feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Pathology-Multi-209M
Browse files
README.md
CHANGED
|
@@ -95,7 +95,7 @@ The NCBI Disease corpus is a gold-standard dataset containing 793 PubMed abstrac
|
|
| 95 |
### Installation
|
| 96 |
|
| 97 |
```bash
|
| 98 |
-
pip install gliner
|
| 99 |
```
|
| 100 |
|
| 101 |
### Usage
|
|
@@ -108,7 +108,7 @@ from transformers import pipeline
|
|
| 108 |
model_name = "OpenMed/OpenMed-ZeroShot-NER-Pathology-Multi-209M"
|
| 109 |
|
| 110 |
from gliner import GLiNER
|
| 111 |
-
model = GLiNER.from_pretrained(
|
| 112 |
|
| 113 |
# Example usage with default entity types
|
| 114 |
text = "Early detection of breast cancer improves survival rates."
|
|
@@ -161,8 +161,6 @@ This model is particularly useful for:
|
|
| 161 |
- **Input**: Biomedical text
|
| 162 |
- **Output**: Named entity predictions
|
| 163 |
|
| 164 |
-
For more information about GLiNER, visit the [GLiNER repository](https://github.com/urchade/gliner).
|
| 165 |
-
|
| 166 |
## 📜 License
|
| 167 |
|
| 168 |
Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
|
|
|
|
| 95 |
### Installation
|
| 96 |
|
| 97 |
```bash
|
| 98 |
+
pip install -q "gliner[tokenizers]"
|
| 99 |
```
|
| 100 |
|
| 101 |
### Usage
|
|
|
|
| 108 |
model_name = "OpenMed/OpenMed-ZeroShot-NER-Pathology-Multi-209M"
|
| 109 |
|
| 110 |
from gliner import GLiNER
|
| 111 |
+
model = GLiNER.from_pretrained(model_name)
|
| 112 |
|
| 113 |
# Example usage with default entity types
|
| 114 |
text = "Early detection of breast cancer improves survival rates."
|
|
|
|
| 161 |
- **Input**: Biomedical text
|
| 162 |
- **Output**: Named entity predictions
|
| 163 |
|
|
|
|
|
|
|
| 164 |
## 📜 License
|
| 165 |
|
| 166 |
Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
|