Commit
·
a706060
1
Parent(s):
dbdaec7
Fix issuse regarding to transformer version
Browse files- generation_config.json +5 -2
- modeling_transnormer.py +145 -279
- tokenization_baichuan.py +5 -5
generation_config.json
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
"bos_token_id": 1,
|
| 4 |
"eos_token_id": 2,
|
| 5 |
-
"
|
|
|
|
|
|
|
|
|
|
| 6 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"pad_token_id": 0,
|
| 3 |
"bos_token_id": 1,
|
| 4 |
"eos_token_id": 2,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"temperature": 1.0,
|
| 7 |
+
"repetition_penalty": 1.03,
|
| 8 |
+
"do_sample": true
|
| 9 |
}
|
modeling_transnormer.py
CHANGED
|
@@ -11,8 +11,7 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
# coding=utf-8
|
| 16 |
""" PyTorch Transnormer model."""
|
| 17 |
import math
|
| 18 |
import os
|
|
@@ -29,7 +28,6 @@ from transformers.activations import ACT2FN
|
|
| 29 |
from transformers.modeling_outputs import (
|
| 30 |
BaseModelOutputWithPast,
|
| 31 |
CausalLMOutputWithPast,
|
| 32 |
-
SequenceClassifierOutputWithPast,
|
| 33 |
)
|
| 34 |
from transformers.modeling_utils import PreTrainedModel
|
| 35 |
from transformers.utils import (
|
|
@@ -85,7 +83,6 @@ if not has_lightning_attention:
|
|
| 85 |
########## start Transnormer
|
| 86 |
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
|
| 87 |
class Lrpe(nn.Module):
|
| 88 |
-
|
| 89 |
def __init__(
|
| 90 |
self,
|
| 91 |
num_heads=8,
|
|
@@ -95,8 +92,9 @@ class Lrpe(nn.Module):
|
|
| 95 |
d = num_heads * embed_dim
|
| 96 |
|
| 97 |
self.index = torch.empty(0)
|
| 98 |
-
self.theta = nn.Parameter(
|
| 99 |
-
num_heads, 1, -1)
|
|
|
|
| 100 |
|
| 101 |
def extra_repr(self):
|
| 102 |
return print_module(self)
|
|
@@ -115,7 +113,6 @@ class Lrpe(nn.Module):
|
|
| 115 |
|
| 116 |
|
| 117 |
class GLU(nn.Module):
|
| 118 |
-
|
| 119 |
def __init__(self, d1, d2, bias=False):
|
| 120 |
super().__init__()
|
| 121 |
if debug:
|
|
@@ -138,7 +135,6 @@ class GLU(nn.Module):
|
|
| 138 |
|
| 139 |
|
| 140 |
class NormLinearAttention(nn.Module):
|
| 141 |
-
|
| 142 |
def __init__(
|
| 143 |
self,
|
| 144 |
embed_dim,
|
|
@@ -194,7 +190,7 @@ class NormLinearAttention(nn.Module):
|
|
| 194 |
output_attentions,
|
| 195 |
past_key_value,
|
| 196 |
use_cache,
|
| 197 |
-
slope_rate
|
| 198 |
)
|
| 199 |
# x: b n d
|
| 200 |
n = x.shape[-2]
|
|
@@ -202,8 +198,8 @@ class NormLinearAttention(nn.Module):
|
|
| 202 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 203 |
# reshape
|
| 204 |
q, k, v = map(
|
| 205 |
-
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
| 206 |
-
|
| 207 |
# act
|
| 208 |
q = self.act(q)
|
| 209 |
k = self.act(k)
|
|
@@ -211,7 +207,7 @@ class NormLinearAttention(nn.Module):
|
|
| 211 |
q_offset = 0
|
| 212 |
# lrpe relys on position, get cache first
|
| 213 |
if past_key_value is not None:
|
| 214 |
-
# reuse k, v,
|
| 215 |
k = torch.cat([past_key_value[0], k], dim=-2)
|
| 216 |
v = torch.cat([past_key_value[1], v], dim=-2)
|
| 217 |
q_offset = past_key_value[0].shape[-2]
|
|
@@ -228,17 +224,17 @@ class NormLinearAttention(nn.Module):
|
|
| 228 |
|
| 229 |
if attn_padding_mask is not None:
|
| 230 |
v = v.masked_fill(
|
| 231 |
-
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
|
| 232 |
-
|
| 233 |
|
| 234 |
if not has_lightning_attention:
|
| 235 |
if slope_rate != None:
|
| 236 |
attn_mask = torch.exp(slope_rate * attn_mask)
|
| 237 |
-
|
| 238 |
output = linear_attention(q, k, v, attn_mask)
|
| 239 |
else:
|
| 240 |
-
output = lightning_attention(
|
| 241 |
-
|
|
|
|
| 242 |
|
| 243 |
# reshape
|
| 244 |
output = rearrange(output, "b h n d -> b n (h d)")
|
|
@@ -257,14 +253,14 @@ class NormLinearAttention(nn.Module):
|
|
| 257 |
return output, attn_weights, past_key_value
|
| 258 |
|
| 259 |
def inference(
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
):
|
| 269 |
# x: b n d
|
| 270 |
n = x.shape[-2]
|
|
@@ -272,8 +268,8 @@ class NormLinearAttention(nn.Module):
|
|
| 272 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 273 |
# reshape
|
| 274 |
q, k, v = map(
|
| 275 |
-
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
| 276 |
-
|
| 277 |
# act
|
| 278 |
q = self.act(q)
|
| 279 |
k = self.act(k)
|
|
@@ -281,7 +277,7 @@ class NormLinearAttention(nn.Module):
|
|
| 281 |
# rpe
|
| 282 |
if self.linear_use_lrpe:
|
| 283 |
q = self.lrpe(q, offset=self.offset)
|
| 284 |
-
k = self.lrpe(k
|
| 285 |
|
| 286 |
if past_key_value == None:
|
| 287 |
self.offset = q.shape[-2]
|
|
@@ -299,8 +295,7 @@ class NormLinearAttention(nn.Module):
|
|
| 299 |
|
| 300 |
