Update README.md
Browse files
README.md
CHANGED
|
@@ -36,16 +36,17 @@ It can play a role in the safe RLHF algorithm, helping the Beaver model become m
|
|
| 36 |
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward>
|
| 37 |
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost>
|
| 38 |
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657>
|
| 39 |
-
- **Paper:**
|
| 40 |
|
| 41 |
## How to Use the Reward Model
|
| 42 |
|
| 43 |
```python
|
|
|
|
| 44 |
from transformers import AutoTokenizer
|
| 45 |
from safe_rlhf.models import AutoModelForScore
|
| 46 |
|
| 47 |
-
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', device_map='auto')
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward'
|
| 49 |
|
| 50 |
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
|
| 51 |
|
|
@@ -54,34 +55,45 @@ output = model(**input_ids)
|
|
| 54 |
print(output)
|
| 55 |
|
| 56 |
# ScoreModelOutput(
|
| 57 |
-
# scores=tensor([[[-19.
|
| 58 |
-
#
|
| 59 |
-
#
|
| 60 |
-
#
|
| 61 |
-
#
|
| 62 |
-
#
|
| 63 |
-
#
|
| 64 |
-
#
|
| 65 |
-
#
|
| 66 |
-
#
|
| 67 |
-
#
|
| 68 |
-
#
|
| 69 |
-
#
|
| 70 |
-
#
|
| 71 |
-
#
|
| 72 |
-
#
|
| 73 |
-
#
|
| 74 |
-
#
|
| 75 |
-
#
|
| 76 |
-
#
|
| 77 |
-
#
|
| 78 |
-
#
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
-
#
|
| 83 |
-
#
|
| 84 |
-
#
|
| 85 |
-
# end_scores=tensor([[-11.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# )
|
| 87 |
```
|
|
|
|
| 36 |
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward>
|
| 37 |
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost>
|
| 38 |
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657>
|
| 39 |
+
- **Paper:** <https://arxiv.org/abs/2310.12773>
|
| 40 |
|
| 41 |
## How to Use the Reward Model
|
| 42 |
|
| 43 |
```python
|
| 44 |
+
import torch
|
| 45 |
from transformers import AutoTokenizer
|
| 46 |
from safe_rlhf.models import AutoModelForScore
|
| 47 |
|
| 48 |
+
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', torch_dtype=torch.bfloat16, device_map='auto')
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward')
|
| 50 |
|
| 51 |
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
|
| 52 |
|
|
|
|
| 55 |
print(output)
|
| 56 |
|
| 57 |
# ScoreModelOutput(
|
| 58 |
+
# scores=tensor([[[-19.7500],
|
| 59 |
+
# [-19.3750],
|
| 60 |
+
# [-20.1250],
|
| 61 |
+
# [-18.0000],
|
| 62 |
+
# [-20.0000],
|
| 63 |
+
# [-23.8750],
|
| 64 |
+
# [-23.5000],
|
| 65 |
+
# [-22.0000],
|
| 66 |
+
# [-21.0000],
|
| 67 |
+
# [-20.1250],
|
| 68 |
+
# [-23.7500],
|
| 69 |
+
# [-21.6250],
|
| 70 |
+
# [-21.7500],
|
| 71 |
+
# [-12.9375],
|
| 72 |
+
# [ -6.4375],
|
| 73 |
+
# [ -8.1250],
|
| 74 |
+
# [ -7.3438],
|
| 75 |
+
# [ -9.1875],
|
| 76 |
+
# [-13.6250],
|
| 77 |
+
# [-10.5625],
|
| 78 |
+
# [ -9.9375],
|
| 79 |
+
# [ -6.4375],
|
| 80 |
+
# [ -6.0938],
|
| 81 |
+
# [ -5.8438],
|
| 82 |
+
# [ -6.6562],
|
| 83 |
+
# [ -5.9688],
|
| 84 |
+
# [ -9.1875],
|
| 85 |
+
# [-11.4375]]], grad_fn=<ToCopyBackward0>),
|
| 86 |
+
# end_scores=tensor([[-11.4375]], grad_fn=<ToCopyBackward0>),
|
| 87 |
+
# last_hidden_state=tensor([[[ 0.7461, -0.6055, -0.4980, ..., 0.1670, 0.7812, -0.3242],
|
| 88 |
+
# [ 0.7383, -0.5391, -0.1836, ..., -0.1396, 0.5273, -0.2256],
|
| 89 |
+
# [ 0.6836, -0.7031, -0.3730, ..., 0.2100, 0.5000, -0.6328],
|
| 90 |
+
# ...,
|
| 91 |
+
# [-1.7969, 1.0234, 1.0234, ..., -0.8047, 0.2500, -0.8398],
|
| 92 |
+
# [ 2.0469, -1.3203, 0.8984, ..., -0.7734, -1.4141, -1.6797],
|
| 93 |
+
# [ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]]],
|
| 94 |
+
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
|
| 95 |
+
# end_last_hidden_state=tensor([[ 4.3438, -0.6953, 0.9648, ..., -0.1787, 0.6680, -3.0000]],
|
| 96 |
+
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>),
|
| 97 |
+
# end_index=tensor([27])
|
| 98 |
# )
|
| 99 |
```
|