S W | |
| Ġe ff | |
| N E | |
| ] & | |
| ~ {} | |
| rong ly | |
| Ġ\[= : | |
| + \] | |
| )) : | |
| Ġ& &&\ | |
| }} ;\] | |
| }- (- | |
| M in | |
| 24 0 | |
| G P | |
| ] }+ | |
| }| ^ | |
| R L | |
| )! }\] | |
| :\ ! | |
| }) }&\ | |
| )/ (\ | |
| Ġ\[= (- | |
| }^{* },\] | |
| }] )= | |
| }})\ |_{ | |
| C u | |
| O P | |
| co nd | |
| Ġs o | |
| _{* }}( | |
| 19 2 | |
| Ġe xt | |
| {( }{\ | |
| Ġ )) | |
| }] =- | |
| g y | |
| }\! =\!\ | |
| q s | |
| H K | |
| }] )=\ | |
| {)}\ | | |
| D S | |
| }) )(\ | |
| p en | |
| }} }[ | |
| } })=( | |
| ^{* }).\] | |
| )| ,\] | |
| }}\ }.\] | |
| {\{ }(\ | |
| , ... | |
| p u | |
| )^{- ( | |
| Ġpro bability | |
| ma p | |
| t g | |
| }^{* })^{\ | |
| {] }\,\ | |
| }& & | |
| M S | |
| th ere | |
| Ġ la | |
| {] },\ | |
| \ })=\ | |
| }& &\ | |
| Ġ deg | |
| d E | |
| Per f | |
| t X | |
| in it | |
| ĠC on | |
| re p | |
| \|_{ ( | |
| I so | |
| _{* }= | |
| line ar | |
| M ax | |
| - }( | |
| C x | |
| {| }= | |
| }}_{ + | |
| \[( [ | |
| rame ter | |
| o bs | |
| or b | |
| > - | |
| x a | |
| g s | |
| ), (- | |
| i es | |
| N A | |
| ea k | |
| )] + | |
| black square | |
| ) }+( | |
| ^{* })+\ | |
| |\! |\! | |
| L D | |
| \[ {}_{\ | |
| big m | |
| Ġ da | |
| F F | |
| R A | |
| _{+ }-\ | |
| }] / | |
| \,\ |\ | |
| }}{ [ | |
| {(}\ { | |
| ad d | |
| 18 0 | |
| }^{( + | |
| Ġ }|^{ | |
| )\ } | |
| }\| ^{\ | |
| && &&\\ | |
| ,\ ;\;\ | |
| ) }}+\ | |
| b q | |
| right rightarrow | |
| {| }=\ | |
| rightrightarrow s | |
| Ġ >\ | |
| )^{ (\ | |
| \| ,\ | |
| C K | |
| )|= |\ | |
| }^{* }}{\ | |
| |_{ [ | |
| )) )= | |
| Ġt ra | |
| })}{ (\ | |
| Ġ& =-\ | |
| })\ },\] | |
| 0 12 | |
| ri t | |
| B x | |
| - }^{ | |
| is o | |
| C V | |
| f l | |
| Ġ3 6 | |
| ^{+ }+ | |
| k T | |
| -\ |\ | |
| sq cap | |
| ,* }( | |
| cu t | |
| L B | |
| n y | |
| s to | |
| {\ # | |
| )_{ +}\ | |
| })| }\ | |
| }| {\ | |
| }} }^{( | |
| )+ \] | |
| Ġ&= & | |
| {| }( | |
| Ġ\[ |\ | |
| L u | |
| }_{\ , | |
| ] },\] | |
| d Z | |
| }}\, ( | |
| Ġ= & | |
| _{+ }= | |
| t q | |
| Ġ{ (\ | |
| ĠS U | |
| {\ }}_{ | |
| per f | |
| e u | |
| ta in | |
| Ġd o | |
| L U | |
| Ġ\ {( | |
| Ġ }},\ | |
| ! \] | |
| )}}{ {=}}\ | |
| i A | |
| R x | |
| : |\ | |
| Ġ( ( | |
| }) }:=\ | |
| _{\ ! | |
| })| .\] | |
| Ġ )\, | |
| ĠC R | |
| }{* }{\ | |
| Lo c | |
| M e | |
| \ }) | |
| ĠA x | |
| co m | |
| n on | |
| }} }) | |
| inu ous | |
| _{ ,\ | |
| }( (- | |
| P G | |
| }+ [\ | |
| b n | |
| or phi | |
| ĠC n | |
| Ġ& ( | |
| Ġ6 4 | |
| _{+ }+\ | |
| )} }^{\ | |
| }, +\ | |
| )| >\ | |
| ta tion | |
| {) }&\ | |
| ! }{\ | |
| re v | |
| B F | |
| ^{- |\ | |
| }, * | |
| ^{+ }=\ | |
| }^{+ })^{ | |
| g f | |
| Ġra te | |
| }^{+ }+\ | |
| Ġ}\ ; | |
| Ġ- (\ | |
| de c | |
| t H | |
| Ġ ] | |
| }\ }^{ | |
| :\ ;\ | |
| l cl | |
| }\! -\!\ | |
| _{- }+ | |
| }}) }^{ | |
| Ġ(\ ( | |
| ) }), | |
| st r | |
| }\! +\!\ | |
| }] ) | |
| t ch | |
| _{- , | |
| ll l | |
| )^{ +}\ | |
| }^{ > | |
| )] +\ | |
| )) }( | |
| Ġ\ &\ | |
| e ver | |
| r v | |
| k N | |
| n R | |
| ) }/\ | |
| }: \| | |
| }| }.\] | |
| Ġ rank | |
| Ġ\[ <\ | |
| se ch | |
| J X | |
| }_{ / | |
| ( . | |
| Ġ= | | |
| Ġ} }^{\ | |
| \[| {\ | |
| \ }\,,\] | |
| A V | |
| )\, :\, | |
| }^{*}\ |^{ | |
| }=( ( | |
| I M | |
| ))= (\ | |
| )= &\ | |
| li p | |
| un i | |
| )( | | |
| Ġ var | |
| Ġ\( (\ | |
| re c | |
| ; {\ | |
| Ġ{ *}\ | |
| \! -\!\ | |
| tr op | |
| T y | |
| T ot | |
| : \{ | |
| p c | |
| }$ , | |
| }) )) | |
| T N | |
| I s | |
| o c | |
| D C | |
| A ff | |
| }^{ < | |
| z y | |
| }}(\ { | |
| O PT | |
| 15 0 | |
| }] \|_{ | |
| Ġ2 6 | |
| ,\, ( | |
| ] ] | |
| big triangle | |
| bigtriangle up | |
| }_{* }^{\ | |
| }\, +\,\ | |
| }| ,|\ | |
| Ġ )}( | |
| j p | |
| \ }}{ | |
| H T | |
| t m | |
| }}& = | |
| A ss | |
| E M | |
| m on | |
| Ġ }}}\ | |
| \{ [ | |
| I N | |
| H ol | |
| Ġ }& | |
| B i | |
| }+ { | |
| ^{- },\ | |
| \ },&\ | |
| E rr | |
| le s | |
| }; \, | |
| }}- (\ | |
| }\; =\;\ | |
| \;\ ; | |
| var Delta | |
| st d | |
| ,+ }( | |
| Ġ5 6 | |
| )\, {\ | |
| w s | |
| )] -\ | |
| De t | |
| R a | |
| In v | |
| })= | | |
| }}) > | |
| Ġbo unded | |
| f ix | |
| }$ - | |
| AB C | |
| )- | | |
| _{- }- | |
| }^{* , | |
| ]=\ { | |
| }}{ {= | |
| Ġ ver | |
| }}, ..., | |
| \ }: | |
| Ġ error | |
| G M | |
| B T | |
| . -\ | |
| U U | |
| 10 24 | |
| j t | |
| Ġ }}+\ | |
| }^{- }= | |
| | },\ | |
| w e | |
| De f | |
| T w | |
| })| +| | |
| x q | |
| are a | |
| }^{* \ | |
| N M | |
| R C | |
| i le | |
| ĠN o | |
| cri t | |
| }$ },\\ | |
| arc sin | |
| }| -|\ | |
| ! / | |
| }| ^{-\ | |
| Ġ }{( | |
| Ġ= |\ | |
| y l | |
| Ġ )^{- | |
| }) }[ | |
| }| }{|\ | |
| Ġv al | |
| o ri | |
| Ġa c | |
| }], [\ | |
| Ġ edge | |
| ^{* }}{\ | |
| j h | |
| }< | | |
| \,\ }\] | |
| }}\| ( | |
| tri c | |
| \| +\| | |
| ^{* })-\ | |
| |\ ; | |
| h x | |
| lo ck | |
| ] =( | |
| th m | |
| ); \\ | |
| Ġ:=\ { | |
| Ġ ^{*}\ | |
| R D | |
| {| }\\ | |
| 10 10 | |
| t b | |
| | },\] | |
| a ce | |
| G S | |
| {\ }}=\ | |
| }^{- })\] | |
| Ġe t | |
| A f | |
| ,\,\ ,\, | |
| Q Coh | |
| Ġterm s | |
| ec ted | |
| q z | |
| }- \] | |
| Ġ inf | |
| }}_{ (\ | |
| \ }}{\ | |
| Con v | |
| )| ( | |
| Ġd W | |
| Ġ\[ > | |
| }^{* }}(\ | |
| )) ,\\ | |
| cri s | |
| { }{ | |
| E S | |
| )) ).\] | |
| D w | |
| }) }\,.\] | |
| }) * | |
| tri v | |
| }] \, | |
| q q | |
| _{- })\] | |
| H e | |
| {\ '{ | |
| }] }(\ | |
| {) }> | |
| |- |\ | |
| q c | |
| T L | |
| B in | |
| ^{* },\] | |
| }\ }}( | |
| )\ },\ | |
| c at | |
| )^{ [ | |
| C I | |
| x v | |
| ^{* })+ | |
| {)}^{ -\ | |
| }}{ }_{ | |
| Ġ over | |
| }_{+ })\ | |
| Ġp r | |
| \ }}.\] | |
| a h | |
| {{ (\ | |
| ), [ | |
| )+ (- | |
| }$ }\ | |
| t L | |
| }}) | | |
| i ci | |
| Ġi m | |
| x f | |
| }} }&\ | |
| 2 10 | |
| Ġ_{ ( | |
| P F | |
| 12 6 | |
| ^{- }} | |
| Ġ=\ | | |
| Ġc ase | |
| pa ct | |
| }}+ |\ | |
| m skip | |
| }}=\ |\ | |
| )= : | |
| 00 5 | |
| + }^{\ | |
| {[ }|\ | |
| & | | |
| ĠL emma | |
| N P | |
| }}| ( | |
| 28 8 | |
| ) _ | |
| Ġ} &\ | |
| _{ !}\ | |
| )}}{ {=}} | |
| A y | |
| i w | |
| & + | |
| n sion | |
| ^{+ })^{ | |
| }) )\,\ | |
| )= +\ | |
| }: {\ | |
| und s | |
| h f | |
| ] }- | |
| )| ^{- | |
| })| |_{ | |
| })\ ;.\] | |
| ] ,\, | |
| ) }=\{ | |
| v x | |
| < |\ | |
| F in | |
| ve l | |
| Ġ=\ |\ | |
| L G | |
| o s | |
| }_{\ # | |
| ro up | |
| _{( -\ | |
| T R | |
| t k | |
| B er | |
| }) )=( | |
| Ġ curl | |
| }] \,\ | |
| n ce | |
| Ġ2 9 | |
| }_{ {}_{\ | |
| }}_{ [ | |
| 2 11 | |
| 2 13 | |
| Ġ vec | |
| _{+ }^{- | |
| =\ |\ | |
| ab s | |
| Ġw eakly | |
| n v | |
| Ġcon stant | |
| z t | |
| si tive | |
| e i | |
| ,\, - | |
| z f | |
| A E | |
| ] }-\ | |
| )] ^{- | |
| }= & | |
| : \| | |
| n N | |
| : }\ | |
| O rb | |
| ĠT M | |
| }^{* })_{ | |
| R f | |
| }}) &\ | |
| Ġ3 1 | |
| {) }| | |
| }\| ,\] | |
| = :\ | |
| or mal | |
| Ġme asu | |
| H M | |
| _{- }=\ | |
| )}= - | |
| )\; =\;\ | |
| Ġ{ | | |
| }}= [\ | |
| }$ .}\] | |
| ga p | |
| }^{* }}^{ | |
| le ad | |
| Ġi x | |
| )( -\ | |
| }^{* })^{- | |
| )) )=\ | |
| {- ( | |
| }} ]^{ | |
| )= -( | |
| te p | |
| x w | |
| ^{+ }= | |
| B U | |
| : {\ | |
| b p | |
| }}:=\ { | |
| la ss | |
| ode l | |
| {\ }}= | |
| B E | |
| U E | |
| 23 1 | |
| ve x | |
| }}) }.\] | |
| $ ;}\\ | |
| S V | |
| Ġ} [\ | |
| T HH | |
| f e | |
| _{* }}{ | |
| }(- , | |
| i H | |
| }) )}^{ | |
| _{- }= | |
| d o | |
| }) )|\ | |
| }}, (\ | |
| cr ys | |
| \ }}= | |
| he art | |
| K M | |
| { }{}{ | |
| }}) }( | |
| ! }(\ | |
| ]- [ | |
| A U | |
| }\ }+\ | |
| ro ot | |
| }< ( | |
| P B | |
| , ...,\ | |
| {) },\\ | |
| _{* }:\ | |
| A M | |
| }}[ ( | |
| B y | |
| }}) ) | |
| P V | |
| ]\ !\ | |
| }_{- }^{ | |
| h u | |
| \ }}=\ | |
| am ple | |
| heart suit | |
| ^{* })( | |
| )] ,\ | |
| 2 16 | |
| &* & | |
| ĠV ar | |
| }( (-\ | |
| }} }}{\ | |
| Ġdx dt | |
| ~ {}\ | |
| ,+ }\ | |
| ĠE nd | |
| h h | |
| Ġ )\,\ | |
| si tion | |
| ]\! ]\] | |
| p w | |
| . + | |
| }] \}\] | |
| ik x | |
| 14 5 | |
| b z | |
| _{* }+\ | |
| 3 21 | |
| {)}\ |\ | |
| k g | |
| Sub set | |
| Ġ( -\ | |
| s ti | |
| s b | |
| F G | |
| co f | |
| sta b | |
| sma sh | |
| &= &\ | |
| })| <\ | |
| n L | |
| cen ter | |
| c q | |
| Ġ\(-\ ) | |
| };\ ,\ | |
| it H | |
| 25 0 | |
| )} |_{ | |
| })}{ |\ | |
| S F | |
| Ġc l | |
| r j | |
| }) _ | |
| l c | |
| Ġ }),\ | |
| ra ble | |
| f p | |
| ĠK er | |
| er s | |
| })] -\ | |
| : \\ | |
| |\ | | |
| ^{* })}\ | |
| }=- (\ | |
| }}{ }^{ | |
| {\ }}^{ | |
| u re | |
| var Pi | |
| }}^{- }\ | |
| Ġ }).\] | |
| ]{ } | |
| h y | |
| }& * | |
| H o | |
| Ġ hol | |
| \[ * | |
| Ġ ho | |
| = -( | |
| sm ile | |
| var Lambda | |
| ma in | |
| dy dx | |
| Ġ )\\ | |
| sq subseteq | |
| a j | |
| \{\ { | |
| \[[ [ | |
| mo oth | |
| G C | |
| | ).\] | |
| | }=\ | |
| }] ,\\ | |
| }_{- }(\ | |
| }}, {\ | |
| ; [ | |
| P M | |
| ^{* }[ | |
| )}{\ | | |
| K S | |
| Ġ(\ (\ | |
| {(} [\ | |
| Ġ=\ {( | |
| \ }( | |
| }) }& | |
| T F | |
| Ġin teg | |
| ,\ ;\; | |
| X Z | |
| s at | |
| i al | |
| }} }^{- | |
| }\| +\|\ | |
| }] <\ | |
| \ };\] | |
| })] ^{\ | |
| Ġal most | |
| )] - | |
| U n | |
| \ }).\] | |
| _{* }-\ | |
| ] ),\] | |
| ^{+ }}( | |
| }),\ ; | |
| th od | |
| ))\, .\] | |
| }^{+ }.\] | |
| Ġd B | |
| O M | |
| ĠC M | |
| )}, &\ | |
| or em | |
| 14 0 | |
| ĠP ro | |
| Ġe xp | |
| }) ],\] | |
| P e | |
| A z | |
| T ra | |
| $ } | |
| R ad | |
| \[(\ { | |
| A s | |
| ] | | |
| 36 0 | |
| ĠS ym | |
| tr ue | |
| ab cd | |
| m q | |
| }\, +\, | |
| { + | |
| big triangledown | |
| Ġ ref | |
| }[ [\ | |
| }] )^{ | |
| I F | |
| ]= [\ | |
| {\ , | |
| O D | |
| Ġ gen | |
| L in | |
| F C | |
| )\ }=\ | |
| {, }\] | |
| b v | |
| }}| = | |
| ^{* }}^{\ | |
| M W | |
| $ }^{ | |
| }) _{- | |
| }=( -\ | |
| ^{* }}}\ | |
| ]= -\ | |
| b j | |
| - \] | |
| {) }<\ | |
| \ }|\] | |
| Ġ| |\ | |
| ) { | |
| }( * | |
| ^{ {}^{ | |
| ĠR es | |
| 16 8 | |
| }}) :=\ | |
| \ }\,\ | |
| }}\ ;.\] | |
| Ġcont inuous | |
| Ġ6 0 | |
| [ \] | |
| big circ | |
| ^{* }:=\ | |
| u f | |
| 99 9 | |
| \|\ , | |
| S ol | |
| }} . | |
| k u | |
| {| | | |
| q a | |
| n f | |
| )) :=\ | |
| d U | |
| 10 4 | |
| o ff | |
| }] ; | |
| 13 6 | |
| le n | |
| l f | |
| q n | |
| z q | |
| 11 3 | |
| }} ... | |
| ! ^{ | |
| t c | |
| \ }}+ | |
| G D | |
| }& =-\ | |
| )^{* }( | |
| a us | |
| P R | |
| }^{* }: | |
| Ġin ter | |
| }} &- | |
| s j | |
| }| }( | |
| _{ !} | |
| Ġ( {\ | |
| ),\ ,( | |
| . ,\ | |
| })| | | |
| so c | |
| S B | |
| }) ^{*}(\ | |
| cr ea | |
| \[ <\ | |
| p ol | |
| M on | |
| o v | |
| me as | |
| { .}\] | |
| _{+ }}{ | |
| |_{ ( | |
| }}& =\ | |
| }_{+ }.\] | |
| la s | |
| }}{ }^{\ | |
| - - | |
| _{+ }^{( | |
| po s | |
| 99 8 | |
| Co ker | |
| \ : | |
| \! =\! | |
| }\ : | |
| po unds | |
| O T | |
| ^{* }/ | |
| Ġâľ ĵ | |
| 2 12 | |
| S m | |
| ^{ < | |
| Ġ })+\ | |
| :=\ {( | |
| N t | |
| \}&\ { | |
| ) }}+ | |
| bo w | |
| ti e | |
| 38 4 | |
| })| }{ | |
| h yp | |
| )) /\ | |
| ] > | |
| | )}\ | |
| I R | |
| V ec | |
| \|=\ | | |
| Ġd f | |
| w eakly | |
| us p | |
| c sc | |
| }) )> | |
| \| }{ | |
| A N | |
| | }(\ | |
| E G | |
| var Sigma | |
| o u | |
| U L | |