if attn_padding_mask is not None:
|
| 301 |
attn_mask = attn_mask.masked_fill(
|
| 302 |
-
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(
|
| 303 |
-
torch.bool),
|
| 304 |
0,
|
| 305 |
)
|
| 306 |
energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
|
|
@@ -311,18 +306,17 @@ class NormLinearAttention(nn.Module):
|
|
| 311 |
output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
|
| 312 |
|
| 313 |
eval_and_not_generate = eval(
|
| 314 |
-
os.environ.get("eval_and_not_generate", default="False")
|
|
|
|
| 315 |
if eval_and_not_generate:
|
| 316 |
kv = None
|
| 317 |
else:
|
| 318 |
# b, h, n, e, d
|
| 319 |
-
kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d",
|
| 320 |
-
k, v)
|
| 321 |
# 1, 1, n, 1, 1
|
| 322 |
-
index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1,
|
| 323 |
-
1).to(x)
|
| 324 |
# (h, 1, 1) -> (1, h, 1, 1, 1); (1, h, 1, 1, 1), (1, 1, n, 1, 1) -> (1, h, n, 1, 1)
|
| 325 |
-
decay = ratio.unsqueeze(0).unsqueeze(-1)**index
|
| 326 |
|
| 327 |
kv_outproduct_with_decay = kv_outproduct * decay
|
| 328 |
kv = torch.sum(kv_outproduct_with_decay, dim=-3)
|
|
@@ -333,11 +327,12 @@ class NormLinearAttention(nn.Module):
|
|
| 333 |
for i in range(n):
|
| 334 |
kv = ratio * kv + torch.einsum(
|
| 335 |
"... n d, ... n e -> ... d e",
|
| 336 |
-
k[:, :, i:i + 1],
|
| 337 |
-
v[:, :, i:i + 1],
|
|
|
|
|
|
|
|
|
|
| 338 |
)
|
| 339 |
-
qkv = torch.einsum("... n e, ... e d -> ... n d",
|
| 340 |
-
q[:, :, i:i + 1], kv)
|
| 341 |
output.append(qkv)
|
| 342 |
output = torch.concat(output, dim=-2)
|
| 343 |
|
|
@@ -356,7 +351,6 @@ class NormLinearAttention(nn.Module):
|
|
| 356 |
|
| 357 |
|
| 358 |
class TransnormerDecoderLayer(nn.Module):
|
| 359 |
-
|
| 360 |
def __init__(self, config: TransnormerConfig):
|
| 361 |
super().__init__()
|
| 362 |
self.embed_dim = config.decoder_embed_dim
|
|
@@ -395,14 +389,14 @@ class TransnormerDecoderLayer(nn.Module):
|
|
| 395 |
return residual + x
|
| 396 |
|
| 397 |
def forward(
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
):
|
| 407 |
residual = x
|
| 408 |
x = self.token_norm(x)
|
|
@@ -422,13 +416,13 @@ class TransnormerDecoderLayer(nn.Module):
|
|
| 422 |
x = self.channel_mixer(x)
|
| 423 |
x = self.residual_connection(x, residual)
|
| 424 |
|
| 425 |
-
outputs = (x,
|
| 426 |
|
| 427 |
if output_attentions:
|
| 428 |
-
outputs += (self_attn_weights,
|
| 429 |
|
| 430 |
if use_cache:
|
| 431 |
-
outputs += (present_key_value,
|
| 432 |
|
| 433 |
return outputs
|
| 434 |
|
|
@@ -450,7 +444,9 @@ TRANSNORMER_START_DOCSTRING = r"""
|
|
| 450 |
"""
|
| 451 |
|
| 452 |
|
| 453 |
-
@add_start_docstrings(
|
|
|
|
|
|
|
| 454 |
class TransnormerPreTrainedModel(PreTrainedModel):
|
| 455 |
config_class = TransnormerConfig
|
| 456 |
base_model_prefix = "model"
|
|
@@ -535,7 +531,9 @@ TRANSNORMER_INPUTS_DOCSTRING = r"""
|
|
| 535 |
"""
|
| 536 |
|
| 537 |
|
| 538 |
-
@add_start_docstrings(
|
|
|
|
|
|
|
| 539 |
class TransnormerModel(TransnormerPreTrainedModel):
|
| 540 |
"""
|
| 541 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
|
|
@@ -559,31 +557,29 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 559 |
self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
|
| 560 |
|
| 561 |
# params
|
| 562 |
-
self.embed_tokens = nn.Embedding(
|
| 563 |
-
|
| 564 |
-
|
| 565 |
self.layers = nn.ModuleList([])
|
| 566 |
for i in range(config.decoder_layers):
|
| 567 |
if len(self.linear_use_lrpe_list) > 0:
|
| 568 |
config.linear_use_lrpe = self.linear_use_lrpe_list[i]
|
| 569 |
self.layers.append(TransnormerDecoderLayer(config))
|
| 570 |
|
| 571 |
-
self.final_norm = get_norm_fn(config.norm_type)(
|
| 572 |
-
config.decoder_embed_dim)
|
| 573 |
self.embed_dim = config.decoder_embed_dim
|
| 574 |
-
self.embed_scale = (
|
| 575 |
-
self.embed_dim)
|
|
|
|
| 576 |
|
| 577 |
# Initialize weights and apply final processing
|
| 578 |
self.post_init()
|
| 579 |
|
| 580 |
@staticmethod
|
| 581 |
def _build_slope_tensor(n_attention_heads: int):
|
| 582 |
-
|
| 583 |
def get_slopes(n):
|
| 584 |
-
|
| 585 |
def get_slopes_power_of_2(n):
|
| 586 |
-
start = 2**(-(2
|
| 587 |
ratio = start
|
| 588 |
return [start * ratio**i for i in range(n)]
|
| 589 |
|
|
@@ -592,15 +588,18 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 592 |
n
|
| 593 |
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
| 594 |
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
| 595 |
-
closest_power_of_2 = 2**math.floor(
|
| 596 |
math.log2(n)
|
| 597 |
) # when the number of heads is not a power of 2, we use this workaround.
