Upload README.md with huggingface_hub
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,302 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            license: apache-2.0
         | 
| 4 | 
            +
            library_name: pytorch
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - deep-reinforcement-learning
         | 
| 7 | 
            +
            - reinforcement-learning
         | 
| 8 | 
            +
            - DI-engine
         | 
| 9 | 
            +
            - PongNoFrameskip-v4
         | 
| 10 | 
            +
            benchmark_name: OpenAI/Gym/Atari
         | 
| 11 | 
            +
            task_name: PongNoFrameskip-v4
         | 
| 12 | 
            +
            pipeline_tag: reinforcement-learning
         | 
| 13 | 
            +
            model-index:
         | 
| 14 | 
            +
            - name: MuZero
         | 
| 15 | 
            +
              results:
         | 
| 16 | 
            +
              - task:
         | 
| 17 | 
            +
                  type: reinforcement-learning
         | 
| 18 | 
            +
                  name: reinforcement-learning
         | 
| 19 | 
            +
                dataset:
         | 
| 20 | 
            +
                  name: PongNoFrameskip-v4
         | 
| 21 | 
            +
                  type: PongNoFrameskip-v4
         | 
| 22 | 
            +
                metrics:
         | 
| 23 | 
            +
                - type: mean_reward
         | 
| 24 | 
            +
                  value: 20.4 +/- 0.49
         | 
| 25 | 
            +
                  name: mean_reward
         | 
| 26 | 
            +
            ---
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # Play **PongNoFrameskip-v4** with **MuZero** Policy
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Model Description
         | 
| 31 | 
            +
            <!-- Provide a longer summary of what this model is. -->
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            This implementation applies **MuZero** to the OpenAI/Gym/Atari **PongNoFrameskip-v4** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            **LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ## Model Usage
         | 
| 38 | 
            +
            ### Install the Dependencies
         | 
| 39 | 
            +
            <details close>
         | 
| 40 | 
            +
            <summary>(Click for Details)</summary>
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ```shell
         | 
| 43 | 
            +
            # install huggingface_ding
         | 
| 44 | 
            +
            git clone https://github.com/opendilab/huggingface_ding.git
         | 
| 45 | 
            +
            pip3 install -e ./huggingface_ding/
         | 
| 46 | 
            +
            # install environment dependencies if needed
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            pip3 install DI-engine[common_env,video]
         | 
| 49 | 
            +
            pip3 install LightZero
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            ```
         | 
| 52 | 
            +
            </details>
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            ### Git Clone from Huggingface and Run the Model
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            <details close>
         | 
| 57 | 
            +
            <summary>(Click for Details)</summary>
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ```shell
         | 
| 60 | 
            +
            # running with trained model
         | 
| 61 | 
            +
            python3 -u run.py
         | 
| 62 | 
            +
            ```
         | 
| 63 | 
            +
            **run.py**
         | 
| 64 | 
            +
            ```python
         | 
| 65 | 
            +
            from lzero.agent import MuZeroAgent
         | 
| 66 | 
            +
            from ding.config import Config
         | 
| 67 | 
            +
            from easydict import EasyDict
         | 
| 68 | 
            +
            import torch
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            # Pull model from files which are git cloned from huggingface
         | 
| 71 | 
            +
            policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
         | 
| 72 | 
            +
            cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
         | 
| 73 | 
            +
            # Instantiate the agent
         | 
| 74 | 
            +
            agent = MuZeroAgent(
         | 
| 75 | 
            +
                env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
         | 
| 76 | 
            +
            )
         | 
| 77 | 
            +
            # Continue training
         | 
| 78 | 
            +
            agent.train(step=5000)
         | 
| 79 | 
            +
            # Render the new agent performance
         | 
| 80 | 
            +
            agent.deploy(enable_save_replay=True)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            ```
         | 
| 83 | 
            +
            </details>
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            ### Run Model by Using Huggingface_ding
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            <details close>
         | 
| 88 | 
            +
            <summary>(Click for Details)</summary>
