Upload folder using huggingface_hub
Browse files- config.json +32 -0
- configuration_Fairy_plus_minus_i.py +94 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_Fairy_plus_minus_i.py +1519 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ComplexNetLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_Fairy_plus_minus_i.ComplexNetConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_Fairy_plus_minus_i.ComplexNetLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"hidden_act": "relu2",
|
| 14 |
+
"hidden_size": 1536,
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"intermediate_size": 4096,
|
| 17 |
+
"loss_type": "ForCausalLM",
|
| 18 |
+
"max_position_embeddings": 2048,
|
| 19 |
+
"model_type": "complexnet",
|
| 20 |
+
"num_attention_heads": 16,
|
| 21 |
+
"num_hidden_layers": 24,
|
| 22 |
+
"num_key_value_heads": 16,
|
| 23 |
+
"pretraining_tp": 1,
|
| 24 |
+
"rms_norm_eps": 1e-05,
|
| 25 |
+
"rope_scaling": null,
|
| 26 |
+
"rope_theta": 10000,
|
| 27 |
+
"tie_word_embeddings": false,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"transformers_version": "4.52.4",
|
| 30 |
+
"use_cache": true,
|
| 31 |
+
"vocab_size": 32000
|
| 32 |
+
}
|
configuration_Fairy_plus_minus_i.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LLaMA model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ComplexNetConfig(PretrainedConfig):
|
| 13 |
+
model_type = "complexnet"
|
| 14 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 15 |
+
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
vocab_size=32000,
|
| 19 |
+
hidden_size=1536,
|
| 20 |
+
intermediate_size=4096,
|
| 21 |
+
num_hidden_layers=24,
|
| 22 |
+
num_attention_heads=16,
|
| 23 |
+
num_key_value_heads=16,
|
| 24 |
+
hidden_act="relu2",
|
| 25 |
+
max_position_embeddings=2048,
|
| 26 |
+
initializer_range=0.02,
|
| 27 |
+
rms_norm_eps=1e-5,
|
| 28 |
+
use_cache=True,
|
| 29 |
+
pad_token_id=None,
|
| 30 |
+
bos_token_id=1,
|
| 31 |
+
eos_token_id=2,
|
| 32 |
+
pretraining_tp=1,
|
| 33 |
+
tie_word_embeddings=False,
|
| 34 |
+
rope_theta=10000,
|
| 35 |
+
rope_scaling=None,
|
| 36 |
+
attention_bias=False,
|
| 37 |
+
attention_dropout=0.0,
|
| 38 |
+
loss_type="ForCausalLM",
|
| 39 |
+
**kwargs,
|
| 40 |
+
):
|
| 41 |
+
self.vocab_size = vocab_size
|
| 42 |
+
self.max_position_embeddings = max_position_embeddings
|
| 43 |
+
self.hidden_size = hidden_size
|
| 44 |
+
self.intermediate_size = intermediate_size
|
| 45 |
+
self.num_hidden_layers = num_hidden_layers
|
| 46 |
+
self.num_attention_heads = num_attention_heads
|
| 47 |
+
|
| 48 |
+
if num_key_value_heads is None:
|
| 49 |
+
num_key_value_heads = num_attention_heads
|
| 50 |
+
|
| 51 |
+
self.num_key_value_heads = num_key_value_heads
|
| 52 |
+
self.hidden_act = hidden_act
|
| 53 |
+
self.initializer_range = initializer_range
|
| 54 |
+
self.rms_norm_eps = rms_norm_eps
|
| 55 |
+
self.pretraining_tp = pretraining_tp
|
| 56 |
+
self.use_cache = use_cache
|
| 57 |
+
self.rope_theta = rope_theta
|
| 58 |
+
self.rope_scaling = rope_scaling
|
| 59 |
+
self._rope_scaling_validation()
|
| 60 |
+
self.attention_bias = attention_bias
|
| 61 |
+
self.attention_dropout = attention_dropout
|
| 62 |
+
self.loss_type = loss_type
|
| 63 |
+
|
| 64 |
+
super().__init__(
|
| 65 |
+
pad_token_id=pad_token_id,
|
| 66 |
+
bos_token_id=bos_token_id,
|
| 67 |
+
eos_token_id=eos_token_id,
|
| 68 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 69 |
+
**kwargs,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def _rope_scaling_validation(self):
|
| 73 |
+
if self.rope_scaling is None:
|
| 74 |
+
return
|
| 75 |
+
|
| 76 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 77 |
+
raise ValueError(
|
| 78 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
| 79 |
+
f"got {self.rope_scaling}"
|
| 80 |
+
)
|
| 81 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 82 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 83 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 84 |
+
raise ValueError(
|
| 85 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 86 |
+
)
|
| 87 |
+
if (
|
| 88 |
+
rope_scaling_factor is None
|
| 89 |
+
or not isinstance(rope_scaling_factor, float)
|
| 90 |
+
or rope_scaling_factor <= 1.0
|
| 91 |
+
):
|
| 92 |
+
raise ValueError(
|
| 93 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
| 94 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.52.4"
|
| 6 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbdfceb51503ba440bd405ae2552475351eabed4307eac79afae2862f32e845c
|
| 3 |
+
size 3112026544
|
modeling_Fairy_plus_minus_i.py
ADDED
|
@@ -0,0 +1,1519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ComplexNet model with Dummy Complex Semantic
|
| 3 |
+
backpropogation with simple autograd
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import Optional, Tuple, Callable, Any, Dict, List
|
| 7 |
+
import math
|
| 8 |
+
from functools import partial
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from torch.nn import init
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from transformers.cache_utils import Cache, StaticCache
|
| 14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 15 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
from transformers.generation.utils import GenerationMixin
|
| 19 |
+
except ImportError:
|
| 20 |
+
from transformers.modeling_utils import GenerationMixin
|
| 21 |
+
|
| 22 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 23 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 24 |
+
from transformers.utils import (
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
logging,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
from configuration_Fairy_plus_minus_i import ComplexNetConfig
|
| 31 |
+
|
| 32 |
+
from transformers.cache_utils import Cache
|
| 33 |
+
|
| 34 |
+
import torch
|
| 35 |
+
from packaging import version
|
| 36 |
+
|
| 37 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 38 |
+
from transformers.utils import (
|
| 39 |
+
is_hqq_available,
|
| 40 |
+
is_optimum_quanto_available,
|
| 41 |
+
is_torchdynamo_compiling,
|
| 42 |
+
logging,
|
| 43 |
+
)
|
| 44 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class ComplexDynamicCache(Cache):
|
| 51 |
+
"""
|
| 52 |
+
A complex cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
| 53 |
+
|
| 54 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
| 55 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
| 56 |
+
|
| 57 |
+
Example:
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 61 |
+
|
| 62 |
+
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 63 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 64 |
+
|
| 65 |
+
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
|
| 66 |
+
|
| 67 |
+
>>> # Prepare a cache class and pass it to model's forward
|
| 68 |
+
>>> past_key_values = ComplexDynamicCache()
|
| 69 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
| 70 |
+
>>> outputs.past_key_values # access cache filled with key/values from generation
|
| 71 |
+
ComplexDynamicCache()
|
| 72 |
+
```
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
@deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
| 76 |
+
def __init__(self, num_hidden_layers: Optional[int] = None) -> None:
|
| 77 |
+
super().__init__()
|
| 78 |
+
self._seen_tokens = (
|
| 79 |
+
0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
| 80 |
+
)
|
| 81 |
+
self.key_real_cache: List[torch.Tensor] = []
|
| 82 |
+
self.key_imag_cache: List[torch.Tensor] = []
|
| 83 |
+
self.value_real_cache: List[torch.Tensor] = []
|
| 84 |
+
self.value_imag_cache: List[torch.Tensor] = []
|
| 85 |
+
|
| 86 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
| 87 |
+
"""
|
| 88 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
| 89 |
+
sequence length.
|
| 90 |
+
"""
|
| 91 |
+
if layer_idx < len(self):
|
| 92 |
+
return (
|
| 93 |
+
self.key_real_cache[layer_idx],
|
| 94 |
+
self.key_imag_cache[layer_idx],
|
| 95 |
+
self.value_real_cache[layer_idx],
|
| 96 |
+
self.value_imag_cache[layer_idx],
|
| 97 |
+
)
|
| 98 |
+
else:
|
| 99 |
+
raise KeyError(
|
| 100 |
+
f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def __iter__(self):
|
| 104 |
+
"""
|
| 105 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
| 106 |
+
keys and values
|
| 107 |
+
"""
|
| 108 |
+
for layer_idx in range(len(self)):
|
| 109 |
+
yield (
|
| 110 |
+
self.key_real_cache[layer_idx],
|
| 111 |
+
self.key_imag_cache[layer_idx],
|
| 112 |
+
self.value_real_cache[layer_idx],
|
| 113 |
+
self.value_imag_cache[layer_idx],
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def __len__(self):
|
| 117 |
+
"""
|
| 118 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
| 119 |
+
to the number of layers in the model.
|
| 120 |
+
"""
|
| 121 |
+
return len(self.key_real_cache)
|
| 122 |
+
|
| 123 |
+
def update(
|
| 124 |
+
self,
|
| 125 |
+
key_real_states: torch.Tensor,
|
| 126 |
+
key_imag_states: torch.Tensor,
|
| 127 |
+
value_real_states: torch.Tensor,
|
| 128 |
+
value_imag_states: torch.Tensor,
|
| 129 |
+
layer_idx: int,
|
| 130 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
| 131 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 132 |
+
"""
|
| 133 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
| 134 |
+
|
| 135 |
+
Parameters:
|
| 136 |
+
key_states (`torch.Tensor`):
|
| 137 |
+
The new key states to cache.
|
| 138 |
+
value_states (`torch.Tensor`):
|
| 139 |
+
The new value states to cache.
|
| 140 |
+
layer_idx (`int`):
|
| 141 |
+
The index of the layer to cache the states for.
|
| 142 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
| 143 |
+
Additional arguments for the cache subclass. No additional arguments are used in `ComplexDynamicCache`.
|
| 144 |
+
|
| 145 |
+
Return:
|
| 146 |
+
A tuple containing the updated key and value states.