|
| 598 |
-
return (
|
| 599 |
-
|
|
|
|
|
|
|
| 600 |
|
| 601 |
# h, 1, 1
|
| 602 |
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
|
| 603 |
-
n_attention_heads, 1, 1
|
|
|
|
| 604 |
|
| 605 |
return slopes
|
| 606 |
|
|
@@ -613,26 +612,26 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 613 |
def set_input_embeddings(self, value):
|
| 614 |
self.embed_tokens = value
|
| 615 |
|
| 616 |
-
def _prepare_decoder_linear_attn_mask(
|
| 617 |
-
|
|
|
|
| 618 |
bsz, tgt_len = input_shape
|
| 619 |
src_len = tgt_len + past_key_values_length
|
| 620 |
|
| 621 |
def power_log(x):
|
| 622 |
-
return 2**(math.ceil(math.log(x, 2)))
|
| 623 |
|
| 624 |
n = power_log(max(tgt_len, src_len))
|
| 625 |
if self._linear_attn_mask.shape[-1] < n:
|
| 626 |
|
| 627 |
def get_mask(n):
|
| 628 |
-
mask = torch.triu(
|
| 629 |
-
torch.zeros(n, n).float().fill_(float("-inf")), 1)
|
| 630 |
# no slope version
|
| 631 |
# -n, ..., -2, -1, 0
|
| 632 |
for i in range(n):
|
| 633 |
x = torch.arange(i + 1)
|
| 634 |
y = x
|
| 635 |
-
mask[i, :i + 1] = -torch.flip(y, [0])
|
| 636 |
|
| 637 |
return mask
|
| 638 |
|
|
@@ -644,8 +643,7 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 644 |
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
|
| 645 |
num_heads = linear_attn_mask.shape[0]
|
| 646 |
|
| 647 |
-
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
|
| 648 |
-
src_len)
|
| 649 |
|
| 650 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 651 |
def forward(
|
|
@@ -659,15 +657,21 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 659 |
output_hidden_states: Optional[bool] = None,
|
| 660 |
return_dict: Optional[bool] = None,
|
| 661 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 662 |
-
output_attentions = (
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 668 |
|
| 669 |
-
return_dict = (
|
| 670 |
-
|
|
|
|
| 671 |
|
| 672 |
# retrieve input_ids and inputs_embeds
|
| 673 |
if input_ids is not None and inputs_embeds is not None:
|
|
@@ -689,7 +693,7 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 689 |
if past_key_values is not None:
|
| 690 |
past_key_values_length = past_key_values[0][0].shape[-2]
|
| 691 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 692 |
-
|
| 693 |
if inputs_embeds is None:
|
| 694 |
# !!! use embed_scale
|
| 695 |
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
|
@@ -711,72 +715,54 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 711 |
##### norm linear layers
|
| 712 |
linear_attn_padding_mask = attn_padding_mask
|
| 713 |
linear_attn_mask = self._prepare_decoder_linear_attn_mask(
|
| 714 |
-
(batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
|
|
| 715 |
|
| 716 |
-
slope_rates = [
|
| 717 |
-
self.slopes.to(input_ids.device) for _ in range(self.num_layers)
|
| 718 |
-
]
|
| 719 |
|
| 720 |
for idx, layer in enumerate(self.layers):
|
| 721 |
if output_hidden_states:
|
| 722 |
-
all_hidden_states += (hidden_states,
|
| 723 |
|
| 724 |
-
past_key_value = (
|
| 725 |
-
|
|
|
|
| 726 |
|
| 727 |
slope_rate = slope_rates[idx]
|
| 728 |
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
|
| 729 |
mask = linear_attn_mask
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 742 |
-
create_custom_forward(layer),
|
| 743 |
-
hidden_states,
|
| 744 |
-
mask,
|
| 745 |
-
linear_attn_padding_mask,
|
| 746 |
-
None,
|
| 747 |
-
)
|
| 748 |
-
else:
|
| 749 |
-
layer_outputs = layer(
|
| 750 |
-
hidden_states,
|
| 751 |
-
attn_mask=mask,
|
| 752 |
-
attn_padding_mask=linear_attn_padding_mask,
|
| 753 |
-
past_key_value=past_key_value,
|
| 754 |
-
output_attentions=output_attentions,
|
| 755 |
-
use_cache=use_cache,
|
| 756 |
-
slope_rate=slope_rate,
|
| 757 |
-
)
|
| 758 |
|
| 759 |
hidden_states = layer_outputs[0]
|
| 760 |
|
| 761 |
if use_cache:
|
| 762 |
-
next_decoder_cache += (
|
| 763 |
-
layer_outputs[2 if output_attentions else 1], )
|
| 764 |
|
| 765 |
if output_attentions:
|
| 766 |
-
all_self_attns += (layer_outputs[1],
|
| 767 |
|
| 768 |
hidden_states = self.final_norm(hidden_states)
|
| 769 |
|
| 770 |
# add hidden states from the last decoder layer
|
| 771 |
if output_hidden_states:
|
| 772 |
-
all_hidden_states += (hidden_states,
|
| 773 |
|
| 774 |
next_cache = next_decoder_cache if use_cache else None
|
| 775 |
if not return_dict:
|
| 776 |
return tuple(
|
| 777 |
-
v
|
| 778 |
-
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 779 |
-
if v is not None
|
|
|
|
| 780 |
return BaseModelOutputWithPast(
|
| 781 |
last_hidden_state=hidden_states,
|
| 782 |
past_key_values=next_cache,
|
|
@@ -786,7 +772,6 @@ class TransnormerModel(TransnormerPreTrainedModel):
|
|
| 786 |
|
| 787 |
|
| 788 |
class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
| 789 |
-
|
| 790 |
def __init__(self, config):
|
| 791 |
super().__init__(config)
|
| 792 |
self.model = TransnormerModel(config)
|
|
@@ -794,9 +779,9 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
| 794 |
logging_info(self.model)
|
| 795 |
|
| 796 |
# the lm_head weight is automatically tied to the embed tokens weight
|