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            ```shell
         | 
| 91 | 
            +
            # running with trained model
         | 
| 92 | 
            +
            python3 -u run.py
         | 
| 93 | 
            +
            ```
         | 
| 94 | 
            +
            **run.py**
         | 
| 95 | 
            +
            ```python
         | 
| 96 | 
            +
            from lzero.agent import MuZeroAgent
         | 
| 97 | 
            +
            from huggingface_ding import pull_model_from_hub
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            # Pull model from Hugggingface hub
         | 
| 100 | 
            +
            policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/PongNoFrameskip-v4-MuZero")
         | 
| 101 | 
            +
            # Instantiate the agent
         | 
| 102 | 
            +
            agent = MuZeroAgent(
         | 
| 103 | 
            +
                env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
         | 
| 104 | 
            +
            )
         | 
| 105 | 
            +
            # Continue training
         | 
| 106 | 
            +
            agent.train(step=5000)
         | 
| 107 | 
            +
            # Render the new agent performance
         | 
| 108 | 
            +
            agent.deploy(enable_save_replay=True)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            ```
         | 
| 111 | 
            +
            </details>
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            ## Model Training
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            ### Train the Model and Push to Huggingface_hub
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            <details close>
         | 
| 118 | 
            +
            <summary>(Click for Details)</summary>
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            ```shell
         | 
| 121 | 
            +
            #Training Your Own Agent
         | 
| 122 | 
            +
            python3 -u train.py
         | 
| 123 | 
            +
            ```
         | 
| 124 | 
            +
            **train.py**
         | 
| 125 | 
            +
            ```python
         | 
| 126 | 
            +
            from lzero.agent import MuZeroAgent
         | 
| 127 | 
            +
            from huggingface_ding import push_model_to_hub
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            # Instantiate the agent
         | 
| 130 | 
            +
            agent = MuZeroAgent(env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero")
         | 
| 131 | 
            +
            # Train the agent
         | 
| 132 | 
            +
            return_ = agent.train(step=int(500000))
         | 
| 133 | 
            +
            # Push model to huggingface hub
         | 
| 134 | 
            +
            push_model_to_hub(
         | 
| 135 | 
            +
                agent=agent.best,
         | 
| 136 | 
            +
                env_name="OpenAI/Gym/Atari",
         | 
| 137 | 
            +
                task_name="PongNoFrameskip-v4",
         | 
| 138 | 
            +
                algo_name="MuZero",
         | 
| 139 | 
            +
                github_repo_url="https://github.com/opendilab/LightZero",
         | 
| 140 | 
            +
                github_doc_model_url=None,
         | 
| 141 | 
            +
                github_doc_env_url=None,
         | 
| 142 | 
            +
                installation_guide='''
         | 
| 143 | 
            +
            pip3 install DI-engine[common_env,video]
         | 
| 144 | 
            +
            pip3 install LightZero
         | 
| 145 | 
            +
            ''',
         | 
| 146 | 
            +
                usage_file_by_git_clone="./muzero/pong_muzero_deploy.py",
         | 
| 147 | 
            +
                usage_file_by_huggingface_ding="./muzero/pong_muzero_download.py",
         | 
| 148 | 
            +
                train_file="./muzero/pong_muzero.py",
         | 
| 149 | 
            +
                repo_id="OpenDILabCommunity/PongNoFrameskip-v4-MuZero",
         | 
| 150 | 
            +
                platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
         | 
| 151 | 
            +
                model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
         | 
| 152 | 
            +
                create_repo=True
         | 
| 153 | 
            +
            )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            ```
         | 
| 156 | 
            +
            </details>
         | 
| 157 | 
            +
             | 
| 158 | 
            +
            **Configuration**
         | 
| 159 | 
            +
            <details close>
         | 
| 160 | 
            +
            <summary>(Click for Details)</summary>
         | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
            ```python
         | 
| 164 | 
            +
            exp_config = {
         | 
| 165 | 
            +
                'main_config': {
         | 
| 166 | 
            +
                    'exp_name': 'PongNoFrameskip-v4-MuZero',
         | 
| 167 | 
            +
                    'seed': 0,
         | 
| 168 | 
            +
                    'env': {
         | 
| 169 | 
            +