| h p | |
| }) }^{( | |
| _{- }} | |
| Ġ *}\ | |
| \ }> | |
| ĠA d | |
| && && | |
| {|}\ ; | |
| \( {}_{ | |
| 3 12 | |
| Ġ })^{\ | |
| x g | |
| ) }}}\ | |
| ^{* }| | |
| )) },\] | |
| ec tive | |
| lo b | |
| }^{* }:=\ | |
| Ġ_{ - | |
| \% \) | |
| Ġ& \\ | |
| ^{* }), | |
| d K | |
| si s | |
| ^{- })\] | |
| se n | |
| ĠA B | |
| te st | |
| lead sto | |
| })| =| | |
| E u | |
| })( ( | |
| ty pe | |
| }^{* }:\ | |
| _{- ( | |
| k b | |
| } ...\ | |
| {( }\, | |
| Y Z | |
| ] := | |
| }\ {| | |
| i ck | |
| })=\ {( | |
| Ġcon n | |
| [ [\ | |
| < _{ | |
| }}| }\ | |
| om ial | |
| Y X | |
| C ol | |
| )\ }= | |
| ĠâĢ Ķ | |
| Ġs ign | |
| })| + | |
| ) }]_{ | |
| ĠG r | |
| ĠB V | |
| }) _{* | |
| g raph | |
| ^{ !}\ | |
| K R | |
| > ( | |
| nd i | |
| {\ ,\ | |
| )=\ \ | |
| : & | |
| sin ce | |
| ] ),\ | |
| + + | |
| ^{* }=( | |
| \ }}^{ | |
| / |\ | |
| }[ ] | |
| })\, |\, | |
| b w | |
| {( -\ | |
| \|\ ,\ | |
| l p | |
| }\ )) | |
| }}\ !\! | |
| ) }}, | |
| 15 6 | |
| )) +( | |
| 3 20 | |
| )] }\ | |
| 45 6 | |
| E C | |
| cccc ccccc | |
| }[ {\ | |
| ĠP a | |
| Ġ3 4 | |
| Ġ\[=\ | | |
| }^{+ }}( | |
| A G | |
| e ri | |
| }] =( | |
| }}) )= | |
| go od | |
| Ġ3 5 | |
| u mber | |
| w x | |
| Ġ4 8 | |
| }) _{*} | |
| B e | |
| Ġu v | |
| + [\ | |
| S N | |
| ^{* }\|_{\ | |
| o g | |
| }+ || | |
| })^{ +}\ | |
| b k | |
| \,\ ,\,\ | |
| M U | |
| ]\! ]\ | |
| Ġ{ }_{ | |
| de nt | |
| in ed | |
| Q x | |
| })\ !\ | |
| Ġs s | |
| bow tie | |
| lo sed | |
| !\!\ !\ | |
| Q P | |
| Ġs gn | |
| }+\ \ | |
| \ }<\ | |
| })] +\ | |
| Ġ })-\ | |
| )}( ( | |
| h a | |
| }$ },\] | |
| 00 2 | |
| )= :\ | |
| })| |\ | |
| }]- [ | |
| 00 01 | |
| }- { | |
| ), {\ | |
| {) }|\ | |
| di ff | |
| I w | |
| ow er | |
| L f | |
| Ġ log | |
| on ent | |
| )) )^{ | |
| [\ { | |
| }{ =}\ | |
| ) }))\ | |
| A n | |
| ici ent | |
| \|_{ * | |
| | }+\ | |
| _{+ }}( | |
| }\, =\ | |
| math ord | |
| r q | |
| comp lement | |
| {| }(\ | |
| center dot | |
| 22 2 | |
| D h | |
| \! +\!\ | |
| \| < | |
| C O | |
| C Z | |
| \[( | | |
| }} ].\] | |
| )+ |\ | |
| Ġe l | |
| Ġ eq | |
| n er | |
| ] ^{( | |
| }\; ,\ | |
| Ġ matrix | |
| }} }& | |
| Ġ top | |
| }] ).\] | |
| Ġ3 7 | |
| )| ,\ | |
| }) }) | |
| Ġcon tain | |
| }}( [\ | |
| }/ {\ | |
| })) <\ | |
| ;\;\ ;\;\ | |
| v a | |
| }\, ^{ | |
| }} }[\ | |
| \{\ ,\ | |
| 2 000 | |
| n K | |
| _{- }}{ | |
| ) })}{ | |
| # ( | |
| Ġ 99 | |
| ^{* }\|\ | |
| xi m | |
| }|_{ [ | |
| F T | |
| D B | |
| }] /( | |
| \[\ {[ | |
| ĠT ime | |
| })/ (\ | |
| }|\ \ | |
| ĠD u | |
| H D | |
| A p | |
| : _{ | |
| E mb | |
| Ġv ol | |
| ^{* }),\ | |
| ^{* \ | |
| h D | |
| dy ds | |
| 9 05 | |
| }_{* }\] | |
| 10 2 | |
| }\|=\ | | |
| g t | |
| O S | |
| }_{+ }}\] | |
| }) $ | |
| |^{ ( | |
| Ġ2 00 | |
| me asu | |
| Ġ })- | |
| )_{ | | |
| t j | |
| \ )- | |
| Ġ\[+ (\ | |
| s z | |
| }^{* ( | |
| ): \, | |
| ii int | |
| Sp f | |
| ra tion | |
| Ġd V | |
| }^{* }&\ | |
| })= [\ | |
| G Sp | |
| < -\ | |
| K T | |
| }) )}.\] | |
| Is om | |
| \ }\, | |
| }^{* }|\ | |
| h v | |
| M D | |
| )) & | |
| }\},\ {\ | |
| }}^{+ }\] | |
| }}^{- }( | |
| Ġ&&& & | |
| )) }{| | |
| )\,\ ,\ | |
| \, ; | |
| Ġn e | |
| ) }))\] | |
| F M | |
| Ġop en | |
| \, +\, | |
| }; ( | |
| {\| }( | |
| ^{* }|\ | |
| Ġ }}.\] | |
| }& {\ | |
| }^{- }} | |
| }\, [ | |
| Ġon e | |
| ) }}- | |
| a ba | |
| )| } | |
| olu tion | |
| C Alg | |
| si ble | |
| }):= (\ | |
| }_{- }\] | |
| ))\ }\] | |
| }_{ , | |
| )) }=\ | |
| ) ** | |
| ) }}-\ | |
| a cc | |
| \; ( | |
| 8 00 | |
| y t | |
| Ġ )|^{ | |
| )_{+ }^{ | |
| i rr | |
| }: \{ | |
| })] ( | |
| }}| |_{ | |
| { < | |
| )) ]\] | |
| )}\ ! | |
| )} >\ | |
| r ror | |
| ))= -\ | |
| E E | |
| := -\ | |
| g H | |
| ^{* }}=\ | |
| N D | |
| \| }{\ | |
| ), ..., | |
| Ġ} / | |
| }< - | |
| r h | |
| 22 1 | |
| ^{* }\| | |
| Ġ\[ {\ | |
| ([ - | |
| ra nge | |
| ro ss | |
| co re | |
| Ġt w | |
| _{* }^{( | |
| t B | |
| {[ }- | |
| n z | |
| in ct | |
| )) .\ | |
| && &\ | |
| Ġs pan | |
| }^{+ }}\] | |
| }] /\ | |
| s ol | |
| j r | |
| }^{* }[ | |
| Ġbo und | |
| Ġuni formly | |
| \| | | |
| }( . | |
| }- [\ | |
| F I | |
| K t | |
| z u | |
| })| ^{\ | |
| (| | | |
| w v | |
| Ġc yc | |
| m f | |
| }} ]_{\ | |
| }}, - | |
| Ġ })=\ | |
| B W | |
| {) }}\] | |
| Ġd iff | |
| _{{ }_{( | |
| ) }}^{( | |
| {] }- | |
| on s | |
| tra in | |
| C rit | |
| SI NR | |
| Ġcom pact | |
| Ġl arge | |
| g d | |
| )+ {\ | |
| ^{( + | |
| la tion | |
| A r | |
| Ġ3 3 | |
| }}}{ (\ | |
| ]\ }\ | |
| {\ }}\\ | |
| }) *\ | |
| }} }}{{\ | |
| 34 5 | |
| te rm | |
| > \] | |
| }}) /\ | |
| Ġ cc | |
| },\ ;\; | |
| )}\ ; | |
| }\; =\; | |
| f il | |
| \, [ | |
| })_{ | | |
| ) }}_{ | |
| K h | |
| nu m | |
| Ġu p | |
| 0 13 | |
| )\, | | |
| }= +\ | |
| S k | |
| ^{\# }( | |
| ^{* , | |
| B H | |
| , }\] | |
| Ġ qu | |
| { . | |
| }}) <\ | |
| }\ }^{\ | |
| P u | |
| S f | |
| 7 20 | |
| Ġ })( | |
| ĠSp ec | |
| {( ( | |
| . }&\ | |
| }} }}( | |
| )= & | |
| }}= (- | |
| )\ { | |
| _{- }^{- | |
| Ġ8 0 | |
| ! }=\ | |
| }}) ).\] | |
| (-\ ) | |
| ra m | |
| & ...& | |
| }^{* })- | |
| }$ ,}\\ | |
| \| {\ | |
| , (- | |
| ,- }( | |
| Ġ\[ -( | |
| ds dt | |
| })\, =\,\ | |
| e th | |
| U B | |
| \ }}|\ | |
| /\ !\!/ | |
| }^{* })+\ | |
| ma ll | |
| D H | |
| p j | |
| f a | |
| u a | |
| p b | |
| orphi sm | |
| P E | |
| },\ ,\, | |
| }}_{ * | |
| te s | |
| an n | |
| A rg | |
| xim ize | |
| A lt | |
| i B | |
| ĠI II | |
| Ġcon st | |
| Ġ ar | |
| u ct | |
| })|\ , | |
| |\ ;\ | |
| )| }\] | |
| })= |\ | |
| }} })^{ | |
| )=\ |\ | |
| y e | |
| ( {}^{ | |
| }^{- }+ | |
| Ġs c | |
| h ss | |
| diamond suit | |
| }}{ - | |
| && & | |
| T v | |
| }) )\|_{ | |
| N F | |
| Ġe lement | |
| Ġ ge | |
| })] - | |
| \[\# \{ | |
| Ġm n | |
| 24 5 | |
| f c | |
| }> ( | |
| \ })^{ | |
| \, - | |
| {) }^ | |
| }| }}\ | |
| T A | |
| Ġ cr | |
| }), ..., | |
| c w | |
| j a | |
| _{- }^{( | |
| ,& ( | |
| ^{ > | |
| q k | |
| Ġi z | |
| \[\ {| | |
| 0 25 | |
| }* ( | |
| ] }\\ | |
| Ġ )\|_{ | |
| Ġ res | |
| ), -\ | |
| )\, |\,\ | |
| igh t | |
| )^{* }= | |
| S u | |
| Ġ\ % | |
| ]= - | |
| M a | |
| U T | |
| }})\ |\ | |
| \( { | |
| }\ }+ | |
| }}\,\ | | |
| }^{- }- | |
| &- ( | |
| n subseteq | |
| ĠD i | |
| _{* }: | |
| \ }},\ | |
| le ave | |
| r z | |
| ), &( | |
| )) ]\ | |
| }) })^{ | |
| f ib | |
| R G | |
| }\ )} | |
| u y | |
| }^{* })-\ | |
| ( (-\ | |
| ( * | |
| {| }^{\ | |
| Ġ ta | |
| Ġ })_{ | |
| )) |\] | |
| }}, -\ | |
| R u | |
| m h | |
| }\ }&\ | |
| }^{* }).\] | |
| \% \] | |
| ĠL e | |
| Ġe v | |
| Ġ red | |
| , .., | |
| la x | |
| )}\ }\ | |
| }[ -\ | |
| })| +\ | |
| Ġ })= | |
| | &\ | |
| ĠC om | |
| M f | |
| L F | |
| u g | |
| P ar | |
| K N | |
| no rm | |
| \ (-\) | |
| 99 99 | |
| F or | |
| m L | |
| \| ^ | |
| & *\ | |
| Ġd w | |
| 00 4 | |
| }}^{ +\ | |
| }|\ }\] | |
| ) })(\ | |
| Ġ )(\ | |
| ĠC C | |
| }_{\ {| | |
| var limsup | |
| Ġ\ ,( | |
| Ġ opt | |
| }= { | |
| ĠC H | |
| }:= - | |
| m N | |
| }{ -} | |
| 0000 0000 | |
| R H | |
| 24 3 | |
| circle d | |
| }\; ( | |
| Ġpo sitive | |
| | [ | |
| }: \|\ | |
| + , | |
| ze nge | |
| e pi | |
| | }{|\ | |
| {| },\] | |
| {] }_{\ | |
| crea sing | |
| lo zenge | |
| {| }| | |
| ,\ ! | |
| C G | |
| }, .., | |
| Ġ& =( | |
| }^{ ! | |
| P x | |
| }}{ =}\ | |
| C s | |
| }{ +} | |
| )) -( | |
| }_{ (- | |
| s A | |
| }=\ \ | |
| ho r | |
| Ġ\[ := | |
| ĠA v | |
| \[[ (\ | |
| G e | |
| Ġ= [\ | |
| \[\| {\ | |
| Ġ\[= [ | |
| Ġ })+ | |
| }] ]\ | |
| 10 01 | |
| W P | |
| w u | |
| M I | |
| h r | |
| ) [- | |
| }})\ | | |
| )) }= | |
| Ġd m | |
| \[- (\ | |
| Ġs ing | |
| Ġdx dy | |
| sin c | |
| Ġs in | |
| }}(\ | | |
| . \,\ | |
| tri bu | |
| 12 7 | |
| A L | |
| }+| |\ | |
| un iv | |
| ** } | |
| Ġa v | |
| {\| }\] | |
| ^{* }(- | |
| N e | |
| > -\ | |
| y n | |
| {\ {\ | |
| }}{( - | |
| }/ \|\ | |
| }}) < | |
| }^{* }\}\] | |
| C W | |
| Ġ size | |
| }\ }\}\] | |
| R V | |
| \[= (\ | |
| A F | |
| prec sim | |
| G K | |
| }):=\ {\ | |
| }\| < | |
| })] _{\ | |
| text circled | |
| Q R | |
| Ġb a | |
| }} $ | |
| \| -\ | |
| 00 3 | |
| \ }}+\ | |
| hi ch | |
| }^{ {}^{ | |
| }} ]^{\ | |
| b ad | |
| Ġd R | |
| ^{+ }+\ | |
| ; (\ | |
| N d | |
| {{ * | |
| )}\ !\ | |
| ^{* }}= | |
| H L | |
| a X | |
| i N | |
| h igh | |
| | }^{ | |
| }{ }^{- | |
| }{ {\ | |
| {\{ }- | |
| k c | |
| }) _{*}(\ | |
| \, ;\ | |
| j q | |
| Ġ4 5 | |
| =( ( | |
| }) )/ | |
| }_{+ }; | |
| }{ }^{( | |
| }\| }{ | |
| }) _{*}( | |
| i ven | |
| : &\ | |
| pri m | |
| A W | |
| ] }} | |
| Ġor d | |
| }: \] | |
| }}) )=\ | |
| on e | |
| Di sc | |
| p tion | |
| | /\ | |
| N r | |
| P ol | |
| mu m | |
| }\| {\ | |
| })&= & | |
| * }_{ | |
| ul corner | |
| }})= (\ | |
| }}\ },\] | |
| {] }\,.\] | |
| f h | |
| )}( {\ | |
| Com p | |
| au x | |
| }_{- } | |
| })& ( | |
| # (\ | |
| Ġ} })\ | |
| 23 5 | |
| \; (\ | |
| )- {\ | |
| )} })\ | |
| Ġ |_{ | |
| }\ })= | |
| 22 5 | |
| E q | |
| ĠE xt | |
| _{* }}^{ | |
| ,- }\ | |
| )\ }^{ | |
| var triangle | |
| {\ }}\,.\] | |
| S x | |
| un lhd | |
| leftarrow s | |
| | }| | |
| Y Y | |
| }) }< | |
| right leftarrows | |
| )) [ | |
| u d | |
| F D | |
| }:\ ; | |
| side set | |
| k z | |
| Ġi mp | |
| })| }{| | |
| d I | |
| }] |\ | |
| f u | |
| f v | |
| era ge | |
| on al | |
| }}\, | | |
| \ }}, | |
| M O | |
| | }- | |
| ,\, | | |
| , < | |
| Z Z | |
| 6 00 | |
| D t | |
| })^{ [ | |
| i able | |
| p v | |
| })_{ +}\ | |
| ^{* }}_{ | |
| Ġ1 000 | |
| }{ $ | |
| ^{+ }-\ | |
| N x | |
| }) )| | |
| }\ })=\ | |
| M r | |
| }}) |^{ | |
| Ġs h | |
| Ġ4 2 | |
| ) })_{\ | |
| \[\ {\{ | |
| ma ge | |
| }): ( | |
| I D | |
| ri d | |
| }_{\ ,\ | |
| }^{+ }) | |
| {\{ }| | |
| : - | |
| T H | |
| }:= [\ | |
| ec tion | |
| N a | |
| S pa | |
| M x | |
| De s | |
| ], [\ | |
| R i | |
| du al | |
| 0 20 | |
| F E | |
| 10 6 | |
| }^{* }\,\ | |
| {] }^{- | |
| }] =-\ | |
| )+\ | | |
| }/ | | |
| }] }=\ | |
| ))^{ * | |
| F B | |
| me nsion | |
| E P | |
| p li | |
| Ġhol ds | |
| ĠN umber | |
| ĠC T | |
| }}\| (\ | |
| m v | |
| ^{\# } | |
| }] [\ | |
| \|\ |\ | |
| Ġs pace | |
| \[= - | |
| {[ }\,\ | |
| })\, ( | |
| }} ]( | |
| # _{ | |
| ] < | |
| ! \, | |
| Ġf ix | |
| }/ \| | |
| := [ | |
| w a | |
| }, { | |
| 10 000 | |
| )| |^{ | |
| ĠC F | |
| Ġd om | |
| Ġco ndi | |
| }^{* }\|_{\ | |
| ca tion | |
| R Hom | |
| }\| ^ | |
| &* &*\\ | |
| K e | |
| V al | |
| Ġsatisf ies | |
| > _{ | |
| ) _{*}\ | |
| ĠA lg | |
| S tr | |
| + }(\ | |
| \{ {\ | |
| | ,|\ | |
| }) )< | |
| )! }.\] | |
| . }\\ | |
| X A | |
| v s | |
| ) }}\, | |
| ol d | |
| }}= {\ | |
| +\ \ | |
| ĠThe orem | |
| {|}\ ;\ | |
| te m | |
| ^{* }|^{ | |
| ( ., | |
| ] }^{( | |
| p ut | |
| ... \\ | |
| )\, |\ | |
| 11 6 | |
| cal ly | |
| K O | |
| ] }) | |
| co st | |
| Ġ\[= | | |
| Ġ lin | |
| !\!\ ! | |
| )^{* }=\ | |
| N n | |
| Ġ\[=\ |\ | |
| ^{* })_{ | |
| \| ^{- | |
| )\, ,\\ | |
| )\, , | |
| J Y | |
| w eak | |
| )) ] | |
| 0 15 | |
| A H | |
| r w | |
| Ġc n | |
| ;\;\ ; | |
| ) })\\ | |
| 10 7 | |
| })| > | |
| D V | |
| Ġn ode | |
| })^{+ }\] | |
| 11 7 | |
| }^{+ },\] | |
| erf c | |
| text sf | |
| \, -\, | |
| Ġ hom | |
| Ġg r | |