|
| 147 |
+
"""
|
| 148 |
+
# Update the number of seen tokens
|
| 149 |
+
if layer_idx == 0:
|
| 150 |
+
self._seen_tokens += key_real_states.shape[-2]
|
| 151 |
+
|
| 152 |
+
# Update the cache
|
| 153 |
+
if key_real_states is not None:
|
| 154 |
+
if len(self.key_real_cache) <= layer_idx:
|
| 155 |
+
# There may be skipped layers, fill them with empty lists
|
| 156 |
+
for _ in range(len(self.key_real_cache), layer_idx):
|
| 157 |
+
self.key_real_cache.append([])
|
| 158 |
+
self.key_imag_cache.append([])
|
| 159 |
+
self.value_real_cache.append([])
|
| 160 |
+
self.value_imag_cache.append([])
|
| 161 |
+
self.key_real_cache.append(key_real_states)
|
| 162 |
+
self.key_imag_cache.append(key_imag_states)
|
| 163 |
+
self.value_real_cache.append(value_real_states)
|
| 164 |
+
self.value_imag_cache.append(value_imag_states)
|
| 165 |
+
elif (
|
| 166 |
+
len(self.key_real_cache[layer_idx]) == 0
|
| 167 |
+
): # fills previously skipped layers; checking for tensor causes errors
|
| 168 |
+
self.key_real_cache[layer_idx] = key_real_states
|
| 169 |
+
self.key_imag_cache[layer_idx] = key_imag_states
|
| 170 |
+
self.value_real_cache[layer_idx] = value_real_states
|
| 171 |
+
self.value_imag_cache[layer_idx] = value_imag_states
|
| 172 |
+
|
| 173 |
+
else:
|
| 174 |
+
self.key_real_cache[layer_idx] = torch.cat(
|
| 175 |
+
[self.key_real_cache[layer_idx], key_real_states], dim=-2
|
| 176 |
+
)
|
| 177 |
+
self.key_imag_cache[layer_idx] = torch.cat([self.key_imag_cache[layer_idx], key_imag_states], dim=-2)
|
| 178 |
+
self.value_real_cache[layer_idx] = torch.cat(
|
| 179 |
+
[self.value_real_cache[layer_idx], value_real_states], dim=-2
|
| 180 |
+
)
|
| 181 |
+
self.value_imag_cache[layer_idx] = torch.cat(
|
| 182 |
+
[self.value_imag_cache[layer_idx], value_imag_states], dim=-2
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return (
|
| 186 |
+
self.key_real_cache[layer_idx],
|
| 187 |
+
self.key_imag_cache[layer_idx],
|
| 188 |
+
self.value_real_cache[layer_idx],
|
| 189 |
+
self.value_imag_cache[layer_idx],
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
| 193 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
| 194 |
+
# TODO: deprecate this function in favor of `cache_position`
|
| 195 |
+
is_empty_layer = (
|
| 196 |
+
len(self.key_real_cache) == 0 # no cache in any layer
|
| 197 |
+
or len(self.key_real_cache)
|
| 198 |
+
<= layer_idx # skipped `layer_idx` and hasn't run a layer with cache after it
|
| 199 |
+
or len(self.key_real_cache[layer_idx]) == 0 # the layer has no cache
|
| 200 |
+
)
|
| 201 |
+
layer_seq_length = (
|
| 202 |
+
self.key_real_cache[layer_idx].shape[-2] if not is_empty_layer else 0
|
| 203 |
+
)
|
| 204 |
+
return layer_seq_length
|
| 205 |
+
|
| 206 |
+
def get_max_cache_shape(self) -> Optional[int]:
|
| 207 |
+
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
|
| 208 |
+
return None
|
| 209 |
+
|
| 210 |
+
def to_legacy_cache(
|
| 211 |
+
self,
|
| 212 |
+
) -> Tuple[
|
| 213 |
+
Tuple[torch.Tensor],
|
| 214 |
+
Tuple[torch.Tensor],
|
| 215 |
+
Tuple[torch.Tensor],
|
| 216 |
+
Tuple[torch.Tensor],
|
| 217 |
+
]:
|
| 218 |
+
"""Converts the `ComplexDynamicCache` instance into the its equivalent in the legacy cache format. Used for
|
| 219 |
+
backward compatibility."""
|
| 220 |
+
legacy_cache = ()
|
| 221 |
+
for layer_idx in range(len(self)):
|
| 222 |
+
legacy_cache += (
|
| 223 |
+
(
|
| 224 |
+
self.key_real_cache[layer_idx],
|
| 225 |
+
self.key_imag_cache[layer_idx],
|
| 226 |
+
self.value_real_cache[layer_idx],
|
| 227 |
+
self.value_imag_cache[layer_idx],
|
| 228 |
+
),
|
| 229 |
+
)
|
| 230 |
+
return legacy_cache
|
| 231 |
+
|
| 232 |
+
@classmethod
|
| 233 |
+
@deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
| 234 |
+
def from_legacy_cache(
|
| 235 |
+
cls,
|
| 236 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 237 |
+
num_hidden_layers: int = None,
|
| 238 |
+
) -> "ComplexDynamicCache":
|
| 239 |
+
"""Converts a cache in the legacy cache format into an equivalent `ComplexDynamicCache`. Used for
|
| 240 |
+
backward compatibility."""
|
| 241 |
+
cache = cls()
|
| 242 |
+
if past_key_values is not None:
|
| 243 |
+
for layer_idx in range(len(past_key_values)):
|
| 244 |
+
(
|
| 245 |
+
key_real_states,
|
| 246 |
+
key_imag_states,
|
| 247 |
+
value_real_states,
|
| 248 |
+
value_imag_states,
|
| 249 |
+
) = past_key_values[layer_idx]
|
| 250 |
+
cache.update(
|
| 251 |
+
key_real_states,
|
| 252 |
+
key_imag_states,
|
| 253 |
+
value_real_states,
|
| 254 |
+
value_imag_states,
|
| 255 |
+
layer_idx,
|
| 256 |
+
)
|
| 257 |
+
return cache
|
| 258 |
+
|
| 259 |
+
def crop(self, max_length: int):
|
| 260 |
+
"""Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
| 261 |
+
negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search.
|
| 262 |
+
"""
|
| 263 |
+
# In case it is negative
|
| 264 |
+
if max_length < 0:
|
| 265 |
+
max_length = self.get_seq_length() - abs(max_length)
|
| 266 |
+
|
| 267 |
+
if self.get_seq_length() <= max_length:
|
| 268 |
+
return
|
| 269 |
+
|
| 270 |
+
self._seen_tokens = max_length
|
| 271 |
+
for idx in range(len(self.key_real_cache)):
|
| 272 |
+
if self.key_real_cache[idx] != []:
|
| 273 |
+
self.key_real_cache[idx] = self.key_real_cache[idx][..., :max_length, :]
|
| 274 |
+
self.key_imag_cache[idx] = self.key_imag_cache[idx][..., :max_length, :]
|
| 275 |
+
self.value_real_cache[idx] = self.value_real_cache[idx][
|
| 276 |
+
..., :max_length, :
|
| 277 |
+
]
|
| 278 |
+
self.value_imag_cache[idx] = self.value_imag_cache[idx][
|
| 279 |
+
..., :max_length, :
|
| 280 |
+
]
|
| 281 |
+
|
| 282 |
+
@deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
| 283 |
+
def batch_split(
|
| 284 |
+
self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
|
| 285 |
+
) -> List["ComplexDynamicCache"]:
|
| 286 |
+
"""Split the current instance into a list of `ComplexDynamicCache` by the batch size. This will be used by
|
| 287 |
+
`_split_model_inputs()` in `generation.utils`"""
|
| 288 |
+
out = []
|
| 289 |
+
for i in range(0, full_batch_size, split_size):
|
| 290 |
+
current_split = ComplexDynamicCache()
|
| 291 |
+
current_split._seen_tokens = self._seen_tokens
|
| 292 |
+
current_split.key_real_cache = [
|
| 293 |
+
tensor[i : i + split_size] for tensor in self.key_real_cache
|
| 294 |
+
]
|
| 295 |
+
current_split.key_imag_cache = [
|
| 296 |
+
tensor[i : i + split_size] for tensor in self.key_imag_cache
|
| 297 |
+
]
|
| 298 |
+
current_split.value_real_cache = [
|
| 299 |
+
tensor[i : i + split_size] for tensor in self.value_real_cache
|
| 300 |
+
]
|
| 301 |
+
current_split.value_imag_cache = [
|
| 302 |
+
tensor[i : i + split_size] for tensor in self.value_imag_cache
|
| 303 |
+
]
|
| 304 |
+
|
| 305 |
+
out.append(current_split)
|
| 306 |
+
return out
|
| 307 |
+
|
| 308 |
+
@classmethod
|
| 309 |
+
@deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
| 310 |
+
def from_batch_splits(
|
| 311 |
+
cls, splits: List["ComplexDynamicCache"], num_hidden_layers: int = None
|
| 312 |
+
) -> "ComplexDynamicCache":
|
| 313 |
+
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
| 314 |
+
`generation.utils`"""
|
| 315 |
+
cache = cls()
|
| 316 |
+
for idx in range(len(splits[0])):
|
| 317 |
+
key_real_cache = [
|
| 318 |
+
current.key_real_cache[idx]
|
| 319 |
+
for current in splits
|
| 320 |
+
if current.key_real_cache[idx] != []
|
| 321 |
+
]
|
| 322 |
+
key_imag_cache = [
|
| 323 |
+
current.key_imag_cache[idx]
|
| 324 |
+
for current in splits
|
| 325 |
+
if current.key_imag_cache[idx] != []
|
| 326 |
+
]
|
| 327 |
+
value_real_cache = [
|
| 328 |
+
current.value_real_cache[idx]
|
| 329 |
+
for current in splits
|
| 330 |
+
if current.value_real_cache[idx] != []
|
| 331 |
+
]
|
| 332 |
+
value_imag_cache = [
|
| 333 |
+
current.value_imag_cache[idx]
|
| 334 |
+
for current in splits
|
| 335 |
+
if current.value_imag_cache[idx] != []
|
| 336 |
+
]
|
| 337 |
+
|
| 338 |
+
if key_real_cache != []:
|
| 339 |
+
layer_keys_real = torch.cat(key_real_cache, dim=0)
|
| 340 |
+
layer_keys_imag = torch.cat(key_imag_cache, dim=0)
|
| 341 |
+
layer_values_real = torch.cat(value_real_cache, dim=0)
|
| 342 |
+
layer_values_imag = torch.cat(value_imag_cache, dim=0)
|
| 343 |
+
|
| 344 |
+
cache.update(
|
| 345 |
+
layer_keys_real,
|
| 346 |
+
layer_keys_imag,
|
| 347 |
+
layer_values_real,
|
| 348 |
+
layer_values_imag,
|
| 349 |
+
idx,
|
| 350 |
+
)
|
| 351 |
+
return cache
|
| 352 |
+
|
| 353 |
+
def batch_repeat_interleave(self, repeats: int):
|
| 354 |
+
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
| 355 |
+
for layer_idx in range(len(self)):
|
| 356 |
+
self.key_real_cache[layer_idx] = self.key_real_cache[
|
| 357 |
+
layer_idx
|
| 358 |
+
].repeat_interleave(repeats, dim=0)
|
| 359 |
+
self.key_imag_cache[layer_idx] = self.key_imag_cache[
|
| 360 |
+
layer_idx
|
| 361 |
+
].repeat_interleave(repeats, dim=0)
|
| 362 |
+
self.value_real_cache[layer_idx] = self.value_real_cache[
|
| 363 |
+
layer_idx
|
| 364 |
+
].repeat_interleave(repeats, dim=0)
|
| 365 |
+
self.value_imag_cache[layer_idx] = self.value_imag_cache[
|
| 366 |
+
layer_idx
|
| 367 |
+
].repeat_interleave(repeats, dim=0)
|
| 368 |
+
|
| 369 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
| 370 |
+
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
| 371 |
+
for layer_idx in range(len(self)):
|
| 372 |
+
self.key_real_cache[layer_idx] = self.key_real_cache[layer_idx][
|
| 373 |
+
indices, ...