| 797 |
-
self.lm_head = nn.Linear(
|
| 798 |
-
|
| 799 |
-
|
| 800 |
|
| 801 |
# Initialize weights and apply final processing
|
| 802 |
self.post_init()
|
|
@@ -820,8 +805,9 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
| 820 |
return self.model
|
| 821 |
|
| 822 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 823 |
-
@replace_return_docstrings(
|
| 824 |
-
|
|
|
|
| 825 |
def forward(
|
| 826 |
self,
|
| 827 |
input_ids: torch.LongTensor = None,
|
|
@@ -859,13 +845,19 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
| 859 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 860 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 861 |
```"""
|
| 862 |
-
output_attentions = (
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 869 |
|
| 870 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 871 |
outputs = self.model(
|
|
@@ -896,8 +888,8 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
| 896 |
loss = loss_fct(shift_logits, shift_labels)
|
| 897 |
|
| 898 |
if not return_dict:
|
| 899 |
-
output = (logits,
|
| 900 |
-
return (loss,
|
| 901 |
|
| 902 |
return CausalLMOutputWithPast(
|
| 903 |
loss=loss,
|
|
@@ -924,149 +916,23 @@ class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
| 924 |
else:
|
| 925 |
model_inputs = {"input_ids": input_ids}
|
| 926 |
|
| 927 |
-
model_inputs.update(
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
|
|
|
|
|
|
| 932 |
return model_inputs
|
| 933 |
|
| 934 |
@staticmethod
|
| 935 |
def _reorder_cache(past_key_values, beam_idx):
|
| 936 |
reordered_past = ()
|
| 937 |
for layer_past in past_key_values:
|
| 938 |
-
reordered_past += (
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
@add_start_docstrings(
|
| 945 |
-
"""
|
| 946 |
-
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 947 |
-
|
| 948 |
-
[`TransnormerForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 949 |
-
(e.g. GPT-2) do.
|
| 950 |
-
|
| 951 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 952 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 953 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 954 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 955 |
-
each row of the batch).
|
| 956 |
-
""",
|
| 957 |
-
TRANSNORMER_START_DOCSTRING,
|
| 958 |
-
)
|
| 959 |
-
class TransnormerForSequenceClassification(TransnormerPreTrainedModel):
|
| 960 |
-
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 961 |
-
|
| 962 |
-
def __init__(self, config):
|
| 963 |
-
super().__init__(config)
|
| 964 |
-
self.num_labels = config.num_labels
|
| 965 |
-
self.model = TransnormerModel(config)
|
| 966 |
-
self.score = nn.Linear(config.decoder_embed_dim,
|
| 967 |
-
self.num_labels,
|
| 968 |
-
bias=False)
|
| 969 |
-
|
| 970 |
-
# Initialize weights and apply final processing
|
| 971 |
-
self.post_init()
|
| 972 |
-
|
| 973 |
-
def get_input_embeddings(self):
|
| 974 |
-
return self.model.embed_tokens
|
| 975 |
-
|
| 976 |
-
def set_input_embeddings(self, value):
|
| 977 |
-
self.model.embed_tokens = value
|
| 978 |
-
|
| 979 |
-
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 980 |
-
def forward(
|
| 981 |
-
self,
|
| 982 |
-
input_ids: torch.LongTensor = None,
|
| 983 |
-
attn_mask: Optional[torch.Tensor] = None,
|
| 984 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 985 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 986 |
-
labels: Optional[torch.LongTensor] = None,
|
| 987 |
-
use_cache: Optional[bool] = None,
|
| 988 |
-
output_attentions: Optional[bool] = None,
|
| 989 |
-
output_hidden_states: Optional[bool] = None,
|
| 990 |
-
return_dict: Optional[bool] = None,
|
| 991 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 992 |
-
r"""
|
| 993 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 994 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 995 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 996 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 997 |
-
"""
|
| 998 |
-
return_dict = (return_dict if return_dict is not None else
|
| 999 |
-
self.config.use_return_dict)
|
| 1000 |
-
|
| 1001 |
-
transformer_outputs = self.model(
|
| 1002 |
-
input_ids,
|
| 1003 |
-
attn_padding_mask=attn_mask,
|
| 1004 |
-
past_key_values=past_key_values,
|
| 1005 |
-
inputs_embeds=inputs_embeds,
|
| 1006 |
-
use_cache=use_cache,
|
| 1007 |
-
output_attentions=output_attentions,
|
| 1008 |
-
output_hidden_states=output_hidden_states,
|
| 1009 |
-
return_dict=return_dict,
|
| 1010 |
-
)
|
| 1011 |
-
hidden_states = transformer_outputs[0]
|
| 1012 |
-
|
| 1013 |
-
logits = self.score(hidden_states)
|
| 1014 |
-
|
| 1015 |
-
if input_ids is not None:
|
| 1016 |
-
batch_size = input_ids.shape[0]
|
| 1017 |
-
else:
|
| 1018 |
-
batch_size = inputs_embeds.shape[0]
|
| 1019 |
-
|
| 1020 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
| 1021 |
-
raise ValueError(
|
| 1022 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1023 |
)
|
| 1024 |
-
|
| 1025 |
-
sequence_lengths = -1
|
| 1026 |
-
else:
|
| 1027 |
-
if input_ids is not None:
|
| 1028 |
-
sequence_lengths = (