| ^{ { | |
| 24 6 | |
| th ick | |
| j u | |
| @ @ | |
| P I | |
| | }+ | |
| {$-$ }} | |
| ci te | |
| ,* }(\ | |
| 48 0 | |
| M R | |
| ! (\ | |
| w z | |
| ))= - | |
| & [ | |
| Ġ }(- | |
| c N | |
| ir st | |
| ^{ <\ | |
| ^{- }=\ | |
| }}\ }_{\ | |
| )= (( | |
| 10 3 | |
| 11 5 | |
| 14 7 | |
| }{ (- | |
| )) |_{ | |
| }; {\ | |
| Ġ }}-\ | |
| 0 23 | |
| c g | |
| rr rr | |
| ))=\ { | |
| )}, & | |
| Co nt | |
| n H | |
| o sition | |
| }_{+ , | |
| pen dent | |
| _{+ }) | |
| Ġle ngth | |
| j x | |
| }^{ { | |
| }^{- }_{\ | |
| ge bra | |
| _{- }) | |
| f s | |
| }} /( | |
| in dex | |
| co r | |
| v mode | |
| Ġ{ [ | |
| }& =- | |
| leave vmode | |
| dx dv | |
| 10 9 | |
| M ul | |
| }| }=\ | |
| }^{- }+\ | |
| }\| ^{- | |
| W e | |
| 14 6 | |
| K n | |
| T a | |
| j d | |
| }}\ ,\,\ | |
| triangleleft eq | |
| x s | |
| Ġ )|\ | |
| f ull | |
| Ġ:= ( | |
| 76 8 | |
| }) }).\] | |
| Ġ\ }}\ | |
| }}) ^{*}\ | |
| var liminf | |
| }},\ | | |
| C a | |
| P H | |
| re n | |
| ĠP rop | |
| ru e | |
| }}| ^{\ | |
| }_{+ },\] | |
| |\ }\] | |
| In f | |
| E X | |
| Ġdeg ree | |
| g ra | |
| s ys | |
| jk l | |
| em ph | |
| da ta | |
| Ġc t | |
| ini tion | |
| )\, (\ | |
| E D | |
| }{| | | |
| ]\ }.\] | |
| Ġpa th | |
| . },\] | |
| {) }^{( | |
| )< ( | |
| ) }|\] | |
| )\! =\!\ | |
| J e | |
| Ġ linear | |
| L aw | |
| | )| | |
| ^{+ }}\] | |
| ) })}{\ | |
| )}{ =}\ | |
| Ġ }}+ | |
| )! \] | |
| 13 3 | |
| S c | |
| f x | |
| ma ximize | |
| ^{* }),\] | |
| )} })\] | |
| | }\, | |
| }}= \] | |
| })| - | |
| })+ | | |
| }(\ , | |
| 11 4 | |
| I G | |
| Ġp t | |
| )\ ;\;\ | |
| \[[\ ![ | |
| b g | |
| }& &&\\ | |
| I T | |
| }})\ }\] | |
| p T | |
| Ġ )}^{ | |
| ! },\] | |
| },\,\ ,\, | |
| ĠL ip | |
| Ġ{ }^{ | |
| B N | |
| ^{+ }) | |
| Ġt ot | |
| )_{ [ | |
| }:=\ | | |
| K P | |
| )| |_{\ | |
| }_{+ }+ | |
| ):= - | |
| Ġ0 0 | |
| }\ },\\ | |
| g m | |
| }^{+ }\\ | |
| $ }}_{ | |
| j b | |
| M B | |
| }^{- (\ | |
| ^{* }))\] | |
| Ġ3 8 | |
| u le | |
| ^{- }= | |
| _{- }+\ | |
| ĠC d | |
| I f | |
| )}_{ - | |
| r dr | |
| ^{* }; | |
| }{*}{\ ( | |
| )\| _ | |
| g ph | |
| ^{+ }.\] | |
| o rt | |
| E H | |
| )^{+ }\] | |
| 3 24 | |
| \, +\,\ | |
| ) }-( | |
| leq q | |
| 37 5 | |
| }=\ {\{ | |
| sp in | |
| di c | |
| + }_{ | |
| s cal | |
| ^{ !} | |
| }{ -\ | |
| de v | |
| Ġp oly | |
| Po i | |
| Ġ=\ ,\ | |
| {) }=-\ | |
| i an | |
| Ġ\, ,\ | |
| }) }}.\] | |
| }},\ ; | |
| t D | |
| , { | |
| C ard | |
| n il | |
| to tal | |
| }}) : | |
| N K | |
| ig en | |
| / \| | |
| {) }< | |
| Ġp re | |
| })\ } | |
| 22 4 | |
| S Y | |
| )] \\ | |
| }),\ ;\ | |
| \ }}^{\ | |
| })\; ,\] | |
| g v | |
| al ity | |
| ^{- }- | |
| Q C | |
| Ġm on | |
| . }}\ | |
| \ )\ | |
| } !} | |
| k y | |
| }}| (\ | |
| )\ ,\, | |
| }} }\,.\] | |
| \ }< | |
| }^{* })( | |
| E A | |
| al most | |
| |\ |\ | |
| ; -\ | |
| }]\! ]\] | |
| u z | |
| ma j | |
| ^{* }})\ | |
| G R | |
| Ġ= \] | |
| \[\| [ | |
| D N | |
| }}) )^{ | |
| _{* }}\] | |
| ^{* }\}\] | |
| }}}{ |\ | |
| _{\# }\ | |
| K x | |
| ^{* }}, | |
| }|\ !|\! | |
| * _{\ | |
| âĢ ĵ | |
| 11 8 | |
| _{\ _ | |
| ^{* }))\ | |
| }}, ...,\ | |
| ll corner | |
| }] : | |
| x leftrightarrow | |
| | : | |
| Ġ}\ ;\ | |
| {/ } | |
| }} }<\ | |
| 17 5 | |
| Ġf orm | |
| }) &- | |
| w or | |
| ci ty | |
| }}) & | |
| 99 98 | |
| }< ... | |
| Ġ{* } | |
| \, _{ | |
| \ }},\] | |
| )| -| | |
| T e | |
| u k | |
| Ġh ave | |
| :\ !\ | |
| }_{* , | |
| Ġ_{ + | |
| E F | |
| })\, |\,\ | |
| ^{** }( | |
| Ġ1 28 | |
| c usp | |
| Ġi r | |
| }}(\ |\ | |
| })] + | |
| a ut | |
| 00 8 | |
| z ero | |
| }}:= (\ | |
| }\,\ }\] | |
| }|_{ ( | |
| de al | |
| Ġst rongly | |
| }^{* }=( | |
| }}:= ( | |
| N O | |
| }] }.\] | |
| big star | |
| Ġc an | |
| h m | |
| )\; =\; | |
| Ġpoint s | |
| _{ ; | |
| c T | |
| 00 000 | |
| E R | |
| }}^{* }=\ | |
| Ġ\| ( | |
| ^{- }+ | |
| te ri | |
| Ġ+ (\ | |
| ] [\ | |
| \[[ -\ | |
| - [\ | |
| {\{ }\| | |
| ĠA C | |
| }}) ]\] | |
| 33 3 | |
| $ }^{\ | |
| rc ll | |
| y u | |
| | ^{-( | |
| lo op | |
| {) }=( | |
| F L | |
| st rongly | |
| | )( | |
| }\| ,\ | |
| )},\ , | |
| C k | |
| re t | |
| \( {}^{ | |
| )\ }}\ | |
| n w | |
| \ }| | |
| ^{* }},\ | |
| Ġ9 4 | |
| {( }(- | |
| }) }\|_{ | |
| \ }:\ | |
| D X | |
| ,- )\ | |
| }^{[ - | |
| supset neq | |
| Ġw e | |
| }} }\|_{ | |
| Ġconn ected | |
| { `` | |
| }}=\ {( | |
| \; ,\ | |
| 4 32 | |
| de pendent | |
| ĠO p | |
| })|= |\ | |
| { +}\ | |
| }\ {(\ | |
| - }, | |
| | }= | |
| Ġco l | |
| Ġ sim | |
| 00 6 | |
| ,- ( | |
| Ġ9 0 | |
| })}=\ | | |
| Ġ ap | |
| k L | |
| )+ [ | |
| ] )^{\ | |
| F A | |
| {) }} | |
| \, )\ | |
| M V | |
| )| )\ | |
| 14 3 | |
| }: & | |
| }}= | | |
| )\ |= | |
| t N | |
| 14 2 | |
| |< | | |
| ))\ |_{\ | |
| 13 7 | |
| )) :\ | |
| }},\ |\ | |
| }_{- },\ | |
| }. \\ | |
| }_{* },\ | |
| }}\, {\ | |
| R W | |
| }) }> | |
| 5 76 | |
| A w | |
| }\ }|\ | |
| 11 9 | |
| P oly | |
| n D | |
| }| )^{\ | |
| * , | |
| u se | |
| )) }+\ | |
| ĠC E | |
| ); ( | |
| }] &\ | |
| D U | |
| ome o | |
| qu are | |
| }= [- | |
| o od | |
| )}=\ | | |
| \% ) | |
| Ġ4 1 | |
| \[ +( | |
| me s | |
| Ġ\[= |\ | |
| _{\ ,\ | |
| ĠC A | |
| $ }_{\ | |
| succ curlyeq | |
| n se | |
| nu ll | |
| P W | |
| }& := | |
| })| +|\ | |
| Ġ }),\] | |
| Ġ= -( | |
| . }& | |
| }] :=\ | |
| du dv | |
| ] ))\] | |
| }; - | |
| {] }<\ | |
| measu re | |
| }}\, (\ | |
| n P | |
| }\ }=\{\ | |
| }^{+ , | |
| y ing | |
| )}\ .\] | |
| si ty | |
| ! }+\ | |
| lim it | |
| 13 8 | |
| )| -\ | |
| })^{ (\ | |
| Ġ^{ (\ | |
| }) }^{- | |
| 16 7 | |
| ))^{ -\ | |
| }\| > | |
| . - | |
| b it | |
| )\ ), | |
| 4527 6 | |
| }^{* }),\ | |
| me d | |
| },\ ,\,\ | |
| \, ^{\ | |
| Ġ +| | |
| Ġd im | |
| for k | |
| 905 512 | |
| ))\, ,\] | |
| )) >\ | |
| Ġ3 9 | |
| s I | |
| 8 45276 | |
| })} .\ | |
| t C | |
| Ġs olution | |
| Ġ9 6 | |
| T E | |
| ne l | |
| M K | |
| }) }\,,\] | |
| l h | |
| )) }{( | |
| 16 5 | |
| Ġ9 5 | |
| Ġdist inct | |
| ra t | |
| {| }<\ | |
| 12 9 | |
| _{* })^{ | |
| ĠB S | |
| )\! =\! | |
| }|< | | |
| 13 0 | |
| })+ \] | |
| P re | |
| Ġ }}=\ | |
| g u | |
| })| < | |
| \}\ .\] | |
| _{ / | |
| \| [ | |
| 28 0 | |
| rel y | |
| 18 9 | |
| Ġ} }_{\ | |
| la g | |
| P Sh | |
| Ġ$ | | |
| V R | |
| l v | |
| {\ }}+\ | |
| 17 6 | |
| * (\ | |
| }[\ { | |
| }& ...& | |
| )} ^ | |
| {| ( | |
| }\|_{ ( | |
| }| },\] | |
| Ġp rop | |
| k G | |
| }_{+ }=\ | |
| 23 6 | |
| A Q | |
| O C | |
| ĠT V | |
| Ġ4 4 | |
| $ }}} | |
| }| ).\] | |
| Sh t | |
| }> \] | |
| L x | |
| \[\{ {\ | |
| }> - | |
| ^{\# }\ | |
| T W | |
| ĠE x | |
| )\ : | |
| }\, ^{\ | |
| Ġcomp onent | |
| \| }\] | |
| \| )\ | |
| Ind Coh | |
| Ġ }{| | |
| )\, .\ | |
| S e | |
| )}\, ,\ | |
| }\!\ !\! | |
| )| ^ | |
| 16 2 | |
| x b | |
| [\ !\ | |
| Ġb c | |
| m K | |
| ge t | |
| ĠI nd | |
| 15 2 | |
| V V | |
| }}[ - | |
| D ir | |
| Ġ us | |
| }}\ |\] | |
| }\| }{\ | |
| Pro x | |
| me tric | |
| 16 9 | |
| }}) [ | |
| \| > | |
| ti ces | |
| )\ }_{\ | |
| {| }_{( | |
| 14 8 | |
| ' ' | |
| ] ]_{ | |
| _{ +\ | |
| 13 1 | |
| (\ !\ | |
| ^{* }})\] | |
| }}}{\ | | |
| )\, =\ | |
| | )+ | |
| _{- }}( | |
| Ġ multi | |
| sta nce | |
| ĠC l | |
| \| )\] | |
| ^{* })}{ | |
| )}\ { | |
| N is | |
| X B | |
| }( {}^{ | |
| Ġd X | |
| (| |\ | |
| Ġ{ |\ | |
| Ġc a | |
| & {\ | |
| Ġ4 9 | |
| c ed | |
| Ġ\[= :\ | |
| | }|\ | |
| }] \) | |
| }^{- }-\ | |
| var Psi | |
| pi tch | |
| . }}{{\ | |
| ĠL i | |
| }| &\ | |
| C Y | |
| P ri | |
| r der | |
| Ġj k | |
| E L | |
| })\ |+\ | |
| : \] | |
| |\, .\] | |
| 19 6 | |
| when ever | |
| }})\, .\] | |
| L k | |
| | ),\] | |
| d j | |
| se e | |
| ĠT x | |
| {| }+ | |
| Ġ pri | |
| ^{* }}- | |
| te n | |
| Ġ\[\ { | |
| _{* }}(\ | |
| Ġ\ .\] | |
| }{ =} | |
| s ph | |
| )}}{ | | |
| Tra ce | |
| 20 1 | |
| $ }( | |
| }^{- })^{ | |
| o tal | |
| | }}{ | |
| Cor r | |
| I A | |
| âĢ Ļ | |
| Ġgen era | |
| ur corner | |
| }\, :=\,\ | |
| }^{\ {\ | |
| }} })= | |
| }\ }-\ | |
| }\| }\] | |
| })] ^{- | |
| p y | |
| I nn | |
| ro u | |
| )}{\ |\ | |
| ^{- }}( | |
| ĠB C | |
| sk ew | |
| Ġ sup | |
| el d | |
| _{* })= | |
| - }^{\ | |
| Ġd p | |
| _{- }-\ | |
| Ġ4 3 | |
| Ġel se | |
| Ġ ^{*} | |
| }^{* }\, | |
| ti cal | |
| | )\, | |
| G G | |
| }) }(- | |
| }| =( | |
| x I | |
| \[{ }^{( | |
| | }-\ | |
| ex c | |
| }}< +\ | |
| o slash | |
| }}:=\ {\ | |
| x h | |
| Ġ det | |
| ]\! ] | |
| \[\{ - | |
| E f | |
| K u | |
| - )\ | |
| Ġn p | |
| }; [ | |
| ]{ }\ | |
| au g | |
| D x | |
| }} }:\ | |
| )_{+ }\] | |
| C ase | |
| =\ \ | |
| 22 0 | |
| Ġw hich | |
| }< -\ | |
| ): [ | |
| T D | |
| a ss | |
| )\, :\,\ | |
| pitch fork | |
| d C | |
| })_{ [ | |
| \, )\] | |
| {\| }(\ | |
| }& :=\ | |
| Ġ si | |
| ho rt | |
| )\| <\ | |
| er ence | |
| \! :\! | |
| Ġ )| | |
| J S | |
| \, ;\, | |
| Un if | |
| ) })} | |
| }| },\ | |
| ] +( | |
| }}) :\ | |
| }), {\ | |
| { }^{*}\ | |
| / [ | |
| }& | | |
| ĠC L | |
| )) ),\] | |
| Ġre al | |
| da ngle | |
| }$ }\] | |
| {) }}.\] | |
| {(}\ {\ | |
| measure dangle | |
| R K | |
| Ġ{* }( | |
| }) }[\ | |
| ĠR ic | |
| }^{ {}^{( | |
| ))\ |^{ | |
| }: &\ | |
| ] }[ | |
| Ġs quare | |
| _{* }.\] | |
| i L | |
| {\{ }\, | |
| )}_{ [ | |
| Ġ )_{\ | |
| 0 24 | |
| C d | |
| J K | |
| }\ }]\] | |
| }^{* })+ | |
| Ġc losed | |
| M p | |
| ) }}) | |
| = +\ | |
| _{* }\|_{ | |
| a cl | |
| Ġm o | |
| }}\; ,\] | |
| N q | |
| c ell | |
| ( {}_{ | |
| }} ...\ | |
| ^{* }_{( | |
| u q | |
| ori thm | |
| )] }{ | |
| G U | |
| Ġ4 7 | |
| }} })=\ | |
| 3 15 | |
| G T | |
| Ġ\[ [\ | |
| Ġsu rely | |
| u es | |
| {| |\ | |
| :=\ ;\ | |
| ( {}^{\ | |
| r T | |
| }] },\ | |
| }* (\ | |
| | (| | |
| }}^{+ } | |
| {] }(\ | |
| )] )\] | |
| Ġin v | |
| ! | | |
| 1 99 | |
| | }\,\ | |
| \{ +\ | |
| iv ale | |
| }:= {\ | |
| {) }& | |
| \ }=\{\ | |
| }} }(- | |
| { > | |
| }) )&\ | |
| \[\| | | |
| {{* }}{{\ | |
| - , | |
| a nt | |
| ... + | |
| en tial | |
| ^{- }) | |
| Re l | |
| K l | |
| (( ( | |
| d J | |
| {\ #\ | |
| hi ft | |
| al t | |
| U C | |
| ^{ +\ | |
| q f | |
| in al | |
| Ġf d | |
| Ġpa ir | |
| ĠY es | |
| tharpo ons | |
| ^{- })^{ | |
| 6 25 | |
| {) }+( | |
| 3 56 | |
| Ġ_{ * | |
| m g | |
| \ }]\] | |
| ] )_{ | |
| Ġcon vex | |
| Ġt rue | |
| Ġ }))\ | |
| }^{* }| | |
| ,* } | |
| _{+ }}\] | |
| Ġ* } | |
| / \, | |
| K U | |
| +| | | |
| j N | |
| sq subset | |
| Ġif f | |
| }}[ (\ | |
| O R | |
| la y | |
| }\ }\,.\] | |
| ;\;\ ;\ | |
| ]\ ; | |
| }]+ [\ | |
| y w | |
| A Y | |
| Ġ:= -\ | |
| 17 28 | |
| L N | |
| q d | |
| \{ + | |
| R HS | |
| }\ }) | |
| h s | |
| Ġ7 2 | |
| H A | |
| })& -\ | |
| Ġ9 8 | |
| # \{\ | |
| {{ }^{ | |
| w f | |
| }}) ]\ | |
| )} _ | |
| Ġf ree | |
| Ġ5 00 | |
| ĠS h | |
| _{* })=\ | |
| v f | |
| ma t | |
| {= }\ | |
| Ġ ^{* | |
| {( | | |
| xx xx | |
| et we | |
| ) })\|_{ | |
| })\, =\, | |
| etwe en | |
| Th e | |
| }},\ ;\ | |
| Ġ4 6 | |
| )}, ..., | |
| v y | |
| })\ }_{\ | |
| )| }{|\ | |
| B a | |
| }}\,\ |\ | |
| ,* }_{ | |
| \, =\ | |
| Ġdi am | |
| }\|=\ |\ | |
| dt dx | |
| H z | |
| 96 0 | |
| O rd | |
| Ġz ero | |
| Q T | |
| ĠA u | |
| right lef | |
| rightlef tharpoons | |
| }}_{ {\ | |
| 00 7 | |
| {= } | |
| }| }+\ | |