|
| 374 |
+
]
|
| 375 |
+
self.key_imag_cache[layer_idx] = self.key_imag_cache[layer_idx][
|
| 376 |
+
indices, ...
|
| 377 |
+
]
|
| 378 |
+
self.value_real_cache[layer_idx] = self.value_real_cache[layer_idx][
|
| 379 |
+
indices, ...
|
| 380 |
+
]
|
| 381 |
+
self.value_imag_cache[layer_idx] = self.value_imag_cache[layer_idx][
|
| 382 |
+
indices, ...
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
if is_flash_attn_2_available():
|
| 387 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 388 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
| 389 |
+
|
| 390 |
+
_CONFIG_FOR_DOC = "ComplexNetConfig"
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class DirectionQuantSTE(torch.autograd.Function):
|
| 394 |
+
@staticmethod
|
| 395 |
+
def forward(ctx, w_real: torch.Tensor, w_imag: torch.Tensor):
|
| 396 |
+
phase = torch.angle(w_real + 1j * w_imag)
|
| 397 |
+
|
| 398 |
+
real_scale = 1.0 / torch.clamp(w_real.abs().mean(), min=1e-5)
|
| 399 |
+
imag_scale = 1.0 / torch.clamp(w_imag.abs().mean(), min=1e-5)
|
| 400 |
+
|
| 401 |
+
w_real_scaled = w_real * real_scale
|
| 402 |
+
w_imag_scaled = w_imag * imag_scale
|
| 403 |
+
|
| 404 |
+
qw_real = torch.zeros_like(w_real_scaled)
|
| 405 |
+
qw_imag = torch.zeros_like(w_imag_scaled)
|
| 406 |
+
|
| 407 |
+
qw_real[(phase >= -torch.pi / 4) & (phase < torch.pi / 4)] = 1.0
|
| 408 |
+
qw_imag[(phase >= torch.pi / 4) & (phase < 3 * torch.pi / 4)] = 1.0
|
| 409 |
+
qw_real[(phase >= 3 * torch.pi / 4) | (phase < -3 * torch.pi / 4)] = -1.0
|
| 410 |
+
qw_imag[(phase >= -3 * torch.pi / 4) & (phase < -torch.pi / 4)] = -1.0
|
| 411 |
+
|
| 412 |
+
qw_real = qw_real / real_scale
|
| 413 |
+
qw_imag = qw_imag / imag_scale
|
| 414 |
+
|
| 415 |
+
return qw_real, qw_imag
|
| 416 |
+
|
| 417 |
+
@staticmethod
|
| 418 |
+
def backward(ctx, grad_real, grad_imag):
|
| 419 |
+
return grad_real, grad_imag
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def weight_quant_qat(w_real: torch.Tensor, w_imag: torch.Tensor):
|
| 423 |
+
return DirectionQuantSTE.apply(w_real, w_imag)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class ComplexWeightQuantizer(nn.Module):
|
| 427 |
+
def __init__(self):
|
| 428 |
+
super().__init__()
|
| 429 |
+
|
| 430 |
+
def forward(self, w_real, w_imag):
|
| 431 |
+
return weight_quant_qat(w_real, w_imag)
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
class ActivationQuantSTE(torch.autograd.Function):
|
| 435 |
+
@staticmethod
|
| 436 |
+
def forward(ctx, x_real: torch.Tensor, x_imag: torch.Tensor):
|
| 437 |
+
real_scale = 127.0 / x_real.abs().max(dim=-1, keepdim=True).values.clamp_(
|
| 438 |
+
min=1e-5
|
| 439 |
+
)
|
| 440 |
+
imag_scale = 127.0 / x_imag.abs().max(dim=-1, keepdim=True).values.clamp_(
|
| 441 |
+
min=1e-5
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
qx_real = x_real * real_scale
|
| 445 |
+
qx_real = qx_real.contiguous()
|
| 446 |
+
qx_real.round_()
|
| 447 |
+
qx_real.clamp_(-128, 127)
|
| 448 |
+
qx_real.div_(real_scale)
|
| 449 |
+
|
| 450 |
+
qx_imag = x_imag * imag_scale
|
| 451 |
+
qx_imag = qx_imag.contiguous()
|
| 452 |
+
qx_imag.round_()
|
| 453 |
+
qx_imag.clamp_(-128, 127)
|
| 454 |
+
qx_imag.div_(imag_scale)
|
| 455 |
+
|
| 456 |
+
return qx_real, qx_imag
|
| 457 |
+
|
| 458 |
+
@staticmethod
|
| 459 |
+
def backward(ctx, grad_real, grad_imag):
|
| 460 |
+
# STE
|
| 461 |
+
return grad_real, grad_imag
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def activation_quant_qat(x_real: torch.Tensor, x_imag: torch.Tensor):
|
| 465 |
+
return ActivationQuantSTE.apply(x_real, x_imag)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class ComplexActivationQuantizer(nn.Module):
|
| 469 |
+
def __init__(self):
|
| 470 |
+
super().__init__()
|
| 471 |
+
|
| 472 |
+
def forward(self, x_real, x_imag):
|
| 473 |
+
return activation_quant_qat(x_real, x_imag)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
class HalfComplexLinear(nn.Module):
|
| 477 |
+
"""
|
| 478 |
+
HalfComplexLinear is a linear layer that only outputs real_output.