                        'stop_value': 1000000,
         | 
| 170 | 
            +
                        'env_id': 'PongNoFrameskip-v4',
         | 
| 171 | 
            +
                        'env_name': 'PongNoFrameskip-v4',
         | 
| 172 | 
            +
                        'obs_shape': [4, 96, 96],
         | 
| 173 | 
            +
                        'collector_env_num': 8,
         | 
| 174 | 
            +
                        'evaluator_env_num': 3,
         | 
| 175 | 
            +
                        'n_evaluator_episode': 3,
         | 
| 176 | 
            +
                        'manager': {
         | 
| 177 | 
            +
                            'shared_memory': False
         | 
| 178 | 
            +
                        }
         | 
| 179 | 
            +
                    },
         | 
| 180 | 
            +
                    'policy': {
         | 
| 181 | 
            +
                        'on_policy': False,
         | 
| 182 | 
            +
                        'cuda': True,
         | 
| 183 | 
            +
                        'multi_gpu': False,
         | 
| 184 | 
            +
                        'bp_update_sync': True,
         | 
| 185 | 
            +
                        'traj_len_inf': False,
         | 
| 186 | 
            +
                        'model': {
         | 
| 187 | 
            +
                            'observation_shape': [4, 96, 96],
         | 
| 188 | 
            +
                            'frame_stack_num': 4,
         | 
| 189 | 
            +
                            'action_space_size': 6,
         | 
| 190 | 
            +
                            'downsample': True,
         | 
| 191 | 
            +
                            'self_supervised_learning_loss': True,
         | 
| 192 | 
            +
                            'discrete_action_encoding_type': 'one_hot',
         | 
| 193 | 
            +
                            'norm_type': 'BN'
         | 
| 194 | 
            +
                        },
         | 
| 195 | 
            +
                        'use_rnd_model': False,
         | 
| 196 | 
            +
                        'sampled_algo': False,
         | 
| 197 | 
            +
                        'gumbel_algo': False,
         | 
| 198 | 
            +
                        'mcts_ctree': True,
         | 
| 199 | 
            +
                        'collector_env_num': 8,
         | 
| 200 | 
            +
                        'evaluator_env_num': 3,
         | 
| 201 | 
            +
                        'env_type': 'not_board_games',
         | 
| 202 | 
            +
                        'action_type': 'fixed_action_space',
         | 
| 203 | 
            +
                        'battle_mode': 'play_with_bot_mode',
         | 
| 204 | 
            +
                        'monitor_extra_statistics': True,
         | 
| 205 | 
            +
                        'game_segment_length': 400,
         | 
| 206 | 
            +
                        'transform2string': False,
         | 
| 207 | 
            +
                        'gray_scale': False,
         | 
| 208 | 
            +
                        'use_augmentation': True,
         | 
| 209 | 
            +
                        'augmentation': ['shift', 'intensity'],
         | 
| 210 | 
            +
                        'ignore_done': False,
         | 
| 211 | 
            +
                        'update_per_collect': 1000,
         | 
| 212 | 
            +
                        'model_update_ratio': 0.1,
         | 
| 213 | 
            +
                        'batch_size': 256,
         | 
| 214 | 
            +
                        'optim_type': 'SGD',
         | 
| 215 | 
            +
                        'learning_rate': 0.2,
         | 
| 216 | 
            +
                        'target_update_freq': 100,
         | 
| 217 | 
            +
                        'target_update_freq_for_intrinsic_reward': 1000,
         | 
| 218 | 
            +
                        'weight_decay': 0.0001,
         | 
| 219 | 
            +
                        'momentum': 0.9,
         | 
| 220 | 
            +
                        'grad_clip_value': 10,
         | 
| 221 | 
            +
                        'n_episode': 8,
         | 
| 222 | 
            +
                        'num_simulations': 50,
         | 
| 223 | 
            +
                        'discount_factor': 0.997,
         | 
| 224 | 
            +
                        'td_steps': 5,
         | 
| 225 | 
            +
                        'num_unroll_steps': 5,
         | 
| 226 | 
            +
                        'reward_loss_weight': 1,
         | 
| 227 | 
            +
                        'value_loss_weight': 0.25,
         | 
| 228 | 
            +
                        'policy_loss_weight': 1,
         | 
| 229 | 
            +
                        'policy_entropy_loss_weight': 0,
         | 
| 230 | 
            +
                        'ssl_loss_weight': 2,
         | 
| 231 | 
            +
                        'lr_piecewise_constant_decay': True,
         | 
| 232 | 
            +
                        'threshold_training_steps_for_final_lr': 50000,
         | 
| 233 | 
            +
                        'manual_temperature_decay': False,