| Ġp q | |
| $ };\\ | |
| })| ,\] | |
| }+\ { | |
| }:= | | |
| ~ { | |
| Cu rl | |
| ce nt | |
| }^{* }\|\ | |
| D is | |
| b h | |
| )}\ ;\ | |
| Ġre sp | |
| 27 6 | |
| }_{ [- | |
| G A | |
| ma tion | |
| ĠN S | |
| H omeo | |
| g k | |
| Ġ cu | |
| Ġ left | |
| }} }).\] | |
| }& =( | |
| for e | |
| th en | |
| \}\ }.\] | |
| })< +\ | |
| q e | |
| Ġ\ ,\] | |
| K G | |
| ] ), | |
| Ġ}\ |^{ | |
| Ġ }}, | |
| Ġ( | | |
| _{+ }\\ | |
| Ġ })^{- | |
| | }} | |
| }}) },\] | |
| }^{* }/ | |
| Ġt ran | |
| ct s | |
| }<... < | |
| V I | |
| ti ble | |
| C ay | |
| Ġfix ed | |
| \ }})\] | |
| Ġ root | |
| H N | |
| )|\ \ | |
| Ġ\ ,\,\ | |
| ))\ |\ | |
| 15 4 | |
| { {}_{ | |
| :=\ , | |
| ]}{ [ | |
| })| }{\ | |
| ) })}\] | |
| ad m | |
| ,- )\] | |
| }\ }\) | |
| L HS | |
| ...& ...& | |
| ! }\,\ | |
| }}) |_{ | |
| }\|\ , | |
| H t | |
| )\, :=\,\ | |
| G E | |
| {\ }}+ | |
| {| }>\ | |
| }}) +( | |
| }|\ { | |
| ^{* *}\ | |
| ma rk | |
| ci al | |
| L O | |
| am p | |
| Ġc d | |
| _{+ ,\ | |
| Ġvec tor | |
| )}\ ,\] | |
| }}) }(\ | |
| h n | |
| 20 8 | |
| bre ak | |
| ĠD f | |
| )\| =\ | |
| a A | |
| n omial | |
| }\ }- | |
| ĠC k | |
| )] =[ | |
| Ġ )}(\ | |
| , > | |
| Ġwhen ever | |
| Ġval ue | |
| }}^{* },\ | |
| om orphism | |
| a in | |
| ^{* }\,\ | |
| B z | |
| Ġ} ; | |
| }} ],\ | |
| ):= | | |
| })}{\ | | |
| {] }.\ | |
| )] , | |
| T B | |
| }_{+ }}( | |
| Ġg raph | |
| . (\ | |
| ra int | |
| {\ }}\, | |
| })( -\ | |
| po st | |
| ) }}\,\ | |
| }) ],\ | |
| n M | |
| f w | |
| Ġs mall | |
| Ġ }},\] | |
| Ġe n | |
| n ormal | |
| ^{+ }}^{\ | |
| ]\ .\] | |
| ^{+ }}{ | |
| Ġ }}- | |
| })=\ |\ | |
| re ct | |
| Ġ proj | |
| R c | |
| \| - | |
| $ }}}\ | |
| Qu ot | |
| _{[ -\ | |
| ) [( | |
| B v | |
| }\, ;\, | |
| + _{ | |
| A g | |
| con n | |
| 0 34 | |
| T d | |
| N B | |
| Ġk er | |
| }}| =\ | |
| ot op | |
| eff icient | |
| ^{* }}.\] | |
| Ġd g | |
| }> -\ | |
| k v | |
| D W | |
| 22 3 | |
| }^{\# }\ | |
| k Q | |
| q y | |
| }^{* })}\ | |
| Ġ&&& &\ | |
| Ġf i | |
| c lo | |
| qu e | |
| ĠM od | |
| 15 7 | |
| p z | |
| _{ !}( | |
| }=\ {[ | |
| ^{* - | |
| Ġ\( |\ | |
| Ġ end | |
| Ġ+\ |\ | |
| 88 6 | |
| Ġ& =- | |
| H u | |
| Ġ\[ >\ | |
| H g | |
| t l | |
| {)}\ .\] | |
| ]\! ]_{ | |
| F R | |
| }}, [ | |
| }+\| ( | |
| _{* }[ | |
| o in | |
| }^{- }) | |
| { ,}\\ | |
| \,\ ,\, | |
| h c | |
| = &\ | |
| }] }= | |
| }}: ( | |
| var ia | |
| W h | |
| ^{* }}+ | |
| ] })=\ | |
| }} ],\] | |
| }^{* }\) | |
| R N | |
| Ġ* }( | |
| T U | |
| ĠC K | |
| (- (\ | |
| Ġn x | |
| }[\ ![\ | |
| vi al | |
| }] }^{ | |
| }_{+ };\ | |
| Ġ* & | |
| Ġpa rameter | |
| }\; :\; | |
| }\ }}{\ | |
| }) }}( | |
| 01 8 | |
| D K | |
| Z F | |
| q b | |
| })&= &\ | |
| Ġ:=\ {\ | |
| Ġ7 0 | |
| 56 7 | |
| te ra | |
| Ġver tex | |
| 24 8 | |
| Ġequ ivale | |
| }+ (-\ | |
| Ġ} ;\ | |
| N k | |
| }) ^{*}= | |
| }\, -\, | |
| E v | |
| t I | |
| )) }+ | |
| )\| .\] | |
| Ġ )}.\] | |
| ĠC ase | |
| \! ( | |
| a I | |
| to l | |
| 7 29 | |
| g lob | |
| 14 9 | |
| }) [- | |
| E V | |
| Ġe ss | |
| G en | |
| 23 2 | |
| dy d | |
| y v | |
| Ġ ;\] | |
| ):=\ {( | |
| ): | | |
| - }\] | |
| M t | |
| it t | |
| )& :=\ | |
| Q M | |
| la tive | |
| 56 0 | |
| 5 000 | |
| la nd | |
| {\{ }\|\ | |
| de p | |
| }\, [\ | |
| Ġ( [ | |
| })}{\ |\ | |
| \[\{\ , | |
| 18 4 | |
| ( + | |
| p oint | |
| lin g | |
| ) }}}{{\ | |
| q m | |
| fo ld | |
| n C | |
| \|_{ [ | |
| :=\ !\ | |
| < \, | |
| B matrix | |
| 15 3 | |
| Ġma xi | |
| }\, +\ | |
| }}}{\ |\ | |
| i I | |
| {\ }}\,\ | |
| \}\ { | |
| . &\ | |
| C X | |
| }\ {|\ | |
| })+ (- | |
| )^{\ # | |
| )! }{\ | |
| Ġda ta | |
| }{ { | |
| }:\ ;\ | |
| })\ |=\ | |
| \ }& | |
| c frac | |
| or y | |
| H am | |
| I H | |
| R U | |
| _{ {( | |
| 15 5 | |
| }| |\] | |
| ] ;\] | |
| a N | |
| }}) }=\ | |
| }_{\ ! | |
| )\! .\] | |
| Ġle ast | |
| }}^{* })\ | |
| }\, { | |
| _{+ }.\] | |
| Ġ }] | |
| Ġ5 4 | |
| eqq colon | |
| tion al | |
| 33 6 | |
| =\ {(\ | |
| or der | |
| 13 9 | |
| 22 8 | |
| )) }(\ | |
| ,+ }^{ | |
| }) ! | |
| }\| )\] | |
| ] _{( | |
| ] )}\] | |
| R o | |
| \}\ !\ | |
| _{ . | |
| 15 9 | |
| ) }}| | |
| ^{* }}+\ | |
| }:=\ |\ | |
| ve s | |
| T Q | |
| Ġ& (\ | |
| }_{* })\ | |
| L A | |
| Ġ tri | |
| }}) ,( | |
| Ġinf inite | |
| ĠV ol | |
| ], &\ | |
| )* ( | |
| Ġ }]\ | |
| ĠS et | |
| Ġinteg er | |
| Ġ subset | |
| }) )).\] | |
| }\| )\ | |
| ĠP r | |
| }_{* }}\ | |
| Ġ li | |
| i X | |
| Ġg rad | |
| li z | |
| \, { | |
| ] )+ | |
| \[[\ ![\ | |
| }:=\ {(\ | |
| k R | |
| }) })= | |
| 01 7 | |
| {) }/ | |
| ĠE rror | |
| uni formly | |
| {- - | |
| k M | |
| Ġs ol | |
| Ġmeasu rable | |
| Ġdis tribu | |
| d D | |
| |\, | | |
| }}& ( | |
| V u | |
| H dg | |
| }\ }}{ | |
| L t | |
| {) }:=\ | |
| L v | |
| }}^{+ }(\ | |
| ] ^ | |
| \ }),\] | |
| 10 11 | |
| S i | |
| })\, :\, | |
| {)}\ |_{ | |
| ĠN C | |
| 14 98 | |
| ^{* ( | |
| ] )+\ | |
| )) },\ | |
| Ġf ac | |
| sta ble | |
| }) }}{{\ | |
| Ġn ew | |
| m D | |
| J J | |
| },\ ,- | |
| un c | |
| Ġ1 13 | |
| | ),\ | |
| 01 9 | |
| . }}}{{\ | |
| }}\, =\,\ | |
| | }{( | |
| 25 5 | |
| }* | | |
| S Q | |
| }\ }( | |
| N s | |
| ^{+ }}^{ | |
| Ġ9 3 | |
| )- (- | |
| {)}\ ; | |
| ĠV al | |
| op p | |
| Ġ rad | |
| ^{* }] | |
| +\ ;\ | |
| Ġ{ }^{\ | |
| }&\ |\ | |
| Ġ9 7 | |
| ) }^{(\ | |
| K H | |
| p g | |
| Sp c | |
| o i | |
| Ġ ph | |
| Ġ& &- | |
| M E | |
| \, ^{ | |
| \,\ { | |
| }_{ = | |
| r N | |
| <\ ! | |
| 16 6 | |
| Ġ\ #\ | |
| 0 21 | |
| )) ^ | |
| Ġx x | |
| }) ^{*}=\ | |
| )] \, | |
| ) }}\\ | |
| t K | |
| ] }}\] | |
| 16 4 | |
| h b | |
| Ġb i | |
| re du | |
| n I | |
| con stant | |
| & (- | |
| | _ | |
| })\ }^{ | |
| co de | |
| ,+ }(\ | |
| - }(\ | |
| Z ar | |
| ] |^{ | |
| me an | |
| })=\ \ | |
| Ġ+\ | | |
| T Y | |
| || ( | |
| Ġ\[=\ { | |
| K f | |
| De c | |
| _{+ })^{ | |
| Ġ right | |
| }&* \\ | |
| R ot | |
| ho colim | |
| }}= |\ | |
| ^{+ })= | |
| N I | |
| T erm | |
| | )=\ | |
| }) ))= | |
| }^{* }> | |
| Ġvar iable | |
| less dot | |
| }^{* }),\] | |
| )_{ |\ | |
| \[[ {\ | |
| }( :, | |
| ... &\ | |
| ) }|| | |
| 36 8 | |
| $, }\] | |
| _{+ }}{\ | |
| Ġg iven | |
| big odot | |
| 00 9 | |
| {\{ }\,\ | |
| 23 3 | |
| },\ ,( | |
| )} ;\] | |
| 19 8 | |
| })) ]\] | |
| T G | |
| Ġ}\ {\ | |
| \}\ }\ | |
| }} }:=\ | |
| ĠH S | |
| Ġm odel | |
| Re LU | |
| })= : | |
| \|_{ - | |
| Ġ5 5 | |
| }) ): | |
| ĠMe thod | |
| ĠR F | |
| ra nd | |
| !\ ,\ | |
| | }}{\ | |
| val ue | |
| }]\! ]\ | |
| n or | |
| ^{! }_{ | |
| 0 26 | |
| })+ {\ | |
| A J | |
| }\, -\,\ | |
| }&\ | | |
| })\, {\ | |
| Ġ }), | |
| m ot | |
| 16 3 | |
| M n | |
| }| /\ | |
| 4 20 | |
| N h | |
| Ġme an | |
| \ }}_{ | |
| P X | |
| an ti | |
| T ype | |
| c L | |
| _{ <\ | |
| )- |\ | |
| ta il | |
| })) /\ | |
| Ġ0 1 | |
| ge s | |
| K r | |
| Ġ2 56 | |
| _{* * | |
| ) }|_{\ | |
| bul k | |
| Ġin dependent | |
| D r | |
| M o | |
| _{ |_{ | |
| {|}\ !\ | |
| C U | |
| }/ |\ | |
| F rac | |
| ĠL ie | |
| ))\ ; | |
| {\{ }|\ | |
| Y M | |
| H x | |
| }}\, |\ | |
| }] \,.\] | |
| 15 8 | |
| \|_{ (\ | |
| }+... +\ | |
| S oc | |
| {)}\ ,\] | |
| )\ })\] | |
| Ġ app | |
| )= (-\ | |
| {)}\, ,\ | |
| =( -\ | |
| | )^{-\ | |
| ga tive | |
| i D | |
| ] }{( | |
| i id | |
| &\ , | |
| })_{\ #}\ | |
| G O | |
| }^{* }[\ | |
| })=\ | | |
| }] & | |
| )] (\ | |
| }}^{* })\] | |
| Ġtw o | |
| \ },\, | |
| \ }})\ | |
| }, (- | |
| Ġimp lies | |
| }$ }.\ | |
| ĠK L | |
| }}) ,\\ | |
| _{\ !\! | |
| 35 8 | |
| M u | |
| )( [ | |
| m T | |
| Ġd A | |
| Ġd S | |
| i on | |
| Ġs v | |
| ^{+ + | |
| 17 8 | |
| P O | |
| }^{* }|^{ | |
| , {}^{ | |
| )}_{ (\ | |
| ^{* }]\ | |
| q j | |
| E I | |
| N et | |
| }}= : | |
| Ġh y | |
| \[\# ( | |
| Ġ}\ |_{\ | |
| J v | |
| Ġ })}{ | |
| 25 7 | |
| }=( (\ | |
| ĠD iff | |
| )> ( | |
| \[* \] | |
| | +( | |
| }), [ | |
| Ob j | |
| }\|_{ - | |
| + (-\ | |
| )},\ ,\ | |
| N orm | |
| S w | |
| })- {\ | |
| })_{+ }^{ | |
| Ġ )/ | |
| Ra nge | |
| ] \,,\ | |
| na t | |
| })) },\] | |
| ^{* }}) | |
| }\, ;\ | |
| }=( {\ | |
| }) )=(\ | |
| B X | |
| }\ }}(\ | |
| tri ct | |
| 25 2 | |
| }^{+ }}{ | |
| }; -\ | |
| d ig | |
| }] }| | |
| }\ }).\] | |
| }\|_{ * | |
| / {\ | |
| Ġ\ & | |
| N H | |
| li c | |
| ; \{ | |
| <\ ,\ | |
| C p | |
| Ġse qu | |
| }} }: | |
| })_{+ }\] | |
| N o | |
| L K | |
| | })\] | |
| }^{* ,\ | |
| ca use | |
| }] :\ | |
| }\|\ ,\ | |
| Ġ\(\ | | |
| J u | |
| ] }}( | |
| }} }}(\ | |
| _{- }}\] | |
| t P | |
| }< _{ | |
| | :=\ | |
| 0 14 | |
| ) }&=\ | |
| Ġ rel | |
| Ġ ^{*}( | |
| })] \\ | |
| 50 4 | |
| }} ]}\ | |
| ] ,\,\ | |
| _{* }}{\ | |
| ^{* }[\ | |
| }}^{ {}^{\ | |
| }{\ ( | |
| Ġd d | |
| }) })=\ | |
| su re | |
| x c | |
| }] .\ | |
| si c | |
| Ġm s | |
| Ġ }}| | |
| }| }(\ | |
| W W | |
| }}\ ,\, | |
| Ġe igen | |
| Ġdef ined | |
| | )= | |
| ^{* }}-\ | |
| }) }: | |
| }_{ { | |
| a T | |
| }_{- }^{\ | |
| t T | |
| $, }\ | |
| u h | |
| Ġcondi tion | |
| ] )=[ | |
| | =( | |
| Ġ |}\ | |
| ij l | |
| \ };\ | |
| Ġ\( | | |
| Ġmin i | |
| ble m | |
| $ }}}{\ | |
| \ }|= | |
| )> -\ | |
| pa th | |
| ( +\ | |
| q v | |
| \| } | |
| _{+ + | |
| S z | |
| Ġ sum | |
| )+\ |\ | |
| \| |\ | |
| n A | |
| _{( ( | |
| Ġ\[+ (- | |
| )=- (\ | |
| 6 40 | |
| t V | |
| Ġ }}= | |
| )] }{\ | |
| Di st | |
| ĠPa rameter | |
| / \,\ | |
| })\ { | |
| ] }}{ | |
| Ġs tr | |
| F x | |
| (\ ! | |
| or el | |
| ^{+ },\] | |
| G N | |
| m dim | |
| )) ,( | |
| )}= [ | |
| Ġad j | |
| ] ))\ | |
| }} }< | |
| Q A | |
| G raph | |
| )! ! | |
| Ġ\[ :=\ | |
| Ġ( (\ | |
| cl ub | |
| G ap | |
| ge o | |
| }}+ \] | |
| e h | |
| i Y | |
| | )}{ | |
| ):= [ | |
| )- [ | |
| . }}}{{=}}\ | |
| _{- })^{ | |
| ^{+ })=\ | |
| black triangle | |
| Ġ ))^{ | |
| }^{+ }:=\ | |
| )] } | |
| }}\, |\, | |
| )}( [ | |
| varia nt | |
| E T | |
| Ġs mooth | |
| Ran k | |
| \ }^{- | |
| q T | |
| \; =\;\ | |
| o dic | |
| )) ,&\ | |
| }(- ( | |
| to n | |
| }:= |\ | |
| U p | |
| ri c | |
| ĠO rder | |
| \, ,&\ | |
| ĠH F | |
| \|\ \ | |
| Ġin d | |
| 34 6 | |
| ] })= | |
| ge om | |
| 0 35 | |
| n ing | |
| }) )\,.\] | |
| Ġ1 20 | |
| {] }\,,\] | |
| | )+\ | |
| k A | |
| 0 45 | |
| \[ > | |
| Map s | |
| \,\ |_{ | |
| ^{+ }\\ | |
| }^{+ })=\ | |
| 12 12 | |
| _{* ,\ | |
| Ġ ]{ | |
| ^{+ }}(\ | |
| ; | | |
| B O | |
| ei ther | |
| ! },\ | |
| ), | | |
| ^{- }}^{ | |
| Ġ }}{( | |
| )| &\ | |
| \},&\ { | |
| }|\ ! | |
| Ġ9 2 | |
| L n | |
| S K | |
| _{* }|\ | |
| {) }=- | |
| Ġ\[+\ |\ | |
| l ct | |
| si an | |
| }. ( | |
| \[( [\ | |
| )( |\ | |
| w y | |
| \[\| [\ | |
| cy l | |
| Ġ ga | |
| &- &- | |
| }& &&&\\ | |
| Ġ\[=\ ,\ | |
| }}^{ (- | |
| ,& | | |
| pe ri | |
| H a | |
| Ġr k | |
| }} }+\| | |
| =- (\ | |
| ] }\,\ | |
| ))\ ) | |
| ,+ } | |
| Ġa x | |
| }} })^{\ | |
| 17 0 | |
| 30 4 | |
| ) }]= | |
| }}^{- }\] | |
| }] > | |
| }}_{ = | |
| | }, | |
| }] ),\] | |
| black triangleright | |
| H R | |
| }}(\ {\ | |
| )| )\] | |
| }), - | |
| }* }\ | |
| .... .... | |
| }) ),\\ | |
| S cal | |
| Ġcon ver | |
| Ġ\| (\ | |
| F X | |
| )+\ \ | |
| }}^{* }, | |
| 17 7 | |
| m y | |
| K B | |
| ba se | |
| F V | |
| }& + | |
| ): (\ | |
| eigh bo | |
| ^{* };\ | |
| , ...\] | |
| _{* }|^{ | |
| 1498 15 | |