|
| 479 |
+
"""
|
| 480 |
+
|
| 481 |
+
def __init__(self, in_features: int, out_features: int):
|
| 482 |
+
super(HalfComplexLinear, self).__init__()
|
| 483 |
+
self.in_features = in_features
|
| 484 |
+
self.out_features = out_features
|
| 485 |
+
|
| 486 |
+
self.weight_real = nn.Parameter(
|
| 487 |
+
torch.empty(self.out_features, self.in_features)
|
| 488 |
+
)
|
| 489 |
+
self.weight_imag = nn.Parameter(
|
| 490 |
+
torch.empty(self.out_features, self.in_features)
|
| 491 |
+
)
|
| 492 |
+
self.act_quantizer = ComplexActivationQuantizer()
|
| 493 |
+
self.weight_quantizer = ComplexWeightQuantizer()
|
| 494 |
+
self.reset_parameters()
|
| 495 |
+
|
| 496 |
+
def reset_parameters(self):
|
| 497 |
+
init.kaiming_uniform_(self.weight_real, a=math.sqrt(5))
|
| 498 |
+
init.kaiming_uniform_(self.weight_imag, a=math.sqrt(5))
|
| 499 |
+
|
| 500 |
+
def forward(self, x_real: torch.Tensor, x_imag: torch.Tensor) -> torch.Tensor:
|
| 501 |
+
qw_real, qw_imag = self.weight_quantizer(self.weight_real, self.weight_imag)
|
| 502 |
+
qx_real, qx_imag = self.act_quantizer(x_real, x_imag)
|
| 503 |
+
|
| 504 |
+
out_real = F.linear(qx_real, qw_real) + F.linear(qx_imag, qw_imag)
|
| 505 |
+
|
| 506 |
+
return out_real
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
class ComplexLinear(nn.Module):
|
| 510 |
+
def __init__(self, in_features: int, out_features: int):
|
| 511 |
+
super(ComplexLinear, self).__init__()
|
| 512 |
+
self.in_features = in_features
|
| 513 |
+
self.out_features = out_features
|
| 514 |
+
|
| 515 |
+
self.weight_real = nn.Parameter(
|
| 516 |
+
torch.empty(self.out_features, self.in_features)
|
| 517 |
+
)
|
| 518 |
+
self.weight_imag = nn.Parameter(
|
| 519 |
+
torch.empty(self.out_features, self.in_features)
|
| 520 |
+
)
|
| 521 |
+
self.act_quantizer = ComplexActivationQuantizer()
|
| 522 |
+
self.weight_quantizer = ComplexWeightQuantizer()
|
| 523 |
+
self.reset_parameters()
|
| 524 |
+
|
| 525 |
+
def reset_parameters(self):
|
| 526 |
+
init.kaiming_uniform_(self.weight_real, a=math.sqrt(5))
|
| 527 |
+
init.kaiming_uniform_(self.weight_imag, a=math.sqrt(5))
|
| 528 |
+
|
| 529 |
+
def forward(self, x_real: torch.Tensor, x_imag: torch.Tensor) -> torch.Tensor:
|
| 530 |
+
qw_real, qw_imag = self.weight_quantizer(self.weight_real, self.weight_imag)
|
| 531 |
+
qx_real, qx_imag = self.act_quantizer(x_real, x_imag)
|
| 532 |
+
|
| 533 |
+
out_real = F.linear(qx_real, qw_real) + F.linear(qx_imag, qw_imag)
|
| 534 |
+
out_imag = F.linear(qx_real, qw_imag) - F.linear(qx_imag, qw_real)
|
| 535 |
+
|
| 536 |
+
return out_real, out_imag
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class ComplexNetRMSNorm(nn.Module):
|
| 540 |
+
def __init__(self, hidden_size: int, eps: float = 1e-6):
|
| 541 |
+
super().__init__()
|
| 542 |
+
self.weight_real = nn.Parameter(torch.ones(hidden_size))
|
| 543 |
+
self.weight_imag = nn.Parameter(torch.ones(hidden_size))
|
| 544 |
+
self.variance_epsilon = eps
|
| 545 |
+
|
| 546 |
+
def forward(
|
| 547 |
+
self, hidden_states_real: torch.Tensor, hidden_states_imag: torch.Tensor
|
| 548 |
+
):
|
| 549 |
+
input_dtype = hidden_states_real.dtype
|
| 550 |
+
|
| 551 |
+
hidden_states_real.to(torch.float32)
|
| 552 |
+
hidden_states_imag.to(torch.float32)
|
| 553 |
+
magnitude = torch.mean(
|
| 554 |
+
hidden_states_real**2 + hidden_states_imag**2, dim=-1, keepdim=True
|
| 555 |
+
)
|
| 556 |
+
variance = torch.rsqrt(magnitude + self.variance_epsilon)
|
| 557 |
+
|
| 558 |
+
hidden_states_real = hidden_states_real * variance
|
| 559 |
+
hidden_states_imag = hidden_states_imag * variance
|
| 560 |
+
|
| 561 |
+
rmsnorm_out_real = self.weight_real * hidden_states_real
|
| 562 |
+
rmsnorm_out_imag = self.weight_imag * hidden_states_imag
|
| 563 |
+
|
| 564 |
+
return rmsnorm_out_real.to(input_dtype), rmsnorm_out_imag.to(input_dtype)
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
ALL_LAYERNORM_LAYERS.append(ComplexNetRMSNorm)
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
class ComplexNetMLP(nn.Module):
|
| 571 |
+
def __init__(self, config: ComplexNetConfig):
|
| 572 |
+
super().__init__()
|
| 573 |
+
self.config = config
|
| 574 |
+
self.hidden_size = self.config.hidden_size
|
| 575 |
+
self.im_size = self.config.intermediate_size
|
| 576 |
+
|
| 577 |
+
self.gate_proj = ComplexLinear(self.hidden_size, self.im_size)
|
| 578 |
+
self.up_proj = ComplexLinear(self.hidden_size, self.im_size)
|
| 579 |
+
self.down_proj = ComplexLinear(self.im_size, self.hidden_size)
|
| 580 |
+
|
| 581 |
+
self.ffn_layernorm = ComplexNetRMSNorm(self.im_size, eps=config.rms_norm_eps)
|
| 582 |
+
|
| 583 |
+
def complex_relu2(self, x_real: torch.Tensor, x_imag: torch.Tensor) -> torch.Tensor:
|
| 584 |
+
mask = torch.logical_and(x_real < 0, x_imag < 0)
|
| 585 |
+
x_real[mask] = 0
|
| 586 |
+
x_imag[mask] = 0
|
| 587 |
+
x_real = x_real**2
|
| 588 |
+
x_imag = x_imag**2
|
| 589 |
+
return x_real, x_imag
|
| 590 |
+
|
| 591 |
+
def forward(self, x_real: torch.Tensor, x_imag: torch.Tensor) -> torch.Tensor:
|
| 592 |
+
gate_proj_real, gate_proj_imag = self.gate_proj(x_real, x_imag)
|
| 593 |
+
activated_real, activated_imag = self.complex_relu2(
|
| 594 |
+
gate_proj_real, gate_proj_imag
|
| 595 |
+
)
|
| 596 |
+
up_proj_real, up_proj_imag = self.up_proj(x_real, x_imag)
|
| 597 |
+
|
| 598 |
+
up_proj_activated_real = (
|
| 599 |
+
activated_real * up_proj_real + activated_imag * up_proj_imag
|
| 600 |
+
)
|
| 601 |
+
up_proj_activated_imag = (
|
| 602 |
+
activated_real * up_proj_imag - activated_imag * up_proj_real
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
ln_real, ln_imag = self.ffn_layernorm(
|
| 606 |
+
up_proj_activated_real, up_proj_activated_imag
|
| 607 |
+
)
|
| 608 |
+
out_real, out_imag = self.down_proj(ln_real, ln_imag)
|
| 609 |
+
return out_real, out_imag
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
class ComplexNetRotaryEmbedding(nn.Module):
|
| 613 |
+
def __init__(self, config: ComplexNetConfig):
|
| 614 |
+
super().__init__()
|
| 615 |
+
|
| 616 |
+
self.config = config
|
| 617 |
+
self.base = self.config.rope_theta
|
| 618 |
+
self.hidden_size = self.config.hidden_size
|
| 619 |
+
self.num_attention_heads = self.config.num_attention_heads
|
| 620 |
+
self.max_seq_len_cached = self.config.max_position_embeddings
|
| 621 |
+
|
| 622 |
+
inv_freq = self._compute_inv_freq()
|
| 623 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 624 |
+
|
| 625 |
+
def _compute_inv_freq(self):
|
| 626 |
+
base = self.base
|
| 627 |
+
head_dim = self.hidden_size // self.num_attention_heads
|
| 628 |
+
inv_freq = 1.0 / (
|
| 629 |
+
base ** (torch.arange(0, head_dim, dtype=torch.int64) / head_dim)
|
| 630 |
+
)
|
| 631 |
+
return inv_freq
|
| 632 |
+
|
| 633 |
+
@torch.no_grad()
|
| 634 |
+
def forward(
|
| 635 |
+
self, position_ids: torch.Tensor, hidden_states_type: torch.dtype
|
| 636 |
+
) -> tuple:
|
| 637 |
+
batch_size = position_ids.shape[0]
|
| 638 |
+
position_ids = position_ids[:, None, :].to(torch.float32)
|
| 639 |
+
if self.inv_freq.dim() == 1:
|
| 640 |
+
self.inv_freq = (
|
| 641 |
+
self.inv_freq[None, :, None]
|
| 642 |
+
.expand(batch_size, -1, 1)
|
| 643 |
+
.to(position_ids.device)
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
if position_ids.shape[0] > self.max_seq_len_cached:
|
| 647 |
+
print(f"Truncate position_ids within max_seq_len_cached.")
|
| 648 |
+
position_ids = position_ids[: self.max_seq_len_cached]
|
| 649 |
+
theta = (self.inv_freq.to(position_ids.dtype) @ position_ids).transpose(1, 2)
|
| 650 |
+
cos_emb = torch.cos(theta).to(hidden_states_type)
|
| 651 |
+
sin_emb = torch.sin(theta).to(hidden_states_type)
|
| 652 |
+
|
| 653 |
+
return cos_emb, sin_emb
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
def _apply_rotary_pos_emb(
|
| 657 |
+
q_real: torch.Tensor,
|
| 658 |
+
q_imag: torch.Tensor,
|
| 659 |
+
k_real: torch.Tensor,
|
| 660 |
+
k_imag: torch.Tensor,
|
| 661 |
+
cos_emb: torch.Tensor,
|
| 662 |
+
sin_emb: torch.Tensor,
|
| 663 |
+
) -> tuple:
|
| 664 |
+
|
| 665 |
+
def _apply_rotation(
|
| 666 |
+
x_real: torch.Tensor,
|
| 667 |
+
x_imag: torch.Tensor,
|
| 668 |
+
cos_emb: torch.Tensor,
|
| 669 |
+
sin_emb: torch.Tensor,
|
| 670 |
+
) -> torch.Tensor:
|
| 671 |
+
cos_emb = cos_emb.unsqueeze(1)
|
| 672 |
+
sin_emb = sin_emb.unsqueeze(1)
|
| 673 |
+
|
| 674 |
+
rotated_x_real = x_real * cos_emb - x_imag * sin_emb
|
| 675 |
+
rotated_x_imag = x_real * sin_emb + x_imag * cos_emb
|
| 676 |
+
|
| 677 |
+
return rotated_x_real, rotated_x_imag
|
| 678 |
+
|
| 679 |
+
rotated_q_real, rotated_q_imag = _apply_rotation(q_real, q_imag, cos_emb, sin_emb)
|
| 680 |
+
rotated_k_real, rotated_k_imag = _apply_rotation(k_real, k_imag, cos_emb, sin_emb)
|
| 681 |
+
|
| 682 |
+
return rotated_q_real, rotated_q_imag, rotated_k_real, rotated_k_imag
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
def repeat_kv(
|
| 686 |
+
hidden_states_real: torch.Tensor,
|
| 687 |
+
hidden_states_imag: torch.Tensor,
|
| 688 |
+
num_key_value_groups: int,
|
| 689 |
+
) -> torch.Tensor:
|
| 690 |
+
batch_size, num_key_value_heads, seq_length, head_dim = hidden_states_real.shape
|
| 691 |
+
|
| 692 |
+
if num_key_value_groups == 1:
|
| 693 |
+
return hidden_states_real, hidden_states_imag
|
| 694 |
+
|
| 695 |
+
hidden_states_real = hidden_states_real[:, :, None, :, :].expand(
|
| 696 |
+
batch_size, num_key_value_heads, num_key_value_groups, seq_length, head_dim
|
| 697 |
+
)
|
| 698 |
+
hidden_states_imag = hidden_states_imag[:, :, None, :, :].expand(
|
| 699 |
+
batch_size, num_key_value_heads, num_key_value_groups, seq_length, head_dim
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
hidden_states_real = hidden_states_real.reshape(
|
| 703 |
+
batch_size, num_key_value_heads * num_key_value_groups, seq_length, head_dim
|
| 704 |
+
)
|
| 705 |
+
hidden_states_imag = hidden_states_imag.reshape(
|
| 706 |
+
batch_size, num_key_value_heads * num_key_value_groups, seq_length, head_dim
|
| 707 |
+
)
|
| 708 |
+
return hidden_states_real, hidden_states_imag
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
def repeat_kv_for_real(
|
| 712 |
+
hidden_states_real: torch.Tensor,
|
| 713 |
+
num_key_value_groups: int,
|
| 714 |
+
) -> torch.Tensor:
|
| 715 |
+
batch_size, num_key_value_heads, seq_length, head_dim = hidden_states_real.shape
|
| 716 |
+
|
| 717 |
+
if num_key_value_groups == 1:
|
| 718 |
+
return hidden_states_real
|
| 719 |
+
|
| 720 |
+
hidden_states_real = hidden_states_real[:, :, None, :, :].expand(
|
| 721 |
+
batch_size, num_key_value_heads, num_key_value_groups, seq_length, head_dim
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
hidden_states_real = hidden_states_real.reshape(
|
| 725 |
+
batch_size, num_key_value_heads * num_key_value_groups, seq_length, head_dim
|
| 726 |
+
)
|
| 727 |
+
return hidden_states_real
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
def _rotate_half(x):
|
| 731 |
+
"""Rotates half the hidden dims of the input."""
