--- license: apache-2.0 datasets: - OmniSVG/MMSVG-Icon - OmniSVG/MMSVG-Illustration - OmniSVG/MMSVGBench language: - en - zh base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: text-generation tags: - SVG - Image-to-SVG - Text-to-SVG ---

OmniSVG: A Unified Scalable Vector Graphics Generation Model

              

Demo GIF

## 1. Introduction **OmniSVG** is the first family of end-to-end multimodal SVG generators that leverage pre-trained Vision-Language Models (VLMs), capable of generating complex and detailed SVGs, from simple icons to intricate anime characters. We also introduce MMSVG-2M, a multimodal dataset with two million richly annotated SVG assets, along with a standardized evaluation protocol for conditional SVG generation tasks. ## 2. Models Downloading | Model | Download link | Size | Update date | |-----------------------------|-------------------------------|------------|------| | OmniSVG1.1-8B| 🤗 [Huggingface](https://huggingface.co/OmniSVG/OmniSVG1.1_8B) | 17.2 GB | 2025-12-02 | ## 3. Dependencies and Installation The dependencies configured according to the following instructions provide an environment equipped for inference ### 3.1 Clone the Repository ```bash git clone https://github.com/OmniSVG/OmniSVG.git cd OmniSVG ``` ### 3.2 Create Conda Environment Create and activate a new conda environment with Python 3.10: ```bash conda create -n omnisvg python=3.10 conda activate omnisvg ``` ### 3.3 Install Dependencies #### System Dependencies Before installing Python packages, you need to install Cairo library which is required by `CairoSVG` in our dependencies: **macOS:** ```bash brew install cairo ``` **Linux (Ubuntu/Debian):** ```bash sudo apt update sudo apt install libcairo2 libcairo2-dev ``` > **Note:** Installing Cairo system library beforehand helps prevent potential build errors when installing `CairoSVG` via pip. #### Python Dependencies We have tested our environment with CUDA 12.1. You can install CUDA 12.1 by following the [CUDA Toolkit installation guide](https://developer.nvidia.com/cuda-12-1-0-download-archive). Install PyTorch with CUDA 12.1 support: ```bash pip install torch==2.3.0+cu121 torchvision==0.18.0+cu121 --index-url https://download.pytorch.org/whl/cu121 ``` Install remaining dependencies: ```bash pip install -r requirements.txt ``` ## 4. Inference Script | | GPU Memory Usage | Time per 256/512/1024/2048/4096 tokens | | ------------------------------------------------ | ---------------- | ----------------- | | OmniSVG1.1_8B | 26G | 5.38/9.02/20.11/40.34/98.11 seconds | **Note: The inference time shown here is measured per OmniSVG SVG tokens, while the inference time reported in our paper is measured per XML code tokens for fair comparison with baseline methods.** ### Quick Start **Download Model Weights** First, install the Hugging Face CLI tool: ```bash pip install huggingface-hub ``` **Download the model from Hugging Face:** ```bash # Download OmniSVG1.1-8B huggingface-cli download OmniSVG/OmniSVG1.1_8B --local-dir /PATH/TO/OmniSVG1.1_8B # Download OmniSVG1.1-4B huggingface-cli download OmniSVG/OmniSVG1.1_4B --local-dir /PATH/TO/OmniSVG1.1_4B # Download OmniSVG-3B (legacy) huggingface-cli download OmniSVG/OmniSVG --local-dir /PATH/TO/OmniSVG-3B ``` ### Text-to-SVG Generation **Basic usage - Generate SVG from txt file:** ```bash python inference.py --task text-to-svg --input prompts.txt --output ./output_text --save-all-candidates ``` **Use 4B model:** ```bash python inference.py --task text-to-svg --input prompts.txt --output ./output_text --model-size 4B --save-all-candidates ``` **Generate more candidates and save PNG:** ```bash python inference.py --task text-to-svg --input prompts.txt --output ./output_text \ --num-candidates 8 --save-png --save-all-candidates ``` **Custom generation parameters:** ```bash python inference.py --task text-to-svg --input prompts.txt --output ./output_text \ --temperature 0.5 --top-p 0.9 --top-k 50 --repetition-penalty 1.05 ``` **Use local model:** ```bash python inference.py --task text-to-svg --input prompts.txt --output ./output_text \ --model-path /path/to/qwen --weight-path /path/to/omnisvg ``` ### Image-to-SVG Generation ```bash python inference.py --task image-to-svg --input ./examples --output ./output_image --save-all-candidates ``` ### Interactive Demo We provide an interactive generation interface using Gradio: - **Local Deployment** ```bash python app.py ``` - **Online Demo** Try our live demo on [Hugging Face Spaces](https://huggingface.co/spaces/OmniSVG/OmniSVG) ## 5. License OmniSVG is licensed under the [**Apache License 2.0**](https://www.apache.org/licenses/LICENSE-2.0), while MMSVG dataset is under [**Creative Commons Attribution Non Commercial Share Alike 4.0 License**](https://spdx.org/licenses/CC-BY-NC-SA-4.0). You can find the license files in the respective github and HuggingFace repositories. ## Citation ```bibtex @article{yang2025omnisvg, title={OmniSVG: A Unified Scalable Vector Graphics Generation Model}, author={Yiying Yang and Wei Cheng and Sijin Chen and Xianfang Zeng and Jiaxu Zhang and Liao Wang and Gang Yu and Xinjun Ma and Yu-Gang Jiang}, journal={arXiv preprint arxiv:2504.06263}, year={2025} } ``` ## Acknowledgments We thank the following excellent open-source works: **IconShop**: is the first advanced work that leverages LLMs to generate monochrome, icon-level SVGs. We referred to its parametric implementation. Here is the list of highly related concurrent works: **LLM4SVG**: treats SVG coordinates as number strings and predicts decimal part for higher spatial accuracy. **StarVector**: equips LLM with an image encoder for Image-to-SVG generation.