| \ }; | |
| re al | |
| Ġ6 5 | |
| }= [( | |
| \[( * | |
| }}) .\ | |
| Ġ\( (- | |
| m z | |
| Ġc e | |
| Ġb etween | |
| 32 8 | |
| ĠS t | |
| }\; (\ | |
| {\ }}^{\ | |
| Ġ8 1 | |
| ] )} | |
| }})= -\ | |
| R X | |
| i P | |
| }_{+ })}\ | |
| 9998 63 | |
| H B | |
| }^{ <\ | |
| fi ll | |
| ]\ ,\] | |
| f b | |
| f inite | |
| }^{+ })= | |
| sta t | |
| 27 0 | |
| p N | |
| }})=\ { | |
| }} })_{ | |
| },\ ;\;\ | |
| 18 7 | |
| Ad d | |
| club suit | |
| {\ }}.\ | |
| })|\ ,\ | |
| 19 5 | |
| S at | |
| }} }> | |
| i S | |
| p A | |
| Ġ }^{*}\ | |
| }\, {}_{ | |
| c M | |
| }] ] | |
| con j | |
| G rad | |
| hi t | |
| h C | |
| ĠMe an | |
| Ġc lass | |
| {) },&\ | |
| })^{- ( | |
| ! \{ | |
| ĠM at | |
| 17 4 | |
| | )} | |
| 26 4 | |
| F ind | |
| }|\ | | |
| 21 5 | |
| 18 8 | |
| }! }\] | |
| V aR | |
| ] :=\{ | |
| ra di | |
| Ġn orm | |
| cr e | |
| | |\] | |
| Ġ )},\ | |
| in s | |
| lin k | |
| Ġ7 5 | |
| ] })^{ | |
| le v | |
| ĠG al | |
| a si | |
| \[( |\ | |
| x R | |
| co d | |
| I B | |
| k H | |
| }| }= | |
| ^{* })}{\ | |
| h j | |
| i K | |
| ]= (\ | |
| \, -\,\ | |
| A c | |
| X u | |
| }] )_{ | |
| )( (\ | |
| ,+ }_{ | |
| Lo S | |
| Ġd q | |
| Pr op | |
| }] ;\ | |
| )- \] | |
| ve d | |
| i Q | |
| }\ )- | |
| Ġ row | |
| Mul t | |
| )^{* }(\ | |
| Ġ line | |
| $ })\ | |
| T an | |
| \| +\|\ | |
| )) := | |
| C y | |
| }; (\ | |
| )}+ (\ | |
| Ġma p | |
| Ġ |^{\ | |
| }}\ #\ | |
| Ġ })}{\ | |
| ĠL o | |
| ar m | |
| )}( | | |
| tive ly | |
| P h | |
| }( ^{ | |
| ti v | |
| Ġf in | |
| }^{+ }}(\ | |
| 23 7 | |
| y f | |
| so ft | |
| Ġp la | |
| \[\|\ ,\ | |
| )& := | |
| Q Q | |
| }_{ /\ | |
| ĠS ta | |
| 18 5 | |
| }})^{ -\ | |
| ), ...,\ | |
| })| ( | |
| Ġ5 3 | |
| Ġ5 8 | |
| ^{( -\ | |
| dt d | |
| }}| .\] | |
| |}{\ ( | |
| }}+ [ | |
| L a | |
| 19 4 | |
| diag up | |
| \ })}\ | |
| un if | |
| }}^{- } | |
| }_{* ,\ | |
| 19 7 | |
| cur v | |
| Ġ ]_{ | |
| ^{+ }| | |
| ),\ |\ | |
| D own | |
| v c | |
| M H | |
| t E | |
| Ġn s | |
| k w | |
| O pt | |
| \ }}}\ | |
| K Z | |
| | )|\ | |
| ga ther | |
| Ġp eri | |
| Ġ+ |\ | |
| {(}\ !\ | |
| B w | |
| ĠN A | |
| 0 48 | |
| 17 9 | |
| er v | |
| ci ble | |
| }}) ^ | |
| 16 1 | |
| Ġdo es | |
| }} }}.\] | |
| Ġh e | |
| )] )\ | |
| f tarrow | |
| \[= \] | |
| \[|\ !|\! | |
| g z | |
| Ġ5 2 | |
| )\! ,\] | |
| w d | |
| ) }^{*}\ | |
| Ġc las | |
| sti ma | |
| }\, (- | |
| ^{\ {\ | |
| })\ }=\ | |
| \{ [\ | |
| et c | |
| gather ed | |
| M G | |
| }}\ } | |
| ))\ | | |
| A h | |
| Q H | |
| L V | |
| > | | |
| A Z | |
| }) }:\ | |
| ĠI nt | |
| Ġb lock | |
| )& =-\ | |
| Ġco r | |
| ))^{ ( | |
| I L | |
| Ġ }+( | |
| }|\ }\ | |
| Ġb ut | |
| }( {}_{ | |
| }}{ =} | |
| )}( -\ | |
| $ }}{\ | |
| Ġ5 7 | |
| R ed | |
| }) ;\\ | |
| ti o | |
| )| }.\] | |
| N il | |
| ] \|_{\ | |
| \, + | |
| {[ }\, | |
| }^{- }.\] | |
| Ġin ver | |
| 21 4 | |
| {\{}\ { | |
| }\ }}.\] | |
| \({ }^{- | |
| ne ar | |
| den ti | |
| 3 22 | |
| )}, ( | |
| x P | |
| 8 998 | |
| }|> | | |
| }> _{ | |
| Ġequivale nt | |
| 20 4 | |
| ,* }\] | |
| Ġcontain s | |
| + - | |
| 0 22 | |
| }^{* - | |
| {\| }| | |
| iz ation | |
| Ġsa me | |
| C ut | |
| \| :=\ | |
| Ġi i | |
| < _{\ | |
| }^{* }=(\ | |
| K E | |
| || | | |
| }^{* }}^{\ | |
| Ġ$ (\ | |
| s N | |
| ĠT ype | |
| 29 6 | |
| }}) ),\] | |
| 19 0 | |
| }( ., | |
| U X | |
| }^{*}\ }_{ | |
| Tr op | |
| }})^{ ( | |
| ĠAlg orithm | |
| }_{- }}\ | |
| t R | |
| Ġ& +( | |
| }= + | |
| }^{* }/\ | |
| D y | |
| dig amma | |
| i R | |
| )) ,& | |
| }), ...,\ | |
| nu mber | |
| Ġbound ary | |
| O L | |
| 27 5 | |
| +\ { | |
| })| >\ | |
| 25 8 | |
| E B | |
| q i | |
| Ġ subject | |
| pre sen | |
| A K | |
| i E | |
| ba b | |
| Ġ\[= [\ | |
| T ri | |
| }= {}^{ | |
| s hort | |
| }^{* }\| | |
| {| }-\ | |
| ĠH H | |
| 21 8 | |
| u i | |
| }] {\ | |
| 21 7 | |
| ob j | |
| B ar | |
| b cd | |
| })= -( | |
| Ġ6 7 | |
| XY Z | |
| 0 40 | |
| i M | |
| Com m | |
| }}) |\] | |
| 24 7 | |
| )| ,| | |
| ĠC a | |
| _{- }\\ | |
| ^{+ })^{\ | |
| {\{ }{\ | |
| k in | |
| }^{- }}{ | |
| Ġn eighbo | |
| ] )- | |
| c R | |
| 00 11 | |
| D eg | |
| }} ]+ | |
| Ġp ower | |
| i F | |
| ĠC s | |
| })| |^{ | |
| }_{* })\] | |
| sy n | |
| L h | |
| _{- }}{\ | |
| \[\# (\ | |
| Ġ5 1 | |
| V C | |
| 0 28 | |
| x d | |
| Ġ= &-\ | |
| Ġ5 9 | |
| })\ }= | |
| V er | |
| Ġ8 4 | |
| )]\ ,\ | |
| v d | |
| Ġpar ti | |
| s mooth | |
| Ġmeasu re | |
| Ġ6 6 | |
| 0 30 | |
| t ing | |
| }\,\ |_{ | |
| 23 8 | |
| thick sim | |
| J L | |
| ĠM ax | |
| x r | |
| }{*}{\ (\ | |
| S X | |
| }} ], | |
| dr d | |
| g w | |
| 3 11 | |
| q w | |
| {\ }}\,,\] | |
| 20 5 | |
| Ġk x | |
| Ġ }))\] | |
| ^{* }&\ | |
| ĠD a | |
| })+ |\ | |
| < (\ | |
| }] }_{ | |
| )] }\] | |
| Ġ\(\ |\ | |
| )}=\ {\ | |
| 20 7 | |
| Ġ7 8 | |
| Ġ )}_{ | |
| \[| [ | |
| )! ^{ | |
| ] }&\ | |
| }^{( -\ | |
| Ġ6 9 | |
| 18 6 | |
| }( + | |
| }_{ (-\ | |
| G l | |
| ĠI V | |
| ] ]= | |
| }} }\,,\] | |
| ,\, |\ | |
| }}^{* }= | |
| ) }]^{ | |
| le d | |
| 36 5 | |
| 0 50 | |
| \ }}- | |
| }}}{{= }}( | |
| z v | |
| }^{+ })^{\ | |
| _{* }\|^{ | |
| orphi c | |
| 8998 49 | |
| F ree | |
| Ġs m | |
| \}\ ,\] | |
| rcl rcl | |
| k ij | |
| })^{ | | |
| e k | |
| n B | |
| }) ))=\ | |
| ): \,\ | |
| }\ }}| | |
| Ġg roup | |
| }$ .}\ | |
| D I | |
| Q S | |
| )( {\ | |
| 14 1 | |
| n et | |
| s Set | |
| E d | |
| Ad j | |
| Ġin i | |
| \, ] | |
| )}= (- | |
| ]^{ <\ | |
| }^{- , | |
| )| : | |
| e b | |
| }) )+( | |
| \[\{ |\ | |
| Ġ9 1 | |
| }\| -\ | |
| k f | |
| && &&\ | |
| }},\ { | |
| S g | |
| T g | |
| b D | |
| }^{* }}=\ | |
| ,+ }\] | |
| at ch | |
| em b | |
| }}&\ \ | |
| }\|_{ {\ | |
| ) })=( | |
| \ }}-\ | |
| Ġ prod | |
| _{- }}^{ | |
| ĠC PU | |
| In j | |
| ĠK K | |
| }([ -\ | |
| =\ !\!\ | |
| Ġ [- | |
| D Q | |
| _{ = | |
| 60 8 | |
| }}: (\ | |
| S ta | |
| }^{+ })}\ | |
| Ġr s | |
| xy x | |
| \ },& | |
| }}) }= | |
| }}[ | | |
| 0000 00 | |
| ! }= | |
| le vel | |
| &\ { | |
| ĠI rr | |
| (\ !\!\ | |
| Ġ )}+\ | |
| )]\ ! | |
| )) }+\| | |
| ],\ ; | |
| })) .\ | |
| Ġ8 9 | |
| }) }=( | |
| ti mal | |
| ĠT h | |
| }}\, , | |
| })\, , | |
| 45 0 | |
| }_{ <\ | |
| 1 100 | |
| ^{* ,\ | |
| {) }/\ | |
| ) }}}{ | |
| 4 48 | |
| }} }\}\] | |
| L H | |
| }{ } | |
| _{* }/ | |
| $ })\] | |
| G x | |
| \| }{\| | |
| }\ }.\ | |
| +\ ; | |
| }\ }> | |
| }) )|^{ | |
| te mp | |
| + { | |
| {[ ( | |
| \[|\ ,\ | |
| )$ }.\] | |
| R I | |
| s T | |
| ^{ = | |
| spec tively | |
| ^{* }> | |
| tra ns | |
| }{ }^{*} | |
| ^{* }{\ | |
| }{( | | |
| Ġ\ }_{ | |
| Ġma ny | |
| }})\ ) | |
| }}+ {\ | |
| 34 7 | |
| J x | |
| Ġ ll | |
| ĠD F | |
| g c | |
| }| )^{- | |
| }^{ !}\ | |
| ĠB o | |
| Ġe xist | |
| v z | |
| }| )}\ | |
| I u | |
| E ff | |
| F i | |
| W L | |
| G B | |
| }] | | |
| C i | |
| \| )^{ | |
| T z | |
| ev al | |
| A I | |
| }}) }+\ | |
| & |\ | |
| ) }]=\ | |
| Ġ\ !\!\ | |
| ] ^{-\ | |
| }} ]+\ | |
| )^{ +} | |
| )} }_{\ | |
| }^{+ }; | |
| 23 9 | |
| t S | |
| 0 38 | |
| h w | |
| )= {}_{ | |
| ^{+ , | |
| }}+ (- | |
| 8 64 | |
| ^{- }}\] | |
| . }( | |
| Ġ low | |
| ^{* }]\] | |
| {: } | |
| i cal | |
| W D | |
| }) })_{ | |
| H erm | |
| \[= (- | |
| hom otop | |
| )< - | |
| Ġ\ ,\, | |
| co ev | |
| 34 4 | |
| C m | |
| Ġ} <\ | |
| Ġco st | |
| u dx | |
| v ac | |
| pa ir | |
| }}{( | | |
| 15 1 | |
| Ġ\, {\ | |
| Ġ8 8 | |
| , _{ | |
| Ġt x | |
| Ġin dex | |
| }& [ | |
| v h | |
| ce ss | |
| }^{\# }( | |
| }})\, ,\] | |
| Ġ8 5 | |
| ian ce | |
| L d | |
| 40 8 | |
| K v | |
| l u | |
| s ig | |
| ): \] | |
| 26 8 | |
| Ġdiv i | |
| tar get | |
| }\, )\] | |
| Ġ| ( | |
| h G | |
| Ġa ff | |
| ĠSp in | |
| V N | |
| Ch ar | |
| ] )-\ | |
| ]\ |\ | |
| M v | |
| }}) _{( | |
| Ġver tices | |
| ))}\ \ | |
| Ġâľ Ĺ | |
| ] }:=\ | |
| \! {\ | |
| Ġcon v | |
| 0 29 | |
| }) ]}\ | |
| /\ ! | |
| \|\ !\ | |
| i th | |
| Ġs k | |
| P in | |
| m is | |
| })| ^{- | |
| \! =\!\ | |
| 9 00 | |
| L Mod | |
| Ġk t | |
| t M | |
| x A | |
| nd ard | |
| Co st | |
| Ġ1 42 | |
| {| }> | |
| a L | |
| ĠC S | |
| ^{* }}} | |
| }&= &- | |
| multi map | |
| )! }( | |
| Ġ6 8 | |
| \ }(\ | |
| \; =\; | |
| Ġ ]}\ | |
| Ġ6 3 | |
| },& ( | |
| }) )}( | |
| ĠR ate | |
| }_{- , | |
| ig gs | |
| , } | |
| }:= (- | |
| ) })|\ | |
| H ull | |
| i J | |
| z a | |
| )-\ { | |
| Ġ:= (\ | |
| s B | |
| ! }\, | |
| K C | |
| \ }/ | |
| }) }_{( | |
| k B | |
| $ }, | |
| \! [ | |
| Ġ7 6 | |
| ds d | |
| }(\ !( | |
| }}{ }_{\ | |
| })\, (\ | |
| pq r | |
| a ng | |
| o sp | |
| }| +( | |
| pe rm | |
| }\ {\| | |
| ^{* })} | |
| ĠT ra | |
| _{* }:=\ | |
| )\ {\ | |
| ex act | |
| }))\ }\] | |
| y q | |
| ne ss | |
| \|_{ {\ | |
| ] /(\ | |
| }{ [\ | |
| Ġs ys | |
| }^{* }(- | |
| }\, )\ | |
| }& |\ | |
| )}{ [ | |
| 24 4 | |
| }\, ; | |
| ):=\ | | |
| ĠC P | |
| B f | |
| Ġ& =(\ | |
| )& (\ | |
| b al | |
| le c | |
| !\! \{ | |
| B I | |
| Ġ7 9 | |
| Ġd n | |
| }| )+ | |
| em p | |
| 0 27 | |
| ] )( | |
| ^{- {\ | |
| re m | |
| ]= \] | |
| }) }^ | |
| le af | |
| )}{ =} | |
| _{\ {|\ | |
| Ġo c | |
| Ex c | |
| Ġ )).\] | |
| }}\ },\ | |
| \, +\ | |
| | )}{| | |
| }} ])\] | |
| Ġ )}}\ | |
| o ng | |
| }& && | |
| {{ }^{\ | |
| \!\ !\! | |
| ing s | |
| a xi | |
| }( {}^{\ | |
| )}+ | | |
| R g | |
| Ġw t | |
| 25 9 | |
| 37 6 | |
| j oint | |
| {| }|\ | |
| no ise | |
| ĠCo v | |
| co rr | |
| Ġg ood | |
| 0 16 | |
| G u | |
| \ & | |
| redu cible | |
| }}\, |\,\ | |
| || = | |
| }^{* }]\] | |
| H f | |
| }: - | |
| i ter | |
| }= || | |
| }\, _{\ | |
| Ġ\[ -(\ | |
| })}\ }\] | |
| }}| + | |
| Ġoth er | |
| Ġto tal | |
| R O | |
| 20 48 | |
| Ġk n | |
| ) }|= | |
| }) }},\] | |
| Ġ3 00 | |
| Ġ nd | |
| }}) ^{*} | |
| pre d | |
| &* &\ | |
| t Y | |
| })_{ |\ | |
| })- | | |
| })( | | |
| ^{*}( {\ | |
| Down arrow | |
| big times | |
| }\| }{\| | |
| Ġc ell | |
| },\, | | |
| }] }^{\ | |
| Ġ} })\] | |
| Ġbo th | |
| }) )|\] | |
| }}^{* }}\ | |
| Ġ6 1 | |
| Ġ7 3 | |
| 34 8 | |
| }\| } | |
| }})\ |_{\ | |
| }| }{( | |
| X f | |
| }\ {- | |
| }[ \] | |
| p la | |
| _{+ })=\ | |
| St d | |
| ss on | |
| \[|\ {\ | |
| |\ |_{ | |
| {( }-( | |
| }\, ;\] | |
| N u | |
| l arge | |
| Ġco efficient | |
| }}| +| | |
| ):= |\ | |
| }^{* }< | |
| \| [\ | |
| Ġpoly nomial | |
| {) };\] | |
| Ġ\( {\ | |
| }}= :\ | |
| }})= - | |
| Ġsequ ence | |
| L im | |
| Ġ })(\ | |
| Ġ\, (\ | |
| })= :\ | |
| })= (( | |
| }^{* }))\] | |
| }]- [\ | |
| )) )_{ | |
| })) ]\ | |
| 28 6 | |
| Ġ&& +\ | |
| \ }\,,\ | |
| = _{ | |
| | & | |
| Ġ tor | |
| deg ree | |
| B s | |
| )\ }\\ | |
| }] )^{\ | |
| = & | |
| subsetneq q | |
| Ġelement s | |
| H W | |
| | })\ | |
| }}{ || | |
| en v | |
| a me | |
| }) )] | |
| b X | |
| { }^{*} | |
| Ġ }}\,\ | |
| \, -\ | |
| 40 96 | |
| A q | |
| }\ }|\] | |
| ) }}\| | |
| }) },\\ | |
| }\| | | |
| }^{ {( | |
| dV ol | |
| Ġk l | |
| Ġ })} | |
| }^{* *}( | |
| - })\ | |
| U D | |
| ^{- }}{ | |
| }| }+ | |
| _{+ }\|_{ | |
| E is | |
| }] }, | |
| nn z | |
| c K | |
| Co b | |
| ] ,( | |
| }}^{ [\ | |
| S y | |
| 56 8 | |
| \ }/\ | |
| \|_{ {}_{ | |
| Ġ} < | |
| 22 7 | |
| ] }; | |
| 36 7 | |
| [ (- | |
| bo und | |
| Ġsatisf ying | |
| Ġ under | |
| : \|\ | |
| V W | |
| )) )- | |
| }^{* *}\ | |
| 24 9 | |
| 25 4 | |