|
| 732 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 733 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 734 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
def _apply_rotary_pos_emb_only_for_real(
|
| 738 |
+
q_real: torch.Tensor,
|
| 739 |
+
k_real: torch.Tensor,
|
| 740 |
+
cos_emb: torch.Tensor,
|
| 741 |
+
sin_emb: torch.Tensor,
|
| 742 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 743 |
+
cos_emb = cos_emb.unsqueeze(1)
|
| 744 |
+
sin_emb = sin_emb.unsqueeze(1)
|
| 745 |
+
q_embed = (q_real * cos_emb) + (_rotate_half(q_real) * sin_emb)
|
| 746 |
+
k_embed = (k_real * cos_emb) + (_rotate_half(k_real) * sin_emb)
|
| 747 |
+
return q_embed, k_embed
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
class ComplexNetAttentionBase(nn.Module):
|
| 751 |
+
def __init__(self, config: ComplexNetConfig, layer_idx: int):
|
| 752 |
+
super().__init__()
|
| 753 |
+
self.config = config
|
| 754 |
+
self.layer_idx = layer_idx
|
| 755 |
+
|
| 756 |
+
self.attn_dropout = self.config.attention_dropout
|
| 757 |
+
|
| 758 |
+
self.hidden_size = self.config.hidden_size
|
| 759 |
+
self.num_attn_heads = self.config.num_attention_heads
|
| 760 |
+
self.head_dim = self.hidden_size // self.num_attn_heads
|
| 761 |
+
|
| 762 |
+
self.num_key_value_heads = self.config.num_key_value_heads
|
| 763 |
+
self.num_key_value_groups = (
|
| 764 |
+
self.num_attn_heads // self.config.num_key_value_heads
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
self.max_position_embeddings = self.config.max_position_embeddings
|
| 768 |
+
self.rope_theta = self.config.rope_theta
|
| 769 |
+
|
| 770 |
+
self.scaling = self.head_dim**-0.5
|
| 771 |
+
|
| 772 |
+
self.is_causal = True
|
| 773 |
+
self.rms_norm_eps = self.config.rms_norm_eps
|
| 774 |
+
|
| 775 |
+
self.q_proj = ComplexLinear(
|
| 776 |
+
self.hidden_size, self.num_attn_heads * self.head_dim
|
| 777 |
+
)
|
| 778 |
+
self.k_proj = ComplexLinear(
|
| 779 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim
|
| 780 |
+
)
|
| 781 |
+
self.v_proj = ComplexLinear(
|
| 782 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim
|
| 783 |
+
)
|
| 784 |
+
self.o_proj = ComplexLinear(self.hidden_size, self.hidden_size)
|
| 785 |
+
|
| 786 |
+
self.rotary_emb = ComplexNetRotaryEmbedding(self.config)
|
| 787 |
+
self.attn_layernorm = ComplexNetRMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
| 788 |
+
|
| 789 |
+
def forward(
|
| 790 |
+
self,
|
| 791 |
+
hidden_states_real: torch.Tensor,
|
| 792 |
+
hidden_states_imag: torch.Tensor,
|
| 793 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 794 |
+
attn_mask_real: Optional[torch.Tensor] = None,
|
| 795 |
+
attn_mask_imag: Optional[torch.Tensor] = None,
|
| 796 |
+
past_key_value: Optional[ComplexDynamicCache] = None,
|
| 797 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 798 |
+
**kwargs,
|
| 799 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 800 |
+
input_shape = hidden_states_real.shape[:-1]
|
| 801 |
+
q_shape = (*input_shape, self.num_attn_heads, self.head_dim)
|
| 802 |
+
kv_shape = (*input_shape, self.num_key_value_heads, self.head_dim)
|
| 803 |
+
|
| 804 |
+
q_real = self.q_proj(hidden_states_real, hidden_states_imag)
|
| 805 |
+
q_real = q_real.view(q_shape).transpose(1, 2)
|
| 806 |
+
|
| 807 |
+
k_real = self.k_proj(hidden_states_real, hidden_states_imag)
|
| 808 |
+
k_imag = None
|
| 809 |
+
k_real = k_real.view(kv_shape).transpose(1, 2)
|
| 810 |
+
|
| 811 |
+
v_real, v_imag = self.v_proj(hidden_states_real, hidden_states_imag)
|
| 812 |
+
v_real = v_real.view(kv_shape).transpose(1, 2)
|
| 813 |
+
v_imag = v_imag.view(kv_shape).transpose(1, 2)
|
| 814 |
+
|
| 815 |
+
cos_emb, sin_emb = position_embeddings
|
| 816 |
+
q_real, k_real = _apply_rotary_pos_emb_only_for_real(
|
| 817 |
+
q_real, k_real, cos_emb, sin_emb
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
if past_key_value is not None:
|
| 821 |
+
cache_kwargs = {
|
| 822 |
+
"sin": sin_emb,
|
| 823 |
+
"cos": cos_emb,
|
| 824 |
+
"cache_position": cache_position,
|
| 825 |
+
}
|
| 826 |
+
k_real, k_imag, v_real, v_imag = past_key_value.update(
|
| 827 |
+
k_real, k_imag, v_real, v_imag, self.layer_idx, cache_kwargs
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
k_real = repeat_kv_for_real(k_real, self.num_key_value_groups)
|
| 831 |
+
v_real, v_imag = repeat_kv(v_real, v_imag, self.num_key_value_groups)
|
| 832 |
+
|
| 833 |
+
attn_weights_real = (q_real @ k_real.transpose(2, 3)) * self.scaling
|
| 834 |
+
if attn_mask_real is not None:
|
| 835 |
+
causal_mask_real = attn_mask_real[:, :, :, : k_real.shape[-2]]
|
| 836 |
+
attn_weights_real = attn_weights_real + causal_mask_real
|
| 837 |
+
|
| 838 |
+
attn_weights = attn_weights_real
|
| 839 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
| 840 |
+
q_real.dtype
|
| 841 |
+
)
|
| 842 |
+
attn_weights = F.dropout(
|
| 843 |
+
attn_weights, p=self.attn_dropout, training=self.training
|
| 844 |
+
)
|
| 845 |
+
attn_output_real = (
|
| 846 |
+
torch.matmul(attn_weights, v_real)
|
| 847 |
+
.transpose(1, 2)
|
| 848 |
+
.contiguous()
|
| 849 |
+
.reshape(input_shape[0], input_shape[1], self.hidden_size)
|
| 850 |
+
)
|
| 851 |
+
attn_output_imag = (
|
| 852 |
+
torch.matmul(attn_weights, v_imag)
|
| 853 |
+
.transpose(1, 2)
|
| 854 |
+
.contiguous()
|
| 855 |
+
.reshape(input_shape[0], input_shape[1], self.hidden_size)
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
attn_output_real, attn_output_imag = self.attn_layernorm(
|
| 859 |
+
attn_output_real, attn_output_imag
|
| 860 |
+
)
|
| 861 |
+
attn_output_real, attn_output_imag = self.o_proj(
|
| 862 |
+
attn_output_real, attn_output_imag
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
return (
|
| 866 |
+
attn_output_real,
|
| 867 |
+
attn_output_imag,
|
| 868 |
+
attn_weights_real,
|
| 869 |
+
None, # attn_weights_imag
|
| 870 |
+
past_key_value,
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
def _get_unpad_data(attention_mask):
|
| 875 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 876 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 877 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 878 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 879 |
+
return (
|
| 880 |
+
indices,
|
| 881 |
+
cu_seqlens,
|
| 882 |
+
max_seqlen_in_batch,
|
| 883 |
+
)
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
def _upad_input(
|
| 887 |
+
module,
|
| 888 |
+
query_layer,
|
| 889 |
+
key_layer,
|
| 890 |
+
value_layer,
|
| 891 |
+
attention_mask,
|
| 892 |
+
query_length,
|
| 893 |
+
):
|
| 894 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 895 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 896 |
+
|
| 897 |
+
key_layer = index_first_axis(
|
| 898 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 899 |
+
indices_k,
|
| 900 |
+
)
|
| 901 |
+
value_layer = index_first_axis(
|
| 902 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 903 |
+
indices_k,
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
if query_length == kv_seq_len:
|
| 907 |
+
query_layer = index_first_axis(
|
| 908 |
+
query_layer.reshape(
|
| 909 |
+
batch_size * kv_seq_len, module.num_attn_heads, head_dim
|
| 910 |
+
),
|
| 911 |
+
indices_k,
|
| 912 |
+
)
|
| 913 |
+
cu_seqlens_q = cu_seqlens_k
|
| 914 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 915 |
+
indices_q = indices_k
|
| 916 |
+
elif query_length == 1:
|
| 917 |
+
max_seqlen_in_batch_q = 1
|
| 918 |
+
cu_seqlens_q = torch.arange(
|
| 919 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 920 |
+
)
|
| 921 |
+
indices_q = cu_seqlens_q[:-1]
|
| 922 |
+
query_layer = query_layer.squeeze(1)
|
| 923 |
+
else:
|
| 924 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 925 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 926 |
+
query_layer, attention_mask