|
| 1029 |
-
torch.ne(input_ids, self.config.pad_token_id).sum(-1) -
|
| 1030 |
-
1).to(logits.device)
|
| 1031 |
-
else:
|
| 1032 |
-
sequence_lengths = -1
|
| 1033 |
-
|
| 1034 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device),
|
| 1035 |
-
sequence_lengths]
|
| 1036 |
-
|
| 1037 |
-
loss = None
|
| 1038 |
-
if labels is not None:
|
| 1039 |
-
labels = labels.to(logits.device)
|
| 1040 |
-
if self.config.problem_type is None:
|
| 1041 |
-
if self.num_labels == 1:
|
| 1042 |
-
self.config.problem_type = "regression"
|
| 1043 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long
|
| 1044 |
-
or labels.dtype == torch.int):
|
| 1045 |
-
self.config.problem_type = "single_label_classification"
|
| 1046 |
-
else:
|
| 1047 |
-
self.config.problem_type = "multi_label_classification"
|
| 1048 |
-
|
| 1049 |
-
if self.config.problem_type == "regression":
|
| 1050 |
-
loss_fct = MSELoss()
|
| 1051 |
-
if self.num_labels == 1:
|
| 1052 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1053 |
-
else:
|
| 1054 |
-
loss = loss_fct(pooled_logits, labels)
|
| 1055 |
-
elif self.config.problem_type == "single_label_classification":
|
| 1056 |
-
loss_fct = CrossEntropyLoss()
|
| 1057 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels),
|
| 1058 |
-
labels.view(-1))
|
| 1059 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 1060 |
-
loss_fct = BCEWithLogitsLoss()
|
| 1061 |
-
loss = loss_fct(pooled_logits, labels)
|
| 1062 |
-
if not return_dict:
|
| 1063 |
-
output = (pooled_logits, ) + transformer_outputs[1:]
|
| 1064 |
-
return ((loss, ) + output) if loss is not None else output
|
| 1065 |
|
| 1066 |
-
return SequenceClassifierOutputWithPast(
|
| 1067 |
-
loss=loss,
|
| 1068 |
-
logits=pooled_logits,
|
| 1069 |
-
past_key_values=transformer_outputs.past_key_values,
|
| 1070 |
-
hidden_states=transformer_outputs.hidden_states,
|
| 1071 |
-
attentions=transformer_outputs.attentions,
|
| 1072 |
-
)
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
+
# coding=utf-8
|
|
|
|
| 15 |
""" PyTorch Transnormer model."""
|
| 16 |
import math
|
| 17 |
import os
|
|
|
|
| 28 |
from transformers.modeling_outputs import (
|
| 29 |
BaseModelOutputWithPast,
|
| 30 |
CausalLMOutputWithPast,
|
|
|
|
| 31 |
)
|
| 32 |
from transformers.modeling_utils import PreTrainedModel
|
| 33 |
from transformers.utils import (
|
|
|
|
| 83 |
########## start Transnormer
|
| 84 |
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
|
| 85 |
class Lrpe(nn.Module):
|
|
|
|
| 86 |
def __init__(
|
| 87 |
self,
|
| 88 |
num_heads=8,
|
|
|
|
| 92 |
d = num_heads * embed_dim
|
| 93 |
|
| 94 |
self.index = torch.empty(0)
|
| 95 |
+
self.theta = nn.Parameter(
|
| 96 |
+
10000 ** (-2 / d * torch.arange(d)).reshape(num_heads, 1, -1)
|
| 97 |
+
)
|
| 98 |
|
| 99 |
def extra_repr(self):
|
| 100 |
return print_module(self)
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
class GLU(nn.Module):
|
|
|
|
| 116 |
def __init__(self, d1, d2, bias=False):
|
| 117 |
super().__init__()
|
| 118 |
if debug:
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
class NormLinearAttention(nn.Module):
|
|
|
|
| 138 |
def __init__(
|
| 139 |
self,
|
| 140 |
embed_dim,
|
|
|
|
| 190 |
output_attentions,
|
| 191 |
past_key_value,
|
| 192 |
use_cache,
|
| 193 |
+
slope_rate,
|
| 194 |
)
|
| 195 |
# x: b n d
|
| 196 |
n = x.shape[-2]
|
|
|
|
| 198 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 199 |
# reshape
|
| 200 |
q, k, v = map(
|
| 201 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v]
|
| 202 |
+
)
|
| 203 |
# act
|
| 204 |
q = self.act(q)
|
| 205 |
k = self.act(k)
|
|
|
|
| 207 |
q_offset = 0
|
| 208 |
# lrpe relys on position, get cache first
|
| 209 |
if past_key_value is not None:
|
| 210 |
+
# reuse k, v, for evaluation only
|
| 211 |
k = torch.cat([past_key_value[0], k], dim=-2)
|
| 212 |
v = torch.cat([past_key_value[1], v], dim=-2)
|
| 213 |
q_offset = past_key_value[0].shape[-2]
|
|
|
|
| 224 |
|
| 225 |
if attn_padding_mask is not None:
|
| 226 |
v = v.masked_fill(
|
| 227 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0
|
| 228 |
+
)
|
| 229 |
|
| 230 |
if not has_lightning_attention:
|
| 231 |
if slope_rate != None:
|
| 232 |
attn_mask = torch.exp(slope_rate * attn_mask)
|
|
|
|
| 233 |
output = linear_attention(q, k, v, attn_mask)
|
| 234 |
else:
|
| 235 |
+
output = lightning_attention(
|
| 236 |
+
q, k, v, True, slope_rate.squeeze(-1).squeeze(-1)
|
| 237 |
+
)
|
| 238 |
|
| 239 |
# reshape
|
| 240 |
output = rearrange(output, "b h n d -> b n (h d)")
|
|
|
|
| 253 |
return output, attn_weights, past_key_value
|
| 254 |
|
| 255 |
def inference(
|
| 256 |
+
self,
|
| 257 |
+
x,
|
| 258 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
|
| 259 |
+
attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
|
| 260 |
+
output_attentions: bool = False,
|
| 261 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 262 |
+
use_cache: bool = False,
|
| 263 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
| 264 |
):
|
| 265 |
# x: b n d
|
| 266 |
n = x.shape[-2]