| 96 8 | |
| Pri m | |
| }}) >\ | |
| 26 5 | |
| }| }- | |
| 30 8 | |
| K g | |
| L W | |
| lus ter | |
| F H | |
| 35 0 | |
| F ib | |
| }^{* }))\ | |
| }^{+ }\|_{ | |
| )\; ,\ | |
| J A | |
| Q D | |
| T m | |
| Ġ} /\ | |
| y b | |
| E ll | |
| }): (\ | |
| Ġ }^{(\ | |
| }}) )_{ | |
| })\, :\,\ | |
| Ġe i | |
| F N | |
| J M | |
| })\ },\ | |
| }{\ # | |
| {) }[ | |
| ) })) | |
| B Z | |
| {|}\ { | |
| }_{* }, | |
| D im | |
| {)}\ !\ | |
| R y | |
| \ }$ | |
| v b | |
| ^{* })}\] | |
| ĠDe f | |
| ] }\, | |
| )\ !\!\ | |
| )) }+\|\ | |
| )}{ }_{ | |
| : } | |
| * \] | |
| le r | |
| Ġn m | |
| 6 48 | |
| }| }-\ | |
| }< |\ | |
| 20 9 | |
| N V | |
| b lock | |
| lo cal | |
| Re f | |
| F itt | |
| U P | |
| 26 7 | |
| Ġ }}\, | |
| }^{* }=\{ | |
| C Q | |
| [ -( | |
| Ġ pi | |
| _{+ }& | |
| }_{+ }\\ | |
| z p | |
| Ġa bs | |
| z s | |
| Ġs pe | |
| Ġ\[= \] | |
| ĠProp osition | |
| )}\ {\ | |
| Ġs tep | |
| s tep | |
| }}) -( | |
| di mension | |
| {] }}{\ | |
| D ol | |
| \| ,\| | |
| 40 5 | |
| co eff | |
| Ġ{ +}\ | |
| H G | |
| )}}{ {= | |
| )\| +\ | |
| ti es | |
| Ġ_{ [ | |
| |> | | |
| la w | |
| V B | |
| ^{( {\ | |
| 20 6 | |
| }\| [ | |
| ,* }^{ | |
| ^{+ }}{\ | |
| 2 99 | |
| P SH | |
| \, ;\,\ | |
| x H | |
| Ġ ]^{ | |
| }| ),\] | |
| }[\ ,\ | |
| ] \| | |
| $ }\}.\] | |
| ^{* }\, | |
| ) })\, | |
| ] }^{[ | |
| m C | |
| . }} | |
| := | | |
| wor k | |
| p ot | |
| }^{+ + | |
| Ġreg ular | |
| 17 1 | |
| 35 7 | |
| \[+ \] | |
| R h | |
| ĠS H | |
| )^{* }.\] | |
| ,\, -\ | |
| i ve | |
| eq sim | |
| q N | |
| }| ^{( | |
| un t | |
| Ġs l | |
| _{+ })= | |
| }}| }{ | |
| 22 9 | |
| g b | |
| }) ):=\ | |
| |\ }\ | |
| Ġf irst | |
| !\!\!\!\ !\!\!\!\ | |
| ^{* })\|_{ | |
| }^{* };\ | |
| Ġ hi | |
| 00 10 | |
| en s | |
| Ġ na | |
| }} }/ | |
| ap e | |
| \, ;\] | |
| Ġ8 7 | |
| )\, +\,\ | |
| }\{\ |\ | |
| })< ( | |
| ner gy | |
| Ġ\[= -( | |
| Ġ7 7 | |
| 499 9 | |
| y a | |
| ^{- }+\ | |
| s L | |
| \# _{ | |
| ; & | |
| di r | |
| })+\ | | |
| }+\| (\ | |
| }{ = | |
| 24 1 | |
| 0 33 | |
| _{ || | |
| 36 4 | |
| n V | |
| | }^{\ | |
| al f | |
| })( {\ | |
| 21 9 | |
| >\ ! | |
| ))^{ *}\] | |
| W A | |
| }] },\] | |
| }},\ {\ | |
| > _{\ | |
| Ġ operator | |
| ĠE xp | |
| Big m | |
| Ġtra ce | |
| }, ...\ | |
| })\ |= | |
| ^{+ }\|_{ | |
| }}(- , | |
| A lb | |
| }_{+ }-\ | |
| a ge | |
| }) ... | |
| \,(\ , | |
| B d | |
| K F | |
| al se | |
| z h | |
| ]\ ;\ | |
| Ġ }}} | |
| Pa th | |
| 3 23 | |
| Ġs n | |
| )}=\ |\ | |
| h l | |
| > = | |
| }+ (( | |
| o id | |
| }-\ \ | |
| M d | |
| Ġ7 1 | |
| }}{ [\ | |
| })\, ,\\ | |
| s nr | |
| z g | |
| )| ) | |
| : ,\ | |
| _{\ {( | |
| }}{ -\ | |
| \| , | |
| / \|\ | |
| }^{+ }}{\ | |
| }) }),\] | |
| ^{ [- | |
| )}\ }.\] | |
| }}) := | |
| ĠR eg | |
| Ġ\[+\ | | |
| 78 4 | |
| }}) _{*}\ | |
| _{+ }}(\ | |
| b ib | |
| }^{+ }}^{ | |
| Ġsin ce | |
| / / | |
| Ġi a | |
| ^{- })= | |
| a nge | |
| }& -( | |
| })| }\] | |
| F W | |
| Ġsim ple | |
| C z | |
| S ec | |
| }&= &-\ | |
| ? \] | |
| Ġd k | |
| \ }}\,\ | |
| _{* }\,\ | |
| 26 0 | |
| }}, | | |
| )}) &\ | |
| v p | |
| less approx | |
| F u | |
| ĠS T | |
| Ġsp lit | |
| a B | |
| Ġpar t | |
| R t | |
| \ }|.\] | |
| )\ !\! | |
| }), -\ | |
| }^{- })= | |
| ^{** }\] | |
| Ge o | |
| Ġ} > | |
| tt t | |
| 28 9 | |
| k C | |
| })| } | |
| w g | |
| Ġ }}|\ | |
| ĠVal ue | |
| c X | |
| ! }}\ | |
| }] )}\ | |
| ^{*}( ( | |
| 20 2 | |
| }{\ (\ | |
| })\; =\;\ | |
| }_{- }, | |
| )}}{ { | |
| {)}= \] | |
| ma n | |
| \[\{ [\ | |
| Ġo bs | |
| V M | |
| )\ |^{\ | |
| }| [ | |
| 99 5 | |
| {}{ {}^{\ | |
| ] }}{\ | |
| )\,\ | | |
| })|\ \ | |
| Ġfunction s | |
| N c | |
| l q | |
| }{ ** | |
| B t | |
| F lag | |
| ] }\|_{ | |
| }^{* }{\ | |
| i ed | |
| _{+ },\] | |
| lef tharpoonup | |
| ] }(- | |
| O F | |
| be cause | |
| | }\| | |
| Ġ{ {\ | |
| }^{- }\\ | |
| Ġn c | |
| C yc | |
| \[\| |\ | |
| ))- (\ | |
| }| || | |
| \) . | |
| Q X | |
| 499 886 | |
| }_{- })\] | |
| 19 3 | |
| ad ic | |
| 34 3 | |
| ) _{*} | |
| \}\ ;.\] | |
| \|_{ *}\ | |
| ) }}}{\ | |
| (- , | |
| }] ,\, | |
| pt I | |
| }{* }_{ | |
| }=\ ,\ | |
| Ġn r | |
| Ġ7 4 | |
| > \, | |
| ĠT otal | |
| {)}\ ! | |
| }_{* }=\ | |
| })}=\ |\ | |
| no break | |
| us t | |
| {)}\ ;\ | |
| tr y | |
| ) }}} | |
| ] }& | |
| Ġ curve | |
| _{ >\ | |
| }^{+ ,\ | |
| }_{+ + | |
| }] ),\ | |
| 32 6 | |
| or e | |
| ĠM odel | |
| }})\ |^{ | |
| bib ref | |
| },\, -\ | |
| Ġ8 3 | |
| ,- } | |
| 45 7 | |
| }$ },\ | |
| )$ },\\ | |
| }_{+ },\\ | |
| 36 9 | |
| Ġco v | |
| Av g | |
| U ni | |
| }=\{\ , | |
| +| |\ | |
| )\! +\! | |
| A a | |
| c j | |
| U x | |
| w c | |
| ] ].\] | |
| )\, ,\, | |
| }| /| | |
| _{* })}\ | |
| ,* , | |
| }\ }: | |
| ): \\ | |
| J I | |
| n leq | |
| al y | |
| r A | |
| }_{- })\ | |
| J f | |
| Ġ ln | |
| Ġinter val | |
| Q L | |
| {) }},\] | |
| Ġ\( + | |
| {\| }\,\ | |
| - { | |
| r K | |
| }] ^{( | |
| ĠC x | |
| }}) }{( | |
| - }+ | |
| me r | |
| +\ ) | |
| Ġh igh | |
| }|\, .\] | |
| m H | |
| }\, + | |
| _{* },\] | |
| 29 8 | |
| - ), | |
| }\| ,\| | |
| }^{+ }\}\] | |
| }}^{* }-\ | |
| ĠDa ta | |
| \| (-\ | |
| L r | |
| \ })- | |
| Ġ6 2 | |
| )[ [ | |
| := - | |
| U S | |
| 99 6 | |
| )! }=\ | |
| Le ftarrow | |
| T I | |
| Ġcomp le | |
| ! |\ | |
| pa ra | |
| Ġ- | | |
| k o | |
| _{- })= | |
| Ġ }}}{ | |
| Ġd P | |
| 78 9 | |
| 81 1024 | |
| Ġra nd | |
| r L | |
| )=\ {(\ | |
| )\| +\| | |
| Ġedge s | |
| | )- | |
| }_{- }=\ | |
| c A | |
| Ġ\( > | |
| })_{ (\ | |
| ]+ [\ | |
| sa tisf | |
| 29 4 | |
| O A | |
| $ }(\ | |
| x k | |
| }}) }^{\ | |
| (- | | |
| Ġ8 6 | |
| \{+ ,-\ | |
| N y | |
| ĠE q | |
| }_{+ }+\ | |
| dy dt | |
| c D | |
| }| }^{ | |
| 32 7 | |
| }\,(\ , | |
| )\! -\! | |
| 0 37 | |
| la st | |
| ^{* }=(\ | |
| }}_{ *}( | |
| sta rt | |
| G ra | |
| F K | |
| |\, |\ | |
| 17 3 | |
| | [\ | |
| A rt | |
| s eq | |
| x F | |
| }}^{\ , | |
| Ġy x | |
| 27 9 | |
| }, .. | |
| T ree | |
| L arge | |
| Ġd h | |
| )| }{( | |
| }\|\ \ | |
| }(- )\ | |
| Ġ[ ( | |
| )$ }\\ | |
| ,\, {\ | |
| )* _{ | |
| = [- | |
| s X | |
| Ġ |_{\ | |
| }] })\] | |
| 22 22 | |
| 27 8 | |
| t Z | |
| Ġ ve | |
| }^{- }}( | |
| ĠT X | |
| ine ar | |
| T p | |
| }; \{ | |
| Ġ\ }\] | |
| 18 1 | |
| Ġal g | |
| N ull | |
| ^{* }:= | |
| ^{* }=\{ | |
| C yl | |
| }^{* }), | |
| }( || | |
| }) )}= | |
| ĠC B | |
| ML E | |
| U f | |
| s V | |
| )\ }} | |
| 18 2 | |
| bi as | |
| |/ | | |
| ] )}^{ | |
| - }_{ | |
| var Theta | |
| {) }^{*}\ | |
| R r | |
| })^{ |\ | |
| h z | |
| }( +\ | |
| T b | |
| )}{ - | |
| Ġ lower | |
| }] =\{ | |
| ,- }(\ | |
| \( {}^{\ | |
| Ġt ree | |
| ĠS e | |
| )\, +\, | |
| )\| =\| | |
| Ġresp ect | |
| })\ |.\] | |
| 28 5 | |
| )}| |\ | |
| black lozenge | |
| s P | |
| }/ [ | |
| })) >\ | |
| Ġdi mension | |
| Po s | |
| ),\ ;\; | |
| }\| - | |
| Ġc s | |
| Ġw eak | |
| 23 0 | |
| t F | |
| us ing | |
| f y | |
| )) )^{\ | |
| )/ | | |
| L emma | |
| ĠA i | |
| )) )-\ | |
| }),\ |\ | |
| E rror | |
| 35 2 | |
| $ )}\] | |
| s hift | |
| ĠS M | |
| }[\ , | |
| teri or | |
| <\ !\ | |
| 38 8 | |
| 01 10 | |
| o o | |
| ro ll | |
| FP dim | |
| ) }}&\ | |
| a P | |
| )^{- }\ | |
| 24 2 | |
| })^{\ # | |
| )< -\ | |
| }}) ^{*}\] | |
| ĠM C | |
| \|=\ |\ | |
| Ġ Pic | |
| }, .... | |
| {)}\ ;.\] | |
| ^{* }}^{- | |
| dt ds | |
| Ġ- {\ | |
| )})\ |^{ | |
| 45 5 | |
| n sity | |
| })\ ,\,\ | |
| .&.& .&.& | |
| Y T | |
| Ġ ^{+ | |
| ff icient | |
| 38 5 | |
| I K | |
| }] |^{ | |
| }-\ {\ | |
| }] +( | |
| lo ss | |
| ]{ [\ | |
| }] { | |
| 98 4 | |
| }^{( {\ | |
| Ġ{* }(\ | |
| )! },\] | |
| 30 5 | |
| ) )}\, | |
| P v | |
| {: }\ | |
| V f | |
| B Q | |
| N G | |
| 0 44 | |
| Ġc ri | |
| }&= &( | |
| ), [\ | |
| )| / | |
| ] |_{ | |
| l x | |
| }| ]\ | |
| 17 2 | |
| W r | |
| ^{*}\ ) | |
| }): \, | |
| Reg ret | |
| Ġdistribu tion | |
| V A | |
| Ġme thod | |
| Ġ= -(\ | |
| S ur | |
| )^{- (\ | |
| Ġr ot | |
| tra p | |
| Ġle vel | |
| }] \|_{\ | |
| ))\ ;\ | |
| 26 9 | |
| + ,\ | |
| Ġb d | |
| }) !}\ | |
| }: [\ | |
| ),\,\ ,\, | |
| ho lim | |
| &\ ,\ | |
| a D | |
| n F | |
| up downarrow | |
| Ġsta te | |
| P SU | |
| }) })^{\ | |
| }_{+ })^{ | |
| C v | |
| w ard | |
| Set s | |
| _{\ !\ | |
| }\, - | |
| 26 378 | |
| 35 5 | |
| 0 56 | |
| 3 96 | |
| _{- }.\] | |
| Ġm ix | |
| ĠP SL | |
| J Z | |
| ^{ {( | |
| }) { | |
| }(- ,\ | |
| Ġ }+\|\ | |
| ĠB orel | |
| 30 6 | |
| {(}( -\ | |
| Ġ* &\ | |
| ĠM in | |
| )_{ (\ | |
| C art | |
| u D | |
| Ġa bo | |
| 99 7 | |
| }, : | |
| }^{* }]\ | |
| Ġd l | |
| }^{* }},\ | |
| ))\ }.\] | |
| Ġ },\\ | |
| }{ }{\ | |
| {[ }[ | |
| }\ }<\ | |
| Ġre du | |
| p M | |
| 33 8 | |
| | )\,\ | |
| ri z | |
| _{* })( | |
| _{+ }:=\ | |
| })+\ |\ | |
| 26 6 | |
| }]\! ]_{ | |
| }= ... | |
| Ġi y | |
| K Q | |
| { .}\ | |
| % ) | |
| ĠA e | |
| b el | |
| }}) ] | |
| })\, |\ | |
| }] < | |
| }^{+ },\\ | |
| })\| _ | |
| f ind | |
| ^{( ( | |
| ĠD G | |
| \}\ ! | |
| Ġi deal | |
| t ree | |
| }^{+ };\ | |
| ,-\ , | |
| }) }}{( | |
| {) },& | |
| }}- {\ | |
| tera tions | |
| Ad m | |
| L s | |
| | -( | |
| }\, {}^{ | |
| )})\ ,\ | |
| Ġd F | |
| 25 3 | |
| chi tz | |
| Ġin j | |
| \; :\; | |
| ]{[\ @@ | |
| v g | |
| }) ))^{ | |
| Per v | |
| k D | |
| }(\ {( | |
| (\ !( | |
| )+ [\ | |
| ^{*}\ ! | |
| }}| +\ | |
| 33 1 | |
| ) })| | |
| ^{* })(\ | |
| ] })_{ | |
| }^{( * | |
| Ġy es | |
| }^{+ })_{ | |
| ; =\;\ | |
| Ġal gebra | |
| In c | |
| Ġlo cal | |
| Ġei ther | |
| x n | |
| Ġ} .\ | |
| }}& &\\ | |
| con s | |
| 98 8 | |
| Ġ }}^{( | |
| )> - | |
| }^{* })(\ | |
| }) }]\] | |
| ps chitz | |
| Ġtra ns | |
| N W | |
| )}\ ;.\] | |
| \, [\ | |
| q l | |
| Ġ quad | |
| })\, .\ | |
| xy y | |
| S ys | |
| Ġ= {\ | |
| )} * | |
| 35 4 | |
| }} }}^{ | |
| Ġ1 50 | |
| x D | |
| O B | |
| \ }),\ | |
| )) [\ | |
| u loc | |
| ^{* }< | |
| }| )+\ | |
| J H | |
| ge ne | |
| en cy | |
| }| |= | |
| 9 45 | |
| sc l | |
| u al | |
| )} . | |
| 27 2 | |
| me n | |
| }}^{* }_{ | |
| Ġd Y | |
| }}/ (\ | |
| P N | |
| ^{* }}| | |
| G V | |
| ĠC m | |
| dy dz | |
| o cc | |
| {) }{\ | |
| Ġb ase | |
| F a | |
| s D | |
| equ ality | |
| 33 0 | |
| S d | |
| ĠC D | |
| ĠK e | |
| 20 3 | |
| | }}\] | |
| )\ }=\{ | |
| op en | |
| }| )= | |
| Ġsym metric | |
| ,\ # | |
| C f | |
| t G | |
| _{* })- | |
| ]\ ;.\] | |
| Ġex act | |
| }\ }< | |
| }^{ = | |
| par se | |
| ^{*} |_{ | |
| }] \,,\] | |
| O r | |
| q h | |
| ĠA s | |
| 48 8 | |
| }) ^{*})\] | |
| :\ : | |
| \!\ !\!/ | |
| CV aR | |
| ]\ },\] | |
| }) }}=\ | |
| }) )}=\ | |
| _{* })+\ | |
| }} ]-\ | |
| }}- | | |
| )! )^{ | |
| ma g | |
| {{ }_{\ | |
| &-\ \ | |
| 4 14 | |
| V P | |
| ĠS I | |
| _{- ,\ | |
| {< } | |
| L I | |
| u les | |
| }}\ }}\ | |
| }}] (\ | |
| }^{* })}{ | |
| ĠS P | |
| i C | |
| { }_{( | |
| Ġ }}\| | |
| Ġis o | |
| || } | |
| }\! ( | |
| 3 13 | |
| n E | |
| ro l | |
| }_{+ })}^{ | |
| ) }}|\ | |
| | :\ | |
| 04 9 | |
| Ġse mi | |
| f ar | |
| | .\ | |
| )) /( | |
| ,\, (\ | |
| L g | |
| U R | |
| g roup | |
| }|\ ,| | |
| }}) ,(\ | |
| Ġprod uct | |
| )\ (\ | |
| {) }: | |
| M MSE | |
| Ġw eight | |
| )&\ \ | |
| 27 7 | |
| s H | |
| }( ] | |
| }^{+ }=\{ | |
| ] . | |
| }| (| | |
| 30 7 | |
| sum ption | |
