PSImera's picture
Upload folder using huggingface_hub
4856899 verified
import torch.nn as nn
class BidirectionalLSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(
input_size, hidden_size, bidirectional