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
return (
|
| 930 |
+
query_layer,
|
| 931 |
+
key_layer,
|
| 932 |
+
value_layer,
|
| 933 |
+
indices_q,
|
| 934 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 935 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
def eager_attention_forward(
|
| 940 |
+
module: nn.Module,
|
| 941 |
+
q_cat: torch.Tensor,
|
| 942 |
+
k_cat: torch.Tensor,
|
| 943 |
+
v_cat: torch.Tensor,
|
| 944 |
+
attn_mask: Optional[torch.Tensor],
|
| 945 |
+
scaling: float,
|
| 946 |
+
dropout: float = 0.0,
|
| 947 |
+
**kwargs,
|
| 948 |
+
):
|
| 949 |
+
# for_real func only handle one input
|
| 950 |
+
k_cat = repeat_kv_for_real(k_cat, module.num_key_value_groups)
|
| 951 |
+
v_cat = repeat_kv_for_real(v_cat, module.num_key_value_groups)
|
| 952 |
+
|
| 953 |
+
attn_weights_real = (q_cat @ k_cat.transpose(2, 3)) * scaling
|
| 954 |
+
if attn_mask is not None:
|
| 955 |
+
causal_mask_real = attn_mask[:, :, :, : k_cat.shape[-2]]
|
| 956 |
+
attn_weights_real = attn_weights_real + causal_mask_real
|
| 957 |
+
|
| 958 |
+
attn_weights = attn_weights_real
|
| 959 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
| 960 |
+
q_cat.dtype
|
| 961 |
+
)
|
| 962 |
+
|
| 963 |
+
attn_weights = F.dropout(attn_weights, p=dropout, training=module.training)
|
| 964 |
+
attn_output = torch.matmul(attn_weights, v_cat).transpose(1, 2).contiguous()
|
| 965 |
+
|
| 966 |
+
return attn_output, None, None
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
def flash_attention_forward(
|
| 970 |
+
module: nn.Module,
|
| 971 |
+
q_cat: torch.Tensor,
|
| 972 |
+
k_cat: torch.Tensor,
|
| 973 |
+
v_cat: torch.Tensor,
|
| 974 |
+
attn_mask: Optional[torch.Tensor],
|
| 975 |
+
scaling: float,
|
| 976 |
+
dropout: float = 0.0,
|
| 977 |
+
softmax_scale: Optional[float] = None,
|
| 978 |
+
**kwargs,
|
| 979 |
+
):
|
| 980 |
+
def transpose_hidden_states(*hidden_states: torch.Tensor):
|
| 981 |
+
return [tensor.transpose(1, 2) for tensor in hidden_states]
|
| 982 |
+
|
| 983 |
+
(q_cat, k_cat, v_cat) = transpose_hidden_states(q_cat, k_cat, v_cat)
|
| 984 |
+
query_len = 1
|
| 985 |
+
query_len = q_cat.shape[1]
|
| 986 |
+
input_dtype = q_cat.dtype
|
| 987 |
+
if input_dtype == torch.float32:
|
| 988 |
+
if torch.is_autocast_enabled():
|
| 989 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 990 |
+
elif hasattr(module.config, "_pre_quantization_dtype"):
|
| 991 |
+
target_dtype = module.config._pre_quantization_dtype
|
| 992 |
+
else:
|
| 993 |
+
target_dtype = module.q_proj.weight_real.dtype
|
| 994 |
+
|
| 995 |
+
def dtype_cast(*tensors: torch.Tensor):
|
| 996 |
+
return [tensor.to(target_dtype) for tensor in tensors]
|
| 997 |
+
|
| 998 |
+
(q_cat, k_cat, v_cat) = dtype_cast(q_cat, k_cat, v_cat)
|
| 999 |
+
if not module._flash_attn_uses_top_left_mask:
|
| 1000 |
+
causal = module.is_causal
|
| 1001 |
+
else:
|
| 1002 |
+
causal = module.is_causal and query_len != 1
|
| 1003 |
+
|
| 1004 |
+
if attn_mask is not None:
|
| 1005 |
+
batch_size = q_cat.shape[0]
|
| 1006 |
+
(
|
| 1007 |
+
q_cat,
|
| 1008 |
+
k_cat,
|
| 1009 |
+
v_cat,
|
| 1010 |
+
indices_q,
|
| 1011 |
+
cu_seq_lens,
|
| 1012 |
+
max_seq_lens,
|
| 1013 |
+
) = _upad_input(
|
| 1014 |
+
module,
|
| 1015 |
+
q_cat,
|
| 1016 |
+
k_cat,
|
| 1017 |
+
v_cat,
|
| 1018 |
+
attn_mask,
|
| 1019 |
+
query_len,
|
| 1020 |
+
)
|
| 1021 |
+
|
| 1022 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 1023 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 1024 |
+
|
| 1025 |
+
def mask_complex_flash_attn(q, k, v):
|
| 1026 |
+
return flash_attn_varlen_func(
|
| 1027 |
+
q,
|
| 1028 |
+
k,
|
| 1029 |
+
v,
|
| 1030 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 1031 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 1032 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 1033 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 1034 |
+
dropout_p=dropout,
|
| 1035 |
+
softmax_scale=softmax_scale,
|
| 1036 |
+
causal=causal,
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
attn_output_unpad = mask_complex_flash_attn(q_cat, k_cat, v_cat)
|
| 1041 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_len)
|
| 1042 |
+
else:
|
| 1043 |
+
|
| 1044 |
+
def unmask_complex_flash_attn(q, k, v):
|
| 1045 |
+
return flash_attn_func(
|
| 1046 |
+
q,
|
| 1047 |
+
k,
|
| 1048 |
+
v,
|
| 1049 |
+
dropout_p=dropout,
|
| 1050 |
+
softmax_scale=softmax_scale,
|
| 1051 |
+
causal=causal,
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
attn_output = unmask_complex_flash_attn(q_cat, k_cat, v_cat)
|
| 1055 |
+
return attn_output, None, None
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
ALL_ATTENTION_FUNCTIONS = {
|
| 1059 |
+
"eager": eager_attention_forward,
|
| 1060 |
+
"flash_attention_2": flash_attention_forward,
|
| 1061 |
+
}
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
class ComplexNetAttention(ComplexNetAttentionBase):
|
| 1065 |
+
def __init__(self, *args, **kwargs):
|
| 1066 |
+
super().__init__(*args, **kwargs)
|
| 1067 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 1068 |
+
|
| 1069 |
+
def forward(
|
| 1070 |
+
self,
|
| 1071 |
+
hidden_states_real: torch.Tensor,
|
| 1072 |
+
hidden_states_imag: torch.Tensor,
|
| 1073 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 1074 |
+
attn_mask_real: Optional[torch.Tensor] = None,
|
| 1075 |
+
attn_mask_imag: Optional[torch.Tensor] = None,
|
| 1076 |
+
past_key_value: Optional[Cache] = None,
|
| 1077 |
+
output_attentions: bool = False,
|
| 1078 |
+
use_cache: bool = False,
|
| 1079 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1080 |
+
**kwargs,
|
| 1081 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 1082 |
+
input_shape = hidden_states_real.shape[:-1]
|
| 1083 |
+
q_shape = (*input_shape, self.num_attn_heads, self.head_dim)
|
| 1084 |
+
kv_shape = (*input_shape, self.num_key_value_heads, self.head_dim)
|
| 1085 |
+
|
| 1086 |
+
def transpose_hidden_states(*hidden_states: torch.Tensor):
|
| 1087 |
+
return [tensor.transpose(1, 2) for tensor in hidden_states]
|
| 1088 |
+
|
| 1089 |
+
q_real, q_imag = self.q_proj(hidden_states_real, hidden_states_imag)
|
| 1090 |
+
k_real, k_imag = self.k_proj(hidden_states_real, hidden_states_imag)
|
| 1091 |
+
v_real, v_imag = self.v_proj(hidden_states_real, hidden_states_imag)
|
| 1092 |
+
(q_real, q_imag, k_real, k_imag, v_real, v_imag) = transpose_hidden_states(
|
| 1093 |
+
q_real.view(q_shape),
|
| 1094 |
+
q_imag.view(q_shape),
|
| 1095 |
+
k_real.view(kv_shape),
|
| 1096 |
+
k_imag.view(kv_shape),
|
| 1097 |
+
v_real.view(kv_shape),
|
| 1098 |
+
v_imag.view(kv_shape),
|
| 1099 |
+
)
|
| 1100 |
+
|
| 1101 |
+
cos_emb, sin_emb = position_embeddings
|
| 1102 |
+
|
| 1103 |
+
q_real, q_imag, k_real, k_imag = _apply_rotary_pos_emb(
|
| 1104 |
+
q_real, q_imag, k_real, k_imag, cos_emb, sin_emb
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 1108 |
+
if past_key_value is not None:
|
| 1109 |
+
cache_kwargs = {
|
| 1110 |
+
"sin": sin_emb,
|
| 1111 |
+
"cos": cos_emb,
|
| 1112 |
+
"cache_position": cache_position,
|
| 1113 |
+
}
|
| 1114 |
+
k_real, k_imag, v_real, v_imag = past_key_value.update(
|
| 1115 |
+
k_real, k_imag, v_real, v_imag, self.layer_idx, cache_kwargs
|
| 1116 |
+
)
|
| 1117 |
+
attention_interface: Callable = eager_attention_forward
|
| 1118 |
+
|
| 1119 |
+
if self.config._attn_implementation != "eager":
|
| 1120 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get(
|
| 1121 |
+
"output_attentions", False
|
| 1122 |
+
):
|
| 1123 |
+
logger.warning_once(
|
| 1124 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 1125 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 1126 |
+
)
|
| 1127 |
+
raise ValueError(
|
| 1128 |
+
f"Unsupported attention implementation: {self.config._attn_implementation}. Supported implementations are: {list(ALL_ATTENTION_FUNCTIONS.keys())}."