| ) _{* | |
| }^{- },\] | |
| })) [ | |
| F ac | |
| {\ }}-\ | |
| & . | |
| )\, ,\,\ | |
| \)\ ( | |
| }}) [\ | |
| ], & | |
| D o | |
| }] }\| | |
| })) :\ | |
| D z | |
| }] )+\ | |
| }}_{ -\ | |
| }]= (\ | |
| Ġra di | |
| _{+ }}^{ | |
| }, {}^{ | |
| ro und | |
| rightarrow fill | |
| I g | |
| tiv ity | |
| ) }}^{- | |
| ^{** }, | |
| })\! =\!\ | |
| w ind | |
| })= +\ | |
| Ad S | |
| }) )& | |
| ! _{ | |
| |_{\ { | |
| con vex | |
| 28 4 | |
| }^{* }:= | |
| Ġp erm | |
| })| -| | |
| a S | |
| i V | |
| }} })( | |
| P y | |
| | )-\ | |
| )\ # | |
| })] }{ | |
| )) }^{\ | |
| ĠD R | |
| }):= -\ | |
| S up | |
| }_{\ |\ | |
| {] }}{ | |
| O bs | |
| q A | |
| }+\ ,\ | |
| ,- , | |
| V U | |
| })\ ;\;\ | |
| 11 12 | |
| _{ :, | |
| 0 100 | |
| ] }).\] | |
| ),\ { | |
| )=\ #\ | |
| N b | |
| ca se | |
| P l | |
| {| (\ | |
| ))^{ *}\ | |
| }}} .\ | |
| }=- {\ | |
| =\ {\{ | |
| Ġy z | |
| )) )+ | |
| )\ }, | |
| D p | |
| a H | |
| j e | |
| }\ }\,,\] | |
| 3 32 | |
| }|\ |\ | |
| }_{+ }) | |
| J oin | |
| {\| ( | |
| C g | |
| Ġ cap | |
| Ġcol umn | |
| \ }]\ | |
| 11 10 | |
| )) ;\] | |
| )}{ -\ | |
| ĠR S | |
| E N | |
| \[ *\ | |
| Ġf a | |
| > ^{ | |
| r R | |
| v r | |
| }^{- }}\] | |
| }^{+ }[ | |
| N f | |
| |\ {\ | |
| bm o | |
| )| (\ | |
| 34 9 | |
| }\, ;\,\ | |
| )] [ | |
| K a | |
| _{* }| | |
| Ġdef inition | |
| Ġ8 2 | |
| b N | |
| r B | |
| Ġ )&\ | |
| };\ ; | |
| ,- }_{ | |
| ) }}}\] | |
| ^{* ** | |
| }] }|\ | |
| ĠM L | |
| ! }+ | |
| T Z | |
| }] := | |
| }}| - | |
| Ġne ar | |
| }\ };\] | |
| }! ( | |
| ; }\] | |
| }, *}\ | |
| )| , | |
| Ġg h | |
| {, }\ | |
| Ġx z | |
| 48 6 | |
| ĠU n | |
| 27 4 | |
| < \| | |
| ] }: | |
| }} }]\] | |
| ). ( | |
| L ag | |
| T K | |
| }\ }}=\ | |
| }}\, =\, | |
| Q f | |
| }^{* }}= | |
| {| },\ | |
| }\,\ |\,\ | |
| 28 7 | |
| _{+ - | |
| }\|\ ! | |
| })_{\ # | |
| Ġt f | |
| )}{ }^{ | |
| }=(\ { | |
| scri ption | |
| , (-\ | |
| ro b | |
| ))\ }_{ | |
| ^{* }}}{ | |
| - ,-\ | |
| }\ }\,\ | |
| ĠF ix | |
| 33 33 | |
| )\ }+ | |
| ĠS ing | |
| Ġ }_{( | |
| }) )-( | |
| )} *\ | |
| P erm | |
| per t | |
| })| }{|\ | |
| Ġs trict | |
| Ġte st | |
| Ġ })\\ | |
| K D | |
| c ross | |
| ,- }\] | |
| 98 5 | |
| R IS | |
| ] )\\ | |
| Ġk m | |
| Ġ\(\ {\ | |
| \[| || | |
| S eg | |
| Ġth an | |
| 30 9 | |
| ),\ ,\, | |
| 40 6 | |
| * }=\ | |
| normal size | |
| 18 3 | |
| F f | |
| }{\ #\ | |
| Ġequivalent ly | |
| fficient ly | |
| = { | |
| h A | |
| cccccccc cccc | |
| Ġ4 00 | |
| K d | |
| g A | |
| }\ },&\ | |
| In dex | |
| ) }:=( | |
| _{* }}^{\ | |
| ĠR m | |
| Ġ| |_{ | |
| \},\ {\ | |
| ub e | |
| )| )^{ | |
| }}\ }=\ | |
| Ġun it | |
| ' s | |
| \ :\ | |
| Ġ }}\] | |
| ba s | |
| 36 6 | |
| }^{* }; | |
| dxdy dz | |
| 0 101 | |
| Q e | |
| m M | |
| 37 7 | |
| * }^{\ | |
| R v | |
| (\ # | |
| }_{\ {|\ | |
| pro xi | |
| Ġ&& &- | |
| })^{* }.\] | |
| Ġ /( | |
| ĠB G | |
| 29 5 | |
| Ġmaxi mal | |
| + }=\ | |
| }< (\ | |
| Ġ\, | | |
| }\# _{ | |
| )=|\ { | |
| ĠC u | |
| }}_{ +}\ | |
| Ġ^{ [ | |
| ) }}[ | |
| J T | |
| in ate | |
| }_{ :, | |
| })\, | | |
| 46 8 | |
| I X | |
| al gebra | |
| rho od | |
| )) ),\ | |
| U parrow | |
| Ġ )}-\ | |
| }] )+ | |
| Ġset s | |
| L X | |
| }} }=( | |
| la ted | |
| })] )\] | |
| I E | |
| \ }}\, | |
| Ġc op | |
| }^{+ }|^{ | |
| da te | |
| or s | |
| 29 7 | |
| f rom | |
| 35 9 | |
| _{* }).\] | |
| ]; \\ | |
| }| }} | |
| D Y | |
| ĠD om | |
| ĠR an | |
| in st | |
| }}) )^{\ | |
| }}) +(\ | |
| }\; :\;\ | |
| Ġla w | |
| ju ga | |
| \| >\ | |
| )) +(\ | |
| )_{ +} | |
| }) }}{{=}} | |
| {\ }}_{\ | |
| Ġ+ }\ | |
| 19 1 | |
| u gh | |
| er g | |
| a C | |
| })( (\ | |
| }}, [\ | |
| ĠC I | |
| r D | |
| ... +\ | |
| = {}^{ | |
| Ġd b | |
| {\| }_ | |
| }\ }_{( | |
| }) )\,,\] | |
| |+\ | | |
| )}}{ (\ | |
| Ġ })}^{ | |
| }^{* })}{\ | |
| }}{{= }}( | |
| * },\ | |
| H X | |
| (\ |( | |
| Ġa cc | |
| }* &*\\ | |
| 45 8 | |
| )= { | |
| nu s | |
| Ġf ull | |
| {] }, | |
| X P | |
| ] $ | |
| ĠB B | |
| 49 5 | |
| ml d | |
| F e | |
| Ġ })_{\ | |
| cccc ccc | |
| Ġclas ses | |
| \| }.\] | |
| m R | |
| )}- (\ | |
| H d | |
| J N | |
| }\, {}^{\ | |
| }\,\ { | |
| }}^{- }(\ | |
| ] _ | |
| . },\ | |
| . )\] | |
| }}_{\ { | |
| 44 4 | |
| * }, | |
| (\ #\ | |
| }| )( | |
| Ġ1 23 | |
| {) }:\ | |
| E uc | |
| ^{- , | |
| }=\ {- | |
| &\ | | |
| }}|\ , | |
| T o | |
| }] \}\ | |
| _{! }(\ | |
| circle arrowright | |
| ^{- }-\ | |
| ĠC p | |
| }}(\ ,\ | |
| \[\{\ ,\ | |
| Ġ })}\] | |
| 32 9 | |
| ^{* }/\ | |
| }^{- })=\ | |
| 27 3 | |
| geq q | |
| & ,\ | |
| }})\ }_{ | |
| K A | |
| }) )=\{ | |
| }} ])\ | |
| ^{- })=\ | |
| Ġc lo | |
| Ġse c | |
| N z | |
| Ġ$ [ | |
| ] }=( | |
| }}) },\ | |
| Ġ( |\ | |
| ,- }^{ | |
| _{\# }( | |
| v dx | |
| )) ]^{ | |
| Ġa ss | |
| }}| > | |
| par t | |
| }* & | |
| |\, ,\] | |
| be st | |
| }} ]- | |
| })| -\ | |
| }}{| |\ | |
| )(\ | | |
| pr in | |
| ra te | |
| {( }{ | |
| )& =( | |
| }\ }|= | |
| |_{ - | |
| as c | |
| R j | |
| Ġ+ &\ | |
| }} }),\] | |
| liz ed | |
| ] _{- | |
| o log | |
| ta tions | |
| T ate | |
| `` \ | |
| Q G | |
| b A | |
| })= &\ | |
| = + | |
| )) |= | |
| pre s | |
| che me | |
| tm f | |
| L y | |
| i sh | |
| }] _{( | |
| }_{+ }= | |
| 76 5 | |
| g K | |
| . )\ | |
| > }\ | |
| \ '{ | |
| j c | |
| is k | |
| U W | |
| 38 9 | |
| }}\!\!\ !\ | |
| G aus | |
| ^{* }}\| | |
| denti ty | |
| c I | |
| p H | |
| ^{* }}[ | |
| ck e | |
| 33 5 | |
| mi tive | |
| te ration | |
| )) }}\ | |
| )\| ( | |
| )& =- | |
| , [- | |
| f erence | |
| 3 99 | |
| Ġ }}\\ | |
| 78 8 | |
| _{- })=\ | |
| }> | | |
| }* _{\ | |
| 04 6 | |
| Ġconst raint | |
| 7 50 | |
| Ġ }+\| | |
| Ġ}^{ -\ | |
| S v | |
| Ġ\ },\ | |
| 39 5 | |
| Ġpo s | |
| }^{- }:=\ | |
| ], | | |
| + }, | |
| ] -( | |
| u lo | |
| Ġ* &*&* | |
| a E | |
| - },\ | |
| V e | |
| }| }\,\ | |
| L p | |
| }\| >\ | |
| ij t | |
| )]= [\ | |
| Ġabo ve | |
| + }}\ | |
| 25 1 | |
| g i | |
| =\ !( | |
| Ġ_{ (\ | |
| Sp d | |
| 3 34 | |
| e ig | |
| li ft | |
| }] ]= | |
| s R | |
| h L | |
| }}^{\ # | |
| )| ,|\ | |
| )) )}\ | |
| 39 7 | |
| Ġ\[\ {\ | |
| \|\ ! | |
| Ġ-\ ,\ | |
| R Q | |
| W H | |
| }^{ {}_{ | |
| \ }))\] | |
| }| }| | |
| rou gh | |
| ^{* }}}\] | |
| Ġ}( ( | |
| ^{+ }|^{ | |
| }\, -\ | |
| or th | |
| ,\,\,\ ,\, | |
| Ġrand om | |
| mon ic | |
| )\| + | |
| ))}\ ,\ | |
| S eq | |
| )! \, | |
| \! (\ | |
| 37 9 | |
| ra tic | |
| _{- }}(\ | |
| t Q | |
| Ġ cos | |
| }{ +}\ | |
| \[\| (-\ | |
| )$ .}\] | |
| P Z | |
| }& (- | |
| Ġ5 12 | |
| D b | |
| J B | |
| ^{* }},\] | |
| := |\ | |
| \}+\ { | |
| ; }\ | |
| \ }}) | |
| ĠQ u | |
| Ġsu fficiently | |
| \[\|\ , | |
| )$ ,}\\ | |
| homotop y | |
| Ġf r | |
| Ġ}\ }\ | |
| ĠB i | |
| }$ ;}\\ | |
| ); \, | |
| y i | |
| })^{ +} | |
| 33 9 | |
| de ns | |
| Ġin c | |
| Ġse nse | |
| | )}{\ | |
| Ġnode s | |
| Ġ ell | |
| \[\ ,{\ | |
| 98 9 | |
| }_{ ,\ | |
| Ġv ir | |
| P art | |
| ve nt | |
| }) }]\ | |
| ))\ }\ | |
| ! )^{\ | |
| , {}_{ | |
| )) }- | |
| }}+ || | |
| }{ -}\ | |
| da p | |
| /\ !/ | |
| 64 4 | |
| {\{}{\ }}{ | |
| , ^{ | |
| }^{* }] | |
| ĠG aus | |
| ĠS D | |
| Ġc over | |
| ^{+ })- | |
| }}[ |\ | |
| up tau | |
| 05 5 | |
| })] }{\ | |
| }}: [ | |
| )\ ;\; | |
| }}\ {( | |
| {| }< | |
| Ġ1 10 | |
| Ġh yp | |
| )_{+ }^{\ | |
| M X | |
| ))= \] | |
| 33 7 | |
| ^{[ * | |
| curly wedge | |
| a ted | |
| y g | |
| })| ,\ | |
| z A | |
| Ġo b | |
| \ })+ | |
| }}\ }= | |
| }_{+ +}^{ | |
| q Q | |
| }| : | |
| m ic | |
| Ġof f | |
| 04 7 | |
| }}+\ |( | |
| )}}{\ | | |
| }) ;( | |
| })= & | |
| Ġequ ation | |
| {}{ { | |
| he ight | |
| \[\# \{\ | |
| Ġ1 60 | |
| : [\ | |
| Ġn et | |
| ĠM N | |
| Ġir reducible | |
| }} }+\|\ | |
| ĠO b | |
| Ġmini mal | |
| }| )=\ | |
| ĠL og | |
| 40 9 | |
| }) !\ | |
| }] })\ | |
| gen era | |
| _{\# } | |
| $ }\}\] | |
| |\ ) | |
| }^{* },\\ | |
| / _{ | |
| u tation | |
| ĠL S | |
| 12 00 | |
| C q | |
| }_{ ! | |
| ĠP re | |
| 34 0 | |
| Ġre presen | |
| F O | |
| ]\ }_{ | |
| big uplus | |
| ,+ , | |
| |\! | | |
| . ) | |
| }}^{* }- | |
| )\! -\!\ | |
| Ġ\ @@ | |
| }}{( ( | |
| s pa | |
| ĠS E | |
| 37 49 | |
| Sym p | |
| }\! :\! | |
| H V | |
| 20 11 | |
| a rac | |
| \[(\ {\ | |
| }( (( | |
| se mi | |
| Ġin creasing | |
| }) }/ | |
| )=\ ,\ | |
| Ġn b | |
| ĠR T | |
| m A | |
| })\! =\! | |
| ) ... | |
| Ġc p | |
| 6 56 | |
| m w | |
| }_{* }} | |
| )})_{ ( | |
| Ġ )}=\ | |
| )\! +\!\ | |
| {) }>\ | |
| ĠX Y | |
| }* } | |
| ĠM SE | |
| 0 36 | |
| g B | |
| ^{* })\\ | |
| }=( [ | |
| ĠB A | |
| Gr p | |
| (\ {( | |
| }] )=[ | |
| )}( (\ | |
| Ġ\ {(\ | |
| ^{- }.\] | |
| bol ic | |
| )^{* })\] | |
| }_{< }( | |
| Min imize | |
| Ġdo main | |
| Ġa u | |
| E i | |
| }| _ | |
| 000 5 | |
| )) )( | |
| * \\ | |
| Ġmulti pli | |
| Ġ\[ +| | |
| 46 7 | |
| {) }}{( | |
| _{* })+ | |
| }}| =| | |
| 46 5 | |
| }_{\# }( | |
| 3 25 | |
| D J | |
| b T | |
| )}= {\ | |
| MM D | |
| Ġs ample | |
| Ġ* }(\ | |
| ĠS C | |
| Ġe no | |
| }]\! ] | |
| MC G | |
| )\,\ ,\,\ | |
| }) }}(\ | |
| }) )=-\ | |
| ĠN t | |
| Ġlo op | |
| Ġ:=\ {( | |
| }): \\ | |
| Ġeno ugh | |
| })\ }}\ | |
| de l | |
| ] }^{- | |
| 78 6 | |
| }= {}^{\ | |
| dimension al | |
| ) }&-\ | |
| Ġ }}\|\ | |
| ): \| | |
| GK dim | |
| ĠS ub | |
| dz d | |
| Ġ}{ |\ | |
| \[(- )^{\ | |
| ĠAv erage | |
| ction s | |
| = [( | |
| }= _{ | |
| {\ }},\\ | |
| te ps | |
| ]\ |^{ | |
| a F | |
| }}\ })\] | |
| bo unded | |
| }^{* }}.\] | |
| Ġ}( {\ | |
| Ġinver tible | |
| Ġini tial | |
| t J | |
| Ġ }:\ | |
| }) *( | |
| \ }}(- | |
| )) )) | |
| 98 7 | |
| !\! /\ | |
| }^{* }}+\ | |
| 16 00 | |
| Con st | |
| Ġ )},\] | |
| ), |\ | |
| O N | |
| ^{ {}_{ | |
| )^{ (| | |
| ] ^{*}\ | |
| Ġ )}+ | |
| V D | |
| )=\ #\{ | |
| Ġ$ \{ | |
| \; ,\\ | |
| lo m | |
| }}[ [ | |
| }) }=-\ | |
| )^{ ** | |
| SE P | |
| , {}^{\ | |
| S ign | |
| }^{+ }/ | |
| }) ], | |
| }+\ {\ | |
| }^{* }}}\ | |
| w eight | |
| Ġt n | |
| \[- \] | |
| Ġsys tem | |
| Ġ0 00 | |
| }\, ,& | |
| )}= [\ | |
| u la | |
| }) }|^{ | |
| )\ })\ | |
| > =\ | |
| a M | |
| Ġ }\,.\] | |
| \[| |( | |
| ,-\ ,\ | |
| 05 8 | |
| C hi | |
| Ġf o | |
| _{* }[\ | |
| _{+ })( | |
| ] |\] | |
| re st | |
| C ent | |
| V T | |
| W X | |
| \|_{ *}^{ | |
| }}| +|\ | |
| 74 99 | |
| \ }=( | |
| 3 14 | |
| H od | |
| {] },\\ | |
| 99 2 | |
| \},\ ,\ | |
| ĠN N | |
| ]}\ { | |
| ):= (- | |
| _{\_ } | |
| U A | |
| ^{* }}^{( | |
| Ġfi eld | |
| $ }}( | |
| yy y | |
| }| }}{ | |
| ĠA n | |
| Ġmo st | |
| })-\ { | |
| ^{! }( | |
| }\|_{ [ | |
| \[(\ ,\ | |
| &- (\ | |
| 38 7 | |
| }+ }\ | |
| |_{ (\ | |
| })+ [ | |
| }! \] | |
| 4 000 | |
| B eta | |
| P Sp | |
| Ġa a | |
| }|< |\ | |
| cre te | |
| $ }=\ | |
| Ġ= (( | |
| ))\ .\] | |
| Ġh ence | |
| - )\] | |
| ph ys | |
| ^{* + | |
| }\, ,&\ | |
| 34 2 | |
| ma tch | |
| }^{* }=-\ | |
| {- (\ | |
| Ġin equality | |
| }) })( | |
| (\ (\ | |
| si cal | |
| ro n | |
| 45 9 | |
| Ġ }}}{\ | |
| \! \{ | |
| ne gative | |
| 5 77 | |
| h K | |
| }\ }}|\ | |
| || |_{ | |
| xi ty | |
| }+\ , | |
| Ġf ace | |
| 4 96 | |
| }_{+ }- | |
| Ġno ise | |
| Ġ\ ;\;\ | |
| )}{ }^{\ | |
| }}\, +\,\ | |
| gen ce | |
| t U | |
| { *} | |
| {\ #\{ | |
| De n | |
| }}\, :\, | |
| + },\ | |
| z ar | |
