| import torch | |
| from torch import nn | |
| class SimpleRMSNorm(nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-6): | |
| super().__init__() | |
| self.eps = eps | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
| def forward(self, x): | |
| output = self._norm(x.float()).type_as(x) | |
| return output | 