|
| 1129 |
+
)
|
| 1130 |
+
elif self.config._attn_implementation == "flash_attention_2":
|
| 1131 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[
|
| 1132 |
+
self.config._attn_implementation
|
| 1133 |
+
]
|
| 1134 |
+
else:
|
| 1135 |
+
raise ValueError(
|
| 1136 |
+
f"Unsupported attention implementation: {self.config._attn_implementation}. Supported implementations are: {list(ALL_ATTENTION_FUNCTIONS.keys())}."
|
| 1137 |
+
)
|
| 1138 |
+
cat_q = torch.cat([q_real, q_imag], dim=-1).reshape(
|
| 1139 |
+
input_shape[0], self.num_attn_heads, input_shape[1], 2 * self.head_dim
|
| 1140 |
+
)
|
| 1141 |
+
cat_k = torch.cat([k_real, k_imag], dim=-1).reshape(
|
| 1142 |
+
input_shape[0], self.num_key_value_heads, input_shape[1], 2 * self.head_dim
|
| 1143 |
+
)
|
| 1144 |
+
cat_v = torch.cat([v_real, v_imag], dim=-1).reshape(
|
| 1145 |
+
input_shape[0], self.num_key_value_heads, input_shape[1], 2 * self.head_dim
|
| 1146 |
+
)
|
| 1147 |
+
attn_output, attn_weights_real, attn_weights_imag = attention_interface(
|
| 1148 |
+
self,
|
| 1149 |
+
cat_q,
|
| 1150 |
+
cat_k,
|
| 1151 |
+
cat_v,
|
| 1152 |
+
attn_mask_real,
|
| 1153 |
+
scaling=self.scaling,
|
| 1154 |
+
dropout=self.attn_dropout if self.training else 0.0,
|
| 1155 |
+
**kwargs,
|
| 1156 |
+
)
|
| 1157 |
+
attn_output_real, attn_output_imag = torch.chunk(attn_output, 2, dim=-1)
|
| 1158 |
+
attn_output_real = attn_output_real.reshape(
|
| 1159 |
+
input_shape[0], input_shape[1], self.hidden_size
|
| 1160 |
+
).contiguous()
|
| 1161 |
+
attn_output_imag = attn_output_imag.reshape(
|
| 1162 |
+
input_shape[0], input_shape[1], self.hidden_size
|
| 1163 |
+
).contiguous()
|
| 1164 |
+
|
| 1165 |
+
attn_output_real, attn_output_imag = self.attn_layernorm(
|
| 1166 |
+
attn_output_real, attn_output_imag
|
| 1167 |
+
)
|
| 1168 |
+
attn_output_real, attn_output_imag = self.o_proj(
|
| 1169 |
+
attn_output_real, attn_output_imag
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
if not output_attentions:
|
| 1173 |
+
attn_weights_real = None
|
| 1174 |
+
attn_weights_imag = None
|
| 1175 |
+
|
| 1176 |
+
return (
|
| 1177 |
+
attn_output_real,
|
| 1178 |
+
attn_output_imag,
|
| 1179 |
+
attn_weights_real,
|
| 1180 |
+
attn_weights_imag,
|
| 1181 |
+
past_key_value,
|
| 1182 |
+
)
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
class ComplexNetDecoderLayer(nn.Module):
|
| 1186 |
+
def __init__(self, config: ComplexNetConfig, layer_idx: int):
|
| 1187 |
+
super().__init__()
|
| 1188 |
+
self.config = config
|
| 1189 |
+
self.hidden_size = self.config.hidden_size
|
| 1190 |
+
|
| 1191 |
+
self.self_attn = ComplexNetAttention(config=config, layer_idx=layer_idx)
|
| 1192 |
+
self.mlp = ComplexNetMLP(config)
|
| 1193 |
+
self.pre_layernorm = ComplexNetRMSNorm(
|
| 1194 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 1195 |
+
)
|
| 1196 |
+
self.post_layernorm = ComplexNetRMSNorm(
|
| 1197 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 1198 |
+
)
|
| 1199 |
+
|
| 1200 |
+
def forward(
|
| 1201 |
+
self,
|
| 1202 |
+
hidden_states_real: torch.Tensor,
|
| 1203 |
+
hidden_states_imag: torch.Tensor,
|
| 1204 |
+
attention_mask_real: Optional[torch.Tensor] = None,
|
| 1205 |
+
attention_mask_imag: Optional[torch.Tensor] = None,
|
| 1206 |
+
past_key_value: Optional[Cache] = None,
|
| 1207 |
+
output_attentions: Optional[bool] = False,
|
| 1208 |
+
use_cache: Optional[bool] = False,
|
| 1209 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1210 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 1211 |
+
**kwargs,
|
| 1212 |
+
) -> Tuple[
|
| 1213 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 1214 |
+
]:
|
| 1215 |
+
|
| 1216 |
+
residual_real = hidden_states_real
|
| 1217 |
+
residual_imag = hidden_states_imag
|
| 1218 |
+
|
| 1219 |
+
hidden_states_real, hidden_states_imag = self.pre_layernorm(
|
| 1220 |
+
hidden_states_real, hidden_states_imag
|
| 1221 |
+
)
|
| 1222 |
+
(
|
| 1223 |
+
hidden_states_real,
|
| 1224 |
+
hidden_states_imag,
|
| 1225 |
+
attn_weights_real,
|
| 1226 |
+
attn_weights_imag,
|
| 1227 |
+
present_key_value,
|
| 1228 |
+
) = self.self_attn(
|
| 1229 |
+
hidden_states_real=hidden_states_real,
|
| 1230 |
+
hidden_states_imag=hidden_states_imag,
|
| 1231 |
+
position_embeddings=position_embeddings,
|
| 1232 |
+
attn_mask_real=attention_mask_real,
|
| 1233 |
+
attn_mask_imag=attention_mask_imag,
|
| 1234 |
+
past_key_value=past_key_value,
|
| 1235 |
+
output_attentions=output_attentions,
|
| 1236 |
+
use_cache=use_cache,
|
| 1237 |
+
cache_position=cache_position,
|
| 1238 |
+
**kwargs,
|
| 1239 |
+
)
|
| 1240 |
+
|
| 1241 |
+
hidden_states_real = residual_real + hidden_states_real
|
| 1242 |
+
hidden_states_imag = residual_imag + hidden_states_imag
|
| 1243 |
+
|
| 1244 |
+
residual_real = hidden_states_real
|
| 1245 |
+
residual_imag = hidden_states_imag
|
| 1246 |
+
hidden_states_real, hidden_states_imag = self.post_layernorm(
|
| 1247 |
+
hidden_states_real, hidden_states_imag
|
| 1248 |
+
)
|
| 1249 |
+
hidden_states_real, hidden_states_imag = self.mlp(
|
| 1250 |
+
hidden_states_real, hidden_states_imag
|
| 1251 |
+
)
|
| 1252 |
+
hidden_states_real = residual_real + hidden_states_real
|
| 1253 |
+
hidden_states_imag = residual_imag + hidden_states_imag
|
| 1254 |
+
|
| 1255 |
+
outputs = (
|
| 1256 |
+
hidden_states_real,
|
| 1257 |
+
hidden_states_imag,
|
| 1258 |
+
)
|
| 1259 |
+
|
| 1260 |
+
if output_attentions:
|
| 1261 |
+
outputs += (
|
| 1262 |
+
attn_weights_real,
|
| 1263 |
+
attn_weights_imag,
|
| 1264 |
+
)
|
| 1265 |
+
|
| 1266 |
+
if use_cache:
|
| 1267 |
+
outputs += (present_key_value,)
|
| 1268 |
+
|
| 1269 |
+
return outputs
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
logger = logging.get_logger(__name__)
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
class ComplexNetLM(PreTrainedModel, GenerationMixin):
|
| 1276 |
+
config_class = ComplexNetConfig
|
| 1277 |
+
supports_gradient_checkpointing = True
|
| 1278 |
+
_supports_flash_attn_2 = True
|
| 1279 |
+
|
| 1280 |
+
def __init__(self, config: ComplexNetConfig):
|
| 1281 |
+
super().__init__(config=config)
|
| 1282 |
+
self.config = config
|
| 1283 |
+
self.n_vocab = self.config.vocab_size
|
| 1284 |
+
self.max_position_embeddings = self.config.max_position_embeddings
|
| 1285 |
+
self.hidden_size = self.config.hidden_size
|
| 1286 |
+
self.num_hidden_layers = self.config.num_hidden_layers
|
| 1287 |
+
self.use_cache = self.config.use_cache
|
| 1288 |
+
self.token_embeddings_real = nn.Embedding(self.n_vocab, self.hidden_size)
|
| 1289 |
+
self.token_embeddings_imag = nn.Embedding(self.n_vocab, self.hidden_size)
|
| 1290 |
+
self.final_norm = ComplexNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1291 |
+
self.layer = nn.ModuleList(
|
| 1292 |
+
[
|
| 1293 |
+
ComplexNetDecoderLayer(config, layer_idx)
|
| 1294 |
+
for layer_idx in range(self.num_hidden_layers)
|
| 1295 |
+
]
|
| 1296 |
+
)
|
| 1297 |
+
self.gradient_checkpointing = False
|
| 1298 |
+
self.rotary_emb = ComplexNetRotaryEmbedding(self.config)
|
| 1299 |
+
self.lm_head = nn.Linear(self.hidden_size * 2, self.n_vocab, bias=False)
|
| 1300 |
+
self.apply(self._init_weights)
|
| 1301 |
+
|
| 1302 |
+
def _init_weights(self, module):
|
| 1303 |
+
std = self.config.initializer_range
|
| 1304 |
+
if isinstance(module, nn.Linear):
|
| 1305 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 1306 |
+
if module.bias is not None:
|
| 1307 |
+
torch.nn.init.zeros_(module.bias)
|
| 1308 |
+
elif isinstance(module, nn.Embedding):
|
| 1309 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 1310 |
+
elif isinstance(module, ComplexLinear):
|
| 1311 |
+
std = std / math.sqrt(2)
|
| 1312 |
+
torch.nn.init.normal_(module.weight_real, mean=0.0, std=std)
|
| 1313 |
+
torch.nn.init.normal_(module.weight_imag, mean=0.0, std=std)
|
| 1314 |
+
|
| 1315 |
+
def embed(
|
| 1316 |
+
self,
|
| 1317 |
+
input_ids: torch.LongTensor,
|
| 1318 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1319 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 1320 |
+
|
| 1321 |
+
token_embeddings_real = self.token_embeddings_real(input_ids)
|
| 1322 |
+
token_embeddings_imag = self.token_embeddings_imag(input_ids)
|
| 1323 |
+
|
| 1324 |
+
return token_embeddings_real, token_embeddings_imag
|
| 1325 |
+
|
| 1326 |
+
def token_logits(
|
| 1327 |
+
self,
|
| 1328 |
+
x_real: torch.FloatTensor,
|
| 1329 |
+
x_imag: torch.FloatTensor,
|
| 1330 |
+
) -> torch.FloatTensor:
|
| 1331 |
+
# catenate the real and imaginary parts
|
| 1332 |
+
x_cat = torch.cat([x_real, x_imag], dim=-1)
|
| 1333 |
+
logits = self.lm_head(x_cat)
|
| 1334 |
+
return logits
|
| 1335 |
+
|
| 1336 |
+
def forward(
|
| 1337 |
+
self,
|
| 1338 |
+
input_ids: torch.LongTensor,
|
| 1339 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1340 |
+
labels=None,
|
| 1341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1342 |
+
past_key_values: Optional[Cache] = None,
|
| 1343 |
+
output_attentions: Optional[bool] = False,
|
| 1344 |
+
use_cache: Optional[bool] = False,
|
| 1345 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1346 |
+
**kwargs,
|
| 1347 |
+
) -> dict:
|
| 1348 |
+
output_attentions = (
|
| 1349 |
+
output_attentions
|
| 1350 |
+
if output_attentions is not None
|
| 1351 |
+
else self.config.output_attentions
|
| 1352 |
+
)
|
| 1353 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1354 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1355 |
+
logger.warning_once(
|
| 1356 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 1357 |
+
)
|
| 1358 |
+
use_cache = False
|
| 1359 |
+
|
| 1360 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
| 1361 |
+
raise ValueError(
|
| 1362 |
+
"The `past_key_values` should be either a `Cache` object or `None`."