| at t | |
| Ġ })\,\ | |
| _{* }}}\ | |
| }^{+ }& | |
| P g | |
| }= ||\ | |
| Ġw or | |
| dy n | |
| B Y | |
| }< _{\ | |
| },\, {\ | |
| }}}{{=}}\ { | |
| * [ | |
| in ing | |
| }}) }+ | |
| co k | |
| a K | |
| math char | |
| }) _{*}\] | |
| 39 2 | |
| {[ }{\ | |
| }) )),\] | |
| 35 1 | |
| Ġre c | |
| CF K | |
| k P | |
| |}{\ (\ | |
| 8 40 | |
| ĠF ig | |
| 37 4 | |
| + (( | |
| M AP | |
| c B | |
| })> ( | |
| ) }&= | |
| Z X | |
| p L | |
| | }\|\ | |
| Ġ\[+\ ,\ | |
| Ġi ts | |
| Ġf g | |
| x L | |
| }_{+ ,\ | |
| f X | |
| }} ;\\ | |
| Ġi e | |
| ert y | |
| tra n | |
| Ġba sis | |
| N at | |
| 78 7 | |
| an nel | |
| : .\] | |
| }\| [\ | |
| \,\ }\ | |
| 56 9 | |
| Ġfac tor | |
| M h | |
| W E | |
| }_{+ }}(\ | |
| Ġ& &\\ | |
| ^{* }}}{{\ | |
| }! }.\] | |
| ĠA P | |
| Ġ- }\ | |
| }) }},\ | |
| }) )=- | |
| il y | |
| Ġde v | |
| w n | |
| Ġ am | |
| Ġ\, |\ | |
| \% , | |
| * }= | |
| \ }}\| | |
| 03 9 | |
| z T | |
| ti m | |
| {) }_{( | |
| })+\ \ | |
| ĠM ul | |
| }^{+ }).\] | |
| ^{+ }:=\ | |
| \}\ },\] | |
| , ...\ | |
| }}) |_{\ | |
| )|^{ -\ | |
| {\ }}, | |
| }} }^{(\ | |
| {\| }|\ | |
| 50 5 | |
| },- )\] | |
| )}\ ,( | |
| }^{+ }: | |
| )}) > | |
| l w | |
| Ġ )}- | |
| )) ;\ | |
| Ġevery where | |
| })( [ | |
| ĠRe p | |
| ĠS upp | |
| 98 6 | |
| \( {}_{\ | |
| M c | |
| }) )}+\ | |
| K s | |
| }] }{( | |
| ^{*})\ |^{ | |
| }\ :\ | |
| }) )}+ | |
| }, < | |
| Ġ- $ | |
| 20 10 | |
| Im m | |
| Ġ10 1 | |
| ) }].\] | |
| }\ }),\] | |
| }= &-\ | |
| Ġ}( -\ | |
| )}\ |\] | |
| }}^{\ { | |
| }(| |\ | |
| 5 40 | |
| : -\ | |
| xi t | |
| Q N | |
| Ġ& &-\ | |
| Ġ )})\ | |
| )^{ (- | |
| }}\, .\ | |
| Ġla y | |
| h q | |
| Ġi id | |
| ^{( * | |
| ĠN L | |
| ) })/ | |
| }} }]\ | |
| 6 79 | |
| {\{ }[ | |
| Ġ(\ %) | |
| 0 88 | |
| ] )}{ | |
| }] }}\ | |
| \!\!\!\ !\ | |
| )\ |\, | |
| )) )+\ | |
| Ġg l | |
| })^{- }\ | |
| u rce | |
| f ace | |
| r I | |
| }_{ : | |
| Ġequ al | |
| X U | |
| })\ |<\ | |
| ĠP D | |
| term s | |
| ^{- }|^{ | |
| {- -}\ | |
| })}{ }_{\ | |
| rr r | |
| R ow | |
| M z | |
| \ }-\{ | |
| ĠL R | |
| | )}\] | |
| }^{* })\|_{ | |
| ĠH e | |
| Ġuni que | |
| J P | |
| Ġi p | |
| 38 6 | |
| ord inate | |
| }} }}=\ | |
| z m | |
| flo w | |
| 39 4 | |
| J W | |
| Ġ )] | |
| }) )^{* | |
| }} }/\ | |
| }] }+\ | |
| \,\ |\, | |
| {)}\ ) | |
| )\|\ | | |
| Ġ{+ }( | |
| Po is | |
| Ġ cut | |
| &\ |\ | |
| ĠM ap | |
| )| }=\ | |
| Ġm m | |
| dash arrow | |
| SD P | |
| k S | |
| Ġin du | |
| ):= [\ | |
| c le | |
| I mage | |
| V ir | |
| Ġbe long | |
| ter s | |
| e y | |
| )\| +\|\ | |
| Ġu u | |
| )}= \] | |
| x N | |
| 25 00 | |
| C c | |
| W Z | |
| }\ }},\] | |
| Ġ1 11 | |
| {) }-( | |
| {{ ? | |
| ) }|}\ | |
| R ig | |
| )}| |_{ | |
| 6 55 | |
| x T | |
| }\, .\,\ | |
| }}) ,&\ | |
| Ġ=\ , | |
| ĠG en | |
| {|\ { | |
| Cor e | |
| e ar | |
| }) }+( | |
| }\, ^{( | |
| $ }}\, | |
| b er | |
| ĠB x | |
| \},\ ; | |
| }): \| | |
| 66 7 | |
| + }= | |
| ] })^{\ | |
| Ġlo ss | |
| 3749 03 | |
| }^{- {\ | |
| box minus | |
| 10 0000 | |
| ab q | |
| 05 4 | |
| }| }, | |
| .. \ | |
| 26 1 | |
| c pt | |
| }} }}{{=}}\ | |
| tar y | |
| \ })+\ | |
| q L | |
| }) !( | |
| }| )| | |
| check mark | |
| Con j | |
| IJ K | |
| }\;\ ;\; | |
| Ġ* &*& | |
| Ta il | |
| )\ }&\ | |
| }}| |^{ | |
| ba c | |
| 79 2 | |
| 6 18 | |
| m E | |
| )] / | |
| V F | |
| }| }}{\ | |
| (- )\ | |
| bit ra | |
| 3 000 | |
| Ġ ^{*}(\ | |
| lo pe | |
| ^{* }_{- | |
| }\, :\ | |
| Ġ}{ (\ | |
| Ġr ig | |
| Ġhy per | |
| N ef | |
| ^{\ | | |
| }^{+ }:\ | |
| Ġ *\ | |
| ver se | |
| {) }=(\ | |
| Ġc m | |
| }}^{+ }_{ | |
| C ar | |
| J y | |
| b B | |
| ))}\ |\ | |
| 3 16 | |
| _{* })^{\ | |
| 96 9 | |
| b lk | |
| }\| )^{ | |
| Re c | |
| }}\, ,\\ | |
| ter n | |
| })| |_{\ | |
| Ġde nsity | |
| Lin k | |
| 7 00 | |
| ] }}(\ | |
| | }\\ | |
| 75 5 | |
| Ġl k | |
| )! }\,\ | |
| 99 4 | |
| }}{ = | |
| re nt | |
| ess sup | |
| ull i | |
| - }}\ | |
| V E | |
| ! -\! | |
| p K | |
| )\ }+\ | |
| }}\ # | |
| }\}\ !\ | |
| re es | |
| }}^{+ }}\ | |
| J V | |
| Ġ }: | |
| ^{- }}(\ | |
| ^{*} _ | |
| 34 56 | |
| Ġlo cally | |
| ĠA c | |
| ss ing | |
| }))\ |^{ | |
| H y | |
| P w | |
| }\| |\ | |
| Q U | |
| d ddot | |
| r H | |
| r X | |
| ^{* }\|\] | |
| un it | |
| Ġ\ }} | |
| }}_{ *}\ | |
| }} })^{- | |
| for mation | |
| )! !\ | |
| - }) | |
| se l | |
| {| }- | |
| _{* }|^{\ | |
| 4 40 | |
| A ct | |
| V x | |
| {| }_ | |
| )/ {\ | |
| ]\! ]_{\ | |
| bl ue | |
| )\ |}\ | |
| Ġ{- }\ | |
| B n | |
| \{ -( | |
| )) }-\ | |
| _{- }< | |
| F U | |
| ([ -\ | |
| }^{\ ,( | |
| )) ].\] | |
| 05 7 | |
| 7499 43 | |
| K p | |
| Ġ\[ +|\ | |
| ĠP er | |
| ĠP GL | |
| og onal | |
| Ġcyc le | |
| )) ))\] | |
| ĠO ut | |
| 76 9 | |
| Ri em | |
| ar se | |
| ĠB P | |
| no ulli | |
| e A | |
| \[ +(\ | |
| de m | |
| C b | |
| M y | |
| li s | |
| _{* })-\ | |
| }^{+ })- | |
| 38 0 | |
| ^{\# }_{ | |
| SY T | |
| }/ \{ | |
| ref l | |
| 56 6 | |
| H k | |
| J F | |
| }} }},\] | |
| ))= [ | |
| 50 8 | |
| )\ }}\] | |
| _{+ }[ | |
| ĠG S | |
| }^{+ }|\ | |
| 78 5 | |
| Ġst d | |
| Ġcomp lex | |
| }}&= &\ | |
| 96 7 | |
| mm se | |
| ti ce | |
| })}\ .\] | |
| }]\ }_{ | |
| il d | |
| Ġinfinite ly | |
| $ }}\] | |
| d of | |
| in ary | |
| 50 9 | |
| M Z | |
| ĠS R | |
| Ġ- |\ | |
| Ġ+ }( | |
| {* }{\ | |
| Ġb ad | |
| Ġse cond | |
| sw arrow | |
| Ġsing ular | |
| ,\ !\ | |
| val u | |
| ])= [\ | |
| {}{{ }^{*}}{\ | |
| : }&\ | |
| }=\ |( | |
| ] {( | |
| z d | |
| Ġparti tion | |
| ; =\; | |
| k I | |
| op f | |
| Ġt A | |
| ĠG P | |
| )}_{ = | |
| \[[\ ,\ | |
| k X | |
| 44 9 | |
| w b | |
| })= (-\ | |
| ^{*} <\ | |
| })[ [ | |
| s F | |
| }) },&\ | |
| )) |_{\ | |
| st s | |
| con f | |
| }^{+ }&\ | |
| 48 9 | |
| }} }}^{\ | |
| -\ {\ | |
| ^{* },\\ | |
| }] )( | |
| p R | |
| }}_{ =: | |
| }_{+ }\}\] | |
| }}\| _ | |
| radi ent | |
| T s | |
| c tr | |
| )}( |\ | |
| W S | |
| )\, -\, | |
| Ġo bj | |
| ĠT f | |
| Ġcomponent s | |
| { /\!\!/ | |
| \# ( | |
| Ġt s | |
| _{+ })- | |
| Ġ)\ |^{ | |
| ):\ ; | |
| }] }_{\ | |
| 98 0 | |
| P s | |
| }=\ #\ | |
| rac le | |
| & [\ | |
| }) )}\\ | |
| }} },\\ | |
| +( | | |
| _{< }( | |
| + )\ | |
| \, ,& | |
| ĠT N | |
| uv w | |
| 4999 31 | |
| + }+ | |
| X v | |
| Ġ limit | |
| f ac | |
| 0 123 | |
| }\ }}= | |
| }} ]=[ | |
| ^{* _{ | |
| }\| }.\] | |
| Ġdiff er | |
| Ġus ing | |
| u sion | |
| Ġ }}{{\ | |
| }\ }| | |
| me di | |
| )\ ( | |
| }- }\ | |
| _{* }; | |
| ^{+ }\}\] | |
| ))=\ {\ | |
| ))}\ | | |
| Ġ{* }\] | |
| M m | |
| ^{* }}}( | |
| }^{- | | |
| Ġ} |_{ | |
| box dot | |
| })] (\ | |
| c art | |
| }}}\ !\ | |
| 34 1 | |
| Ġval ues | |
| lob al | |
| ),\ | | |
| tr n | |
| X T | |
| u lation | |
| }): \] | |
| - }= | |
| sim ple | |
| * }_{\ | |
| Ġn k | |
| ĠD is | |
| )) ,\, | |
| )\|_{ ( | |
| 75 7 | |
| up per | |
| ,* }_{\ | |
| }{ (( | |
| lom orphic | |
| r st | |
| }| |( | |
| |}{ ** | |
| B ad | |
| li ce | |
| :=\ ! | |
| (| ( | |
| x xt | |
| }| }|\ | |
| Ġf l | |
| Ġv i | |
| Ġoc cu | |
| i U | |
| p P | |
| }) [( | |
| pha se | |
| },- )\ | |
| ,. )\ | |
| R at | |
| c losed | |
| \,\ }.\] | |
| u A | |
| {( |\ | |
| }^{+ }),\ | |
| 48 5 | |
| ment s | |
| T t | |
| g on | |
| na ive | |
| Ġdi stance | |
| }}\! =\!\ | |
| ) }&- | |
| Ġe m | |
| x mapsto | |
| | }_{ | |
| Ġin it | |
| }}[\ |\ | |
| there fore | |
| _{+ })}\ | |
| ^{! }_{\ | |
| ^{- })^{\ | |
| ĠA nn | |
| _{+ }| | |
| }}| <\ | |
| 75 8 | |
| }^{\# } | |
| & =-\ | |
| | {}_{ | |
| re qu | |
| \[{ }^{*}\] | |
| Ber n | |
| ( ^{ | |
| D O | |
| 40 7 | |
| Ġstrict ly | |
| ) _{*}( | |
| }} };\ | |
| }} }(( | |
| 95 8 | |
| }\, :=\ | |
| Ġi u | |
| ĠT F | |
| Ġvariable s | |
| Ġ )\] | |
| }\, / | |
| ĠS S | |
| \[(\ | | |
| 88 8 | |
| peri odic | |
| ) }^{*} | |
| . }}}{{=}} | |
| Q y | |
| })& (\ | |
| \[ ] | |
| )) _{( | |
| )- [\ | |
| arrow left | |
| ^{\# }(\ | |
| }}&= & | |
| H yp | |
| . }{\ | |
| )^{ [\ | |
| tri vial | |
| Ġc en | |
| }}, |\ | |
| else where | |
| 3 10 | |
| co mm | |
| un r | |
| Co f | |
| 77 7 | |
| }}\ ;\;\ | |
| _{- },\] | |
| HF K | |
| }\ {[ | |
| )) ; | |
| 06 8 | |
| ) })}( | |
| ĠD v | |
| vol u | |
| MA X | |
| C w | |
| }= {}_{ | |
| Ġdiag onal | |
| ,\;\;\ ; | |
| C ho | |
| O G | |
| ] }:\ | |
| dx dz | |
| ĠN on | |
| )| -|\ | |
| || |\ | |
| )\| ,\] | |
| 0 64 | |
| ] &=\ | |
| | }&\ | |
| Ġi h | |
| \{( - | |
| Ġor th | |
| Ġ1 44 | |
| 05 9 | |
| E nv | |
| S tar | |
| W x | |
| }^{* }})\] | |
| {| }[ | |
| = _{\ | |
| J E | |
| 50 7 | |
| }), [\ | |
| }})\ }\ | |
| ,+ }^{\ | |
| 80 8 | |
| ] _{+}\ | |
| }] /(\ | |
| * })\] | |
| h X | |
| )] }( | |
| Bi as | |
| ! }-\ | |
| B ir | |
| },\ ,\,\,\ | |
| })\ {\ | |
| &- & | |
| 56 4 | |
| )! }+\ | |
| @ > | |
| L an | |
| Ġ arc | |
| f n | |
| s on | |
| var triangleleft | |
| }^{+ }}| | |
| Ġse p | |
| roll ary | |
| B h | |
| d cl | |
| m P | |
| 30 3 | |
| }( _{ | |
| ĠB R | |
| }}\!\!\ ! | |
| E Q | |
| F y | |
| }$ }_{ | |
| P K | |
| }] |_{ | |
| ĠE qu | |
| ],\ ;\ | |
| t W | |
| _{- }& | |
| ĠU V | |
| |+\ |\ | |
| 76 7 | |
| 0 32 | |
| b R | |
| u rs | |
| Ġ }}^{- | |
| Ġi c | |
| Ġc rit | |
| Ġdu al | |
| ^{! }(\ | |
| [ ]{ | |
| -\ # | |
| ^{* })|\ | |
| }|\ ) | |
| },\, |\ | |
| A l | |
| y r | |
| _{+ }/ | |
| }^{*}\ ! | |
| Ġ err | |
| }} }}{{ | |
| ij m | |
| pt l | |
| })) ^ | |
| AB CD | |
| 96 5 | |
| \[\# _{ | |
| 112 2 | |
| \ })=\{ | |
| RE S | |
| \ })> | |
| si ve | |
| ^{+ }_{( | |
| ([ ( | |
| $ }\, | |
| ĠL M | |
| ,\; ( | |
| g P | |
| \[= : | |
| . \|_{ | |
| }[\ {\ | |
| )}, ...,\ | |
| {)}+ \] | |
| x B | |
| }}| } | |
| U lt | |
| )] |\ | |
| 39 0 | |
| }) )}(\ | |
| cyc le | |
| co mb | |
| )) {\ | |
| 75 9 | |
| c C | |
| Ġ\[=\ {\ | |
| }_{+ }^{( | |
| T est | |
| }^{* }<\ | |
| ĠA A | |
| )}+ |\ | |
| }! }{ | |
| ) }}}{{=}}\ | |
| v q | |
| ^{\ |\ | |
| {| {\ | |
| }}= +\ | |
| fin al | |
| - }- | |
| M k | |
| H or | |
| }( = | |
| }\ }}^{ | |
| \| -\| | |
| 26 3 | |
| h as | |
| }| )}{ | |
| 45 4 | |
| 000 2 | |
| 76 6 | |
| fix ed | |
| }) )^{*}\] | |
| ))\, ,\ | |
| |\!|\! | | |
| }}| ^{- | |
| o ci | |
| q M | |
| }^{* }}-\ | |
| )$ }\ | |
| ) *}\ | |
| c H | |
| 50 6 | |
| }) }>\ | |
| }}^{* })^{ | |
| > } | |
| y d | |
| })= -(\ | |
| }|\ {\ | |
| ĠH ess | |
| Re m | |
| gra de | |
| \| : | |
| 48 7 | |
| })]\ ! | |
| 4 29 | |
| L w | |
| {| }{\ | |
| Ġb l | |
| Ġdivi des | |
| R Z | |
| }^{ !} | |
| }| _{\{ | |
| ĠT S | |
| }}^{+ }=\ | |
| Ġeigen value | |
| )$ },\] | |
| rel int | |
| \# \{ | |
| ĠP o | |
| N g | |
| ĠC W | |
| ĠT est | |
| }_{+ }:\ | |
| Ġ\, =\,\ | |
| 56 5 | |
| J C | |
| 44 7 | |
| B GL | |
| T ime | |
| Ġh t | |
| 28 1 | |
| / (( | |
| ri ch | |
| E g | |
| s M | |
| )}^{ [ | |
| Ġinter se | |
| 0 60 | |
| V G | |
| { ' | |
| til t | |
| if ied | |
| [ { | |
| }) }}^{ | |
| }_{ +\ | |
| par ti | |
| 06 5 | |
| C lo | |
| G X | |
| Ġ\ !\! | |
| ^{-\ | | |
| }): \,\ | |
| ]+ \] | |
| CA T | |
| c F | |
| }- (( | |
| Ġc x | |
| },& | | |
| }) }}= | |
| le ction | |
| chi ld | |
| ]- [\ | |
| Q F | |
| {\ !\! | |
| Ġ\ ;\; | |
| cu ra | |
| ĠB L | |
| | ]\ | |
| }- (-\ | |
| Ġs cal | |
| , || | |
| L c | |
| Ġp s | |
| q X | |
| 13 24 | |
| }_{* }^{( | |
| H J | |