         | 
| 234 | 
            +
                        'threshold_training_steps_for_final_temperature': 100000,
         | 
| 235 | 
            +
                        'fixed_temperature_value': 0.25,
         | 
| 236 | 
            +
                        'use_ture_chance_label_in_chance_encoder': False,
         | 
| 237 | 
            +
                        'use_priority': True,
         | 
| 238 | 
            +
                        'priority_prob_alpha': 0.6,
         | 
| 239 | 
            +
                        'priority_prob_beta': 0.4,
         | 
| 240 | 
            +
                        'root_dirichlet_alpha': 0.3,
         | 
| 241 | 
            +
                        'root_noise_weight': 0.25,
         | 
| 242 | 
            +
                        'random_collect_episode_num': 0,
         | 
| 243 | 
            +
                        'eps': {
         | 
| 244 | 
            +
                            'eps_greedy_exploration_in_collect': False,
         | 
| 245 | 
            +
                            'type': 'linear',
         | 
| 246 | 
            +
                            'start': 1.0,
         | 
| 247 | 
            +
                            'end': 0.05,
         | 
| 248 | 
            +
                            'decay': 100000
         | 
| 249 | 
            +
                        },
         | 
| 250 | 
            +
                        'cfg_type': 'MuZeroPolicyDict',
         | 
| 251 | 
            +
                        'reanalyze_ratio': 0.0,
         | 
| 252 | 
            +
                        'eval_freq': 2000,
         | 
| 253 | 
            +
                        'replay_buffer_size': 1000000
         | 
| 254 | 
            +
                    },
         | 
| 255 | 
            +
                    'wandb_logger': {
         | 
| 256 | 
            +
                        'gradient_logger': False,
         | 
| 257 | 
            +
                        'video_logger': False,
         | 
| 258 | 
            +
                        'plot_logger': False,
         | 
| 259 | 
            +
                        'action_logger': False,
         | 
| 260 | 
            +
                        'return_logger': False
         | 
| 261 | 
            +
                    }
         | 
| 262 | 
            +
                },
         | 
| 263 | 
            +
                'create_config': {
         | 
| 264 | 
            +
                    'env': {
         | 
| 265 | 
            +
                        'type': 'atari_lightzero',
         | 
| 266 | 
            +
                        'import_names': ['zoo.atari.envs.atari_lightzero_env']
         | 
| 267 | 
            +
                    },
         | 
| 268 | 
            +
                    'env_manager': {
         | 
| 269 | 
            +
                        'type': 'subprocess'
         | 
| 270 | 
            +
                    },
         | 
| 271 | 
            +
                    'policy': {
         | 
| 272 | 
            +
                        'type': 'muzero',
         | 
| 273 | 
            +
                        'import_names': ['lzero.policy.muzero']
         | 
| 274 | 
            +
                    }
         | 
| 275 | 
            +
                }
         | 
| 276 | 
            +
            }
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            ```
         | 
| 279 | 
            +
            </details>
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            **Training Procedure** 
         | 
| 282 | 
            +
            <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
         | 
| 283 | 
            +
            - **Weights & Biases (wandb):** [monitor link](<TODO>)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
            ## Model Information
         | 
| 286 | 
            +
            <!-- Provide the basic links for the model. -->
         | 
| 287 | 
            +
            - **Github Repository:** [repo link](https://github.com/opendilab/LightZero)
         | 
| 288 | 
            +
            - **Doc**: [Algorithm link](<TODO>)
         | 
| 289 | 
            +
            - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-MuZero/blob/main/policy_config.py)
         | 
| 290 | 
            +
            - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-MuZero/blob/main/replay.mp4)
         | 
| 291 | 
            +
            <!-- Provide the size information for the model. -->
         | 
| 292 | 
            +
            - **Parameters total size:** 24013.13 KB
         | 
| 293 | 
            +
            - **Last Update Date:** 2023-12-15
         | 
| 294 | 
            +
             | 
| 295 | 
            +
            ## Environments
         | 
| 296 | 
            +
            <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
         | 
| 297 | 
            +
            - **Benchmark:** OpenAI/Gym/Atari
         | 
| 298 | 
            +
            - **Task:** PongNoFrameskip-v4
         | 
| 299 | 
            +
            - **Gym version:** 0.25.1
         | 
| 300 | 
            +
            - **DI-engine version:** v0.5.0
         | 
| 301 | 
            +
            - **PyTorch version:** 2.0.1+cu117
         | 
| 302 | 
            +
            - **Doc**: [Environments link](<TODO>)
         | 