|
| 1363 |
+
)
|
| 1364 |
+
batch_size, seq_len = input_ids.shape
|
| 1365 |
+
device = input_ids.device
|
| 1366 |
+
x_real, x_imag = self.embed(input_ids, attention_mask)
|
| 1367 |
+
if use_cache and past_key_values is None:
|
| 1368 |
+
past_key_values = ComplexDynamicCache()
|
| 1369 |
+
if cache_position is None:
|
| 1370 |
+
past_seen_tokens = (
|
| 1371 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1372 |
+
)
|
| 1373 |
+
cache_position = torch.arange(
|
| 1374 |
+
past_seen_tokens,
|
| 1375 |
+
past_seen_tokens + x_real.shape[1],
|
| 1376 |
+
device=x_real.device,
|
| 1377 |
+
)
|
| 1378 |
+
if position_ids is None:
|
| 1379 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1380 |
+
causal_mask = self._update_causal_mask(
|
| 1381 |
+
attention_mask, x_real, cache_position, past_key_values, output_attentions
|
| 1382 |
+
)
|
| 1383 |
+
position_embeddings = self.rotary_emb(position_ids, x_real.dtype)
|
| 1384 |
+
all_hidden_states_real = []
|
| 1385 |
+
all_hidden_states_imag = []
|
| 1386 |
+
for i, layer_module in enumerate(self.layer):
|
| 1387 |
+
if self.gradient_checkpointing and self.training:
|
| 1388 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1389 |
+
partial(layer_module.__call__, **kwargs),
|
| 1390 |
+
x_real,
|
| 1391 |
+
x_imag,
|
| 1392 |
+
causal_mask,
|
| 1393 |
+
causal_mask,
|
| 1394 |
+
past_key_values,
|
| 1395 |
+
output_attentions,
|
| 1396 |
+
use_cache,
|
| 1397 |
+
cache_position,
|
| 1398 |
+
position_embeddings,
|
| 1399 |
+
)
|
| 1400 |
+
else:
|
| 1401 |
+
layer_outputs = layer_module(
|
| 1402 |
+
hidden_states_real=x_real,
|
| 1403 |
+
hidden_states_imag=x_imag,
|
| 1404 |
+
attention_mask_real=causal_mask,
|
| 1405 |
+
attention_mask_imag=causal_mask,
|
| 1406 |
+
past_key_value=past_key_values,
|
| 1407 |
+
output_attentions=output_attentions,
|
| 1408 |
+
use_cache=use_cache,
|
| 1409 |
+
cache_position=cache_position,
|
| 1410 |
+
position_embeddings=position_embeddings,
|
| 1411 |
+
**kwargs,
|
| 1412 |
+
)
|
| 1413 |
+
|
| 1414 |
+
x_real, x_imag = layer_outputs[:2]
|
| 1415 |
+
|
| 1416 |
+
if output_attentions:
|
| 1417 |
+
all_hidden_states_real.append(layer_outputs[2])
|
| 1418 |
+
all_hidden_states_imag.append(layer_outputs[3])
|
| 1419 |
+
|
| 1420 |
+
x_real, x_imag = self.final_norm(x_real, x_imag)
|
| 1421 |
+
logits = self.token_logits(x_real, x_imag)
|
| 1422 |
+
loss = None
|
| 1423 |
+
if labels is not None:
|
| 1424 |
+
loss = self.loss_function(
|
| 1425 |
+
logits=logits,
|
| 1426 |
+
labels=labels,
|
| 1427 |
+
vocab_size=self.config.vocab_size,
|
| 1428 |
+
**kwargs,
|
| 1429 |
+
)
|
| 1430 |
+
|
| 1431 |
+
return CausalLMOutputWithPast(
|
| 1432 |
+
loss=loss,
|
| 1433 |
+
logits=logits,
|
| 1434 |
+
past_key_values=past_key_values,
|
| 1435 |
+
)
|
| 1436 |
+
|
| 1437 |
+
def _update_causal_mask(
|
| 1438 |
+
self,
|
| 1439 |
+
attention_mask: torch.Tensor,
|
| 1440 |
+
input_tensor: torch.Tensor,
|
| 1441 |
+
cache_position: torch.Tensor,
|
| 1442 |
+
past_key_values: Cache,
|
| 1443 |
+
output_attentions: bool = False,
|
| 1444 |
+
):
|
| 1445 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1446 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 1447 |
+
return attention_mask
|
| 1448 |
+
return None
|
| 1449 |
+
past_seen_tokens = (
|
| 1450 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1451 |
+
)
|
| 1452 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1453 |
+
|
| 1454 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1455 |
+
sequence_length = input_tensor.shape[1]
|
| 1456 |
+
if using_static_cache:
|
| 1457 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1458 |
+
else:
|
| 1459 |
+
target_length = (
|
| 1460 |
+
attention_mask.shape[-1]
|
| 1461 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1462 |
+
else past_seen_tokens + sequence_length + 1
|
| 1463 |
+
)
|
| 1464 |
+
|
| 1465 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1466 |
+
attention_mask=attention_mask,
|
| 1467 |
+
sequence_length=sequence_length,
|
| 1468 |
+
target_length=target_length,
|
| 1469 |
+
dtype=dtype,
|
| 1470 |
+
device=device,
|
| 1471 |
+
cache_position=cache_position,
|
| 1472 |
+
batch_size=input_tensor.shape[0],
|
| 1473 |
+
)
|
| 1474 |
+
|
| 1475 |
+
return causal_mask
|
| 1476 |
+
|
| 1477 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1478 |
+
self,
|
| 1479 |
+
attention_mask: torch.Tensor,
|
| 1480 |
+
sequence_length: int,
|
| 1481 |
+
target_length: int,
|
| 1482 |
+
dtype: torch.dtype,
|
| 1483 |
+
device: torch.device,
|
| 1484 |
+
cache_position: torch.Tensor,
|
| 1485 |
+
batch_size: int,
|
| 1486 |
+
**kwargs,
|
| 1487 |
+
):
|
| 1488 |
+
|
| 1489 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1490 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1491 |
+
causal_mask = attention_mask
|
| 1492 |
+
else:
|
| 1493 |
+
min_dtype = torch.finfo(dtype).min
|
| 1494 |
+
causal_mask = torch.full(
|
| 1495 |
+
(sequence_length, target_length),
|
| 1496 |
+
fill_value=min_dtype,
|
| 1497 |
+
dtype=dtype,
|
| 1498 |
+
device=device,
|
| 1499 |
+
)
|
| 1500 |
+
if sequence_length != 1:
|
| 1501 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1502 |
+
causal_mask *= torch.arange(
|
| 1503 |
+
target_length, device=device
|
| 1504 |
+
) > cache_position.reshape(-1, 1)
|
| 1505 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1506 |
+
if attention_mask is not None:
|
| 1507 |
+
causal_mask = (
|
| 1508 |
+
causal_mask.clone()
|
| 1509 |
+
) # copy to contiguous memory for in-place edit
|
| 1510 |
+
mask_length = attention_mask.shape[-1]
|
| 1511 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[
|
| 1512 |
+
:, None, None, :
|
| 1513 |
+
].to(causal_mask.device)
|
| 1514 |
+
padding_mask = padding_mask == 0
|
| 1515 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 1516 |
+
:, :, :, :mask_length
|
| 1517 |
+
].masked_fill(padding_mask, min_dtype)
|
| 1518 |
+
|
| 1519 |
+
return causal_mask
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"extra_special_tokens": {},
|
| 35 |
+
"legacy": false,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": "</s>",
|
| 38 |
+
"padding_side": "right",
|
| 39 |
+
"sp_model_kwargs": {},
|
| 40 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|