MaziyarPanahi commited on
Commit
e76bdc2
·
verified ·
1 Parent(s): 1e35215

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Pathology-Multi-209M

Browse files
Files changed (1) hide show
  1. README.md +2 -4
README.md CHANGED
@@ -95,7 +95,7 @@ The NCBI Disease corpus is a gold-standard dataset containing 793 PubMed abstrac
95
  ### Installation
96
 
97
  ```bash
98
- pip install gliner==0.2.21
99
  ```
100
 
101
  ### Usage
@@ -108,7 +108,7 @@ from transformers import pipeline
108
  model_name = "OpenMed/OpenMed-ZeroShot-NER-Pathology-Multi-209M"
109
 
110
  from gliner import GLiNER
111
- model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Pathology-Multi-209M")
112
 
113
  # Example usage with default entity types
114
  text = "Early detection of breast cancer improves survival rates."
@@ -161,8 +161,6 @@ This model is particularly useful for:
161
  - **Input**: Biomedical text
162
  - **Output**: Named entity predictions
163
 
164
- For more information about GLiNER, visit the [GLiNER repository](https://github.com/urchade/gliner).
165
-
166
  ## 📜 License
167
 
168
  Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
 
95
  ### Installation
96
 
97
  ```bash
98
+ pip install -q "gliner[tokenizers]"
99
  ```
100
 
101
  ### Usage
 
108
  model_name = "OpenMed/OpenMed-ZeroShot-NER-Pathology-Multi-209M"
109
 
110
  from gliner import GLiNER
111
+ model = GLiNER.from_pretrained(model_name)
112
 
113
  # Example usage with default entity types
114
  text = "Early detection of breast cancer improves survival rates."
 
161
  - **Input**: Biomedical text
162
  - **Output**: Named entity predictions
163
 
 
 
164
  ## 📜 License
165
 
166
  Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.