|
|
|
|
| 268 |
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 269 |
# reshape
|
| 270 |
q, k, v = map(
|
| 271 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v]
|
| 272 |
+
)
|
| 273 |
# act
|
| 274 |
q = self.act(q)
|
| 275 |
k = self.act(k)
|
|
|
|
| 277 |
# rpe
|
| 278 |
if self.linear_use_lrpe:
|
| 279 |
q = self.lrpe(q, offset=self.offset)
|
| 280 |
+
k = self.lrpe(k)
|
| 281 |
|
| 282 |
if past_key_value == None:
|
| 283 |
self.offset = q.shape[-2]
|
|
|
|
| 295 |
|
| 296 |
if attn_padding_mask is not None:
|
| 297 |
attn_mask = attn_mask.masked_fill(
|
| 298 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(torch.bool),
|
|
|
|
| 299 |
0,
|
| 300 |
)
|
| 301 |
energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
|
|
|
|
| 306 |
output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
|
| 307 |
|
| 308 |
eval_and_not_generate = eval(
|
| 309 |
+
os.environ.get("eval_and_not_generate", default="False")
|
| 310 |
+
)
|
| 311 |
if eval_and_not_generate:
|
| 312 |
kv = None
|
| 313 |
else:
|
| 314 |
# b, h, n, e, d
|
| 315 |
+
kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d", k, v)
|
|
|
|
| 316 |
# 1, 1, n, 1, 1
|
| 317 |
+
index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1, 1).to(x)
|
|
|
|
| 318 |
# (h, 1, 1) -> (1, h, 1, 1, 1); (1, h, 1, 1, 1), (1, 1, n, 1, 1) -> (1, h, n, 1, 1)
|
| 319 |
+
decay = ratio.unsqueeze(0).unsqueeze(-1) ** index
|
| 320 |
|
| 321 |
kv_outproduct_with_decay = kv_outproduct * decay
|
| 322 |
kv = torch.sum(kv_outproduct_with_decay, dim=-3)
|
|
|
|
| 327 |
for i in range(n):
|
| 328 |
kv = ratio * kv + torch.einsum(
|
| 329 |
"... n d, ... n e -> ... d e",
|
| 330 |
+
k[:, :, i : i + 1],
|
| 331 |
+
v[:, :, i : i + 1],
|
| 332 |
+
)
|
| 333 |
+
qkv = torch.einsum(
|
| 334 |
+
"... n e, ... e d -> ... n d", q[:, :, i : i + 1], kv
|
| 335 |
)
|
|
|
|
|
|
|
| 336 |
output.append(qkv)
|
| 337 |
output = torch.concat(output, dim=-2)
|
| 338 |
|
|
|
|
| 351 |
|
| 352 |
|
| 353 |
class TransnormerDecoderLayer(nn.Module):
|
|
|
|
| 354 |
def __init__(self, config: TransnormerConfig):
|
| 355 |
super().__init__()
|
| 356 |
self.embed_dim = config.decoder_embed_dim
|
|
|
|
| 389 |
return residual + x
|
| 390 |
|
| 391 |
def forward(
|
| 392 |
+
self,
|
| 393 |
+
x,
|
| 394 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 395 |
+
attn_padding_mask: Optional[torch.Tensor] = None,
|
| 396 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 397 |
+
output_attentions: Optional[bool] = False,
|
| 398 |
+
use_cache: Optional[bool] = False,
|
| 399 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
| 400 |
):
|
| 401 |
residual = x
|
| 402 |
x = self.token_norm(x)
|
|
|
|
| 416 |
x = self.channel_mixer(x)
|
| 417 |
x = self.residual_connection(x, residual)
|
| 418 |
|
| 419 |
+
outputs = (x,)
|
| 420 |
|
| 421 |
if output_attentions:
|
| 422 |
+
outputs += (self_attn_weights,)
|
| 423 |
|
| 424 |
if use_cache:
|
| 425 |
+
outputs += (present_key_value,)
|
| 426 |
|
| 427 |
return outputs
|
| 428 |
|
|
|
|
| 444 |
"""
|
| 445 |
|
| 446 |
|
| 447 |
+
@add_start_docstrings(
|
| 448 |
+
TRANSNORMER_START_DOCSTRING,
|
| 449 |
+
)
|
| 450 |
class TransnormerPreTrainedModel(PreTrainedModel):
|
| 451 |
config_class = TransnormerConfig
|
| 452 |
base_model_prefix = "model"
|
|
|
|
| 531 |
"""
|
| 532 |
|
| 533 |
|
| 534 |
+
@add_start_docstrings(
|
| 535 |
+
TRANSNORMER_START_DOCSTRING,
|
| 536 |
+
)
|
| 537 |
class TransnormerModel(TransnormerPreTrainedModel):
|
| 538 |
"""
|
| 539 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
|
|
|
|
| 557 |
self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
|
| 558 |
|
| 559 |
# params
|
| 560 |
+
self.embed_tokens = nn.Embedding(
|
| 561 |
+
config.vocab_size, config.decoder_embed_dim, self.padding_idx
|
| 562 |
+
)
|
| 563 |
self.layers = nn.ModuleList([])
|
| 564 |
for i in range(config.decoder_layers):
|
| 565 |
if len(self.linear_use_lrpe_list) > 0:
|
| 566 |
config.linear_use_lrpe = self.linear_use_lrpe_list[i]
|
| 567 |
self.layers.append(TransnormerDecoderLayer(config))
|
| 568 |
|
| 569 |
+
self.final_norm = get_norm_fn(config.norm_type)(config.decoder_embed_dim)
|
|
|
|
| 570 |
self.embed_dim = config.decoder_embed_dim
|
| 571 |
+
self.embed_scale = (
|
| 572 |
+
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
|
| 573 |
+
)
|
| 574 |
|
| 575 |
# Initialize weights and apply final processing
|
| 576 |
self.post_init()
|
| 577 |
|
| 578 |
@staticmethod
|
| 579 |
def _build_slope_tensor(n_attention_heads: int):
|
|
|
|
| 580 |
def get_slopes(n):
|
|
|
|
| 581 |
def get_slopes_power_of_2(n):
|
| 582 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
| 583 |
ratio = start
|
| 584 |
return [start * ratio**i for i in range(n)]
|
| 585 |
|
|
|
|
| 588 |
n
|
| 589 |
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
| 590 |
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
| 591 |
+
closest_power_of_2 = 2 ** math.floor(
|
| 592 |
math.log2(n)
|
| 593 |
) # when the number of heads is not a power of 2, we use this workaround.
