--- license: mit language: - en library_name: chaossim tags: - chaos-theory - mathematics - simulation - game-theory - fibonacci - bernoulli - nash-equilibrium - dynamical-systems --- # ChaosSim A sophisticated chaos simulation software utilizing the Wolfram Programming Language to model randomized chaotic systems through mathematical principles. ## Overview ChaosSim combines Bernoulli numbers, Fibonacci sequences, and game-sum theory (Nash equilibrium) to simulate and visualize complex chaotic patterns and behaviors in mathematical systems. ## Features - **Bernoulli Number Integration**: Leverage Bernoulli numbers for probabilistic chaos modeling - **Fibonacci-Based Patterns**: Generate chaotic sequences based on Fibonacci number properties - **Nash Equilibrium Analysis**: Apply game theory principles to simulate equilibrium states in chaotic systems - **Advanced Visualizations**: Create stunning visual representations of chaotic patterns - **Customizable Parameters**: Adjust simulation parameters for different chaos scenarios ## Requirements - Wolfram Mathematica (version 12.0 or higher recommended) - Wolfram Engine or Wolfram Desktop ## Project Structure ``` ChaosSim/ ├── README.md # Project documentation ├── ChaosSim.nb # Main simulation notebook ├── MathUtils.wl # Mathematical utility functions ├── Visualizations.nb # Visualization examples └── Examples.nb # Sample simulations ``` ## Getting Started 1. Open `ChaosSim.nb` in Wolfram Mathematica 2. Evaluate all cells to initialize the simulation environment 3. Explore different chaos scenarios by adjusting parameters 4. Check `Examples.nb` for pre-built simulation demonstrations ## Usage ### Basic Chaos Simulation ```mathematica (* Generate Bernoulli-based chaos *) bernoullliChaos = SimulateBernoulliChaos[iterations, complexity] (* Create Fibonacci pattern *) fibonacciPattern = GenerateFibonacciChaos[depth, variance] (* Analyze Nash equilibrium *) nashState = AnalyzeNashEquilibrium[payoffMatrix, players] ``` ## Mathematical Foundation ### Bernoulli Numbers Used for generating probabilistic distributions in chaos modeling, providing smooth transitions between chaotic states. ### Fibonacci Sequences Creates self-similar patterns and golden ratio-based chaos structures, fundamental to natural chaotic systems. ### Nash Equilibrium Models strategic interactions in multi-agent chaotic systems, determining stable states in game-theoretic scenarios. ## Examples See `Examples.nb` for complete demonstrations including: - Multi-dimensional chaos attractors - Bernoulli-weighted random walks - Fibonacci spiral chaos patterns - Game-theoretic equilibrium in chaotic markets ## License MIT License - Feel free to use and modify for your research and projects. ## Contributing Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests. ## Author Created for advanced chaos theory research and mathematical simulation.