|
| 594 |
+
return (
|
| 595 |
+
get_slopes_power_of_2(closest_power_of_2)
|
| 596 |
+
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
| 597 |
+
)
|
| 598 |
|
| 599 |
# h, 1, 1
|
| 600 |
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
|
| 601 |
+
n_attention_heads, 1, 1
|
| 602 |
+
)
|
| 603 |
|
| 604 |
return slopes
|
| 605 |
|
|
|
|
| 612 |
def set_input_embeddings(self, value):
|
| 613 |
self.embed_tokens = value
|
| 614 |
|
| 615 |
+
def _prepare_decoder_linear_attn_mask(
|
| 616 |
+
self, input_shape, inputs_embeds, past_key_values_length
|
| 617 |
+
):
|
| 618 |
bsz, tgt_len = input_shape
|
| 619 |
src_len = tgt_len + past_key_values_length
|
| 620 |
|
| 621 |
def power_log(x):
|
| 622 |
+
return 2 ** (math.ceil(math.log(x, 2)))
|
| 623 |
|
| 624 |
n = power_log(max(tgt_len, src_len))
|
| 625 |
if self._linear_attn_mask.shape[-1] < n:
|
| 626 |
|
| 627 |
def get_mask(n):
|
| 628 |
+
mask = torch.triu(torch.zeros(n, n).float().fill_(float("-inf")), 1)
|
|
|
|
| 629 |
# no slope version
|
| 630 |
# -n, ..., -2, -1, 0
|
| 631 |
for i in range(n):
|
| 632 |
x = torch.arange(i + 1)
|
| 633 |
y = x
|
| 634 |
+
mask[i, : i + 1] = -torch.flip(y, [0])
|
| 635 |
|
| 636 |
return mask
|
| 637 |
|
|
|
|
| 643 |
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
|
| 644 |
num_heads = linear_attn_mask.shape[0]
|
| 645 |
|
| 646 |
+
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len, src_len)
|
|
|
|
| 647 |
|
| 648 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 649 |
def forward(
|
|
|
|
| 657 |
output_hidden_states: Optional[bool] = None,
|
| 658 |
return_dict: Optional[bool] = None,
|
| 659 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 660 |
+
output_attentions = (
|
| 661 |
+
output_attentions
|
| 662 |
+
if output_attentions is not None
|
| 663 |
+
else self.config.output_attentions
|
| 664 |
+
)
|
| 665 |
+
output_hidden_states = (
|
| 666 |
+
output_hidden_states
|
| 667 |
+
if output_hidden_states is not None
|
| 668 |
+
else self.config.output_hidden_states
|
| 669 |
+
)
|
| 670 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 671 |
|
| 672 |
+
return_dict = (
|
| 673 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 674 |
+
)
|
| 675 |
|
| 676 |
# retrieve input_ids and inputs_embeds
|
| 677 |
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
| 693 |
if past_key_values is not None:
|
| 694 |
past_key_values_length = past_key_values[0][0].shape[-2]
|
| 695 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 696 |
+
|
| 697 |
if inputs_embeds is None:
|
| 698 |
# !!! use embed_scale
|
| 699 |
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
|
|
|
| 715 |
##### norm linear layers
|
| 716 |
linear_attn_padding_mask = attn_padding_mask
|
| 717 |
linear_attn_mask = self._prepare_decoder_linear_attn_mask(
|
| 718 |
+
(batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 719 |
+
)
|
| 720 |
|
| 721 |
+
slope_rates = [self.slopes.to(input_ids.device) for _ in range(self.num_layers)]
|
|
|
|
|
|
|
| 722 |
|
| 723 |
for idx, layer in enumerate(self.layers):
|
| 724 |
if output_hidden_states:
|
| 725 |
+
all_hidden_states += (hidden_states,)
|
| 726 |
|
| 727 |
+
past_key_value = (
|
| 728 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 729 |
+
)
|
| 730 |
|
| 731 |
slope_rate = slope_rates[idx]
|
| 732 |
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
|
| 733 |
mask = linear_attn_mask
|
| 734 |
+
|
| 735 |
+
layer_outputs = layer(
|
| 736 |
+
hidden_states,
|
| 737 |
+
attn_mask=mask,
|
| 738 |
+
attn_padding_mask=linear_attn_padding_mask,
|
| 739 |
+
past_key_value=past_key_value,
|
| 740 |
+
output_attentions=output_attentions,
|
| 741 |
+
use_cache=use_cache,
|
| 742 |
+
slope_rate=slope_rate,
|
| 743 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
|
| 745 |
hidden_states = layer_outputs[0]
|
| 746 |
|
| 747 |
if use_cache:
|
| 748 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
| 749 |
|
| 750 |
if output_attentions:
|
| 751 |
+
all_self_attns += (layer_outputs[1],)
|
| 752 |
|
| 753 |
hidden_states = self.final_norm(hidden_states)
|
| 754 |
|
| 755 |
# add hidden states from the last decoder layer
|
| 756 |
if output_hidden_states:
|
| 757 |
+
all_hidden_states += (hidden_states,)
|
| 758 |
|
| 759 |
next_cache = next_decoder_cache if use_cache else None
|
| 760 |
if not return_dict:
|
| 761 |
return tuple(
|
| 762 |
+
v
|
| 763 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 764 |
+
if v is not None
|
| 765 |
+
)
|
| 766 |
return BaseModelOutputWithPast(
|
| 767 |
last_hidden_state=hidden_states,
|
| 768 |
past_key_values=next_cache,
|
|
|
|
| 772 |
|
| 773 |
|
| 774 |
class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
|
|
|
| 775 |
def __init__(self, config):
|
| 776 |
super().__init__(config)
|
| 777 |
self.model = TransnormerModel(config)
|
|
|
|
| 779 |
logging_info(self.model)
|
| 780 |
|
| 781 |
# the lm_head weight is automatically tied to the embed tokens weight
|
| 782 |
+
self.lm_head = nn.Linear(
|
| 783 |
+
config.decoder_embed_dim, config.vocab_size, bias=False
|
| 784 |
+
)
|
| 785 |
|
| 786 |
# Initialize weights and apply final processing
|
| 787 |
self.post_init()
|
|
|
|
| 805 |
return self.model
|
| 806 |
|
| 807 |
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 808 |
+
@replace_return_docstrings(
|
| 809 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 810 |
+
)
|
| 811 |
def forward(
|
| 812 |
self,
|
| 813 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 845 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 846 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 847 |
```"""
|
| 848 |
+
output_attentions = (
|
| 849 |
+
output_attentions
|
| 850 |
+
if output_attentions is not None
|
| 851 |
+
else self.config.output_attentions
|
| 852 |
+
)
|
| 853 |
+
output_hidden_states = (
|
| 854 |
+
output_hidden_states
|
| 855 |
+
if output_hidden_states is not None
|
| 856 |
+
else self.config.output_hidden_states
|
| 857 |
+
)
|
| 858 |
+
return_dict = (
|
| 859 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 860 |
+
)
|
| 861 |
|
| 862 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 863 |
outputs = self.model(
|
|
|
|
| 888 |
loss = loss_fct(shift_logits, shift_labels)
|
| 889 |
|
| 890 |
if not return_dict:
|
| 891 |
+
output = (logits,) + outputs[1:]
|
| 892 |
+
return (loss,) + output if loss is not None else output
|
| 893 |
|
| 894 |
return CausalLMOutputWithPast(
|
| 895 |
loss=loss,
|
|
|
|
| 916 |
else:
|
| 917 |
model_inputs = {"input_ids": input_ids}
|
| 918 |
|
| 919 |
+
model_inputs.update(
|
| 920 |
+
{
|
| 921 |
+
"past_key_values": past_key_values,
|
| 922 |
+
"use_cache": kwargs.get("use_cache"),
|
| 923 |
+
"attention_mask": attention_mask,
|
| 924 |
+
}
|
| 925 |
+
)
|
| 926 |
return model_inputs
|
| 927 |
|
| 928 |
@staticmethod
|
| 929 |
def _reorder_cache(past_key_values, beam_idx):
|
| 930 |
reordered_past = ()
|
| 931 |
for layer_past in past_key_values:
|
| 932 |
+
reordered_past += (
|
| 933 |
+
tuple(
|
| 934 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
| 935 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 936 |
)
|
| 937 |
+
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_baichuan.py
CHANGED
|
@@ -73,6 +73,11 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
|
|
| 73 |
if isinstance(unk_token, str) else unk_token)
|
| 74 |
pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
|
| 75 |
if isinstance(pad_token, str) else pad_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
super().__init__(
|
| 77 |
bos_token=bos_token,
|
| 78 |
eos_token=eos_token,
|
|
@@ -84,11 +89,6 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
|
|
| 84 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 85 |
**kwargs,
|
| 86 |
)
|
| 87 |
-
self.vocab_file = vocab_file
|
| 88 |
-
self.add_bos_token = add_bos_token
|
| 89 |
-
self.add_eos_token = add_eos_token
|
| 90 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 91 |
-
self.sp_model.Load(vocab_file)
|
| 92 |
|
| 93 |
def __getstate__(self):
|
| 94 |
state = self.__dict__.copy()
|
|
|
|
| 73 |
if isinstance(unk_token, str) else unk_token)
|
| 74 |
pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
|
| 75 |
if isinstance(pad_token, str) else pad_token)
|
| 76 |
+
self.vocab_file = vocab_file
|
| 77 |
+
self.add_bos_token = add_bos_token
|
| 78 |
+
self.add_eos_token = add_eos_token
|
| 79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 80 |
+
self.sp_model.Load(vocab_file)
|
| 81 |
super().__init__(
|
| 82 |
bos_token=bos_token,
|
| 83 |
eos_token=eos_token,
|
|
|
|
| 89 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 90 |
**kwargs,
|
| 91 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def __getstate__(self):
|
| 94 |
state = self.__dict__.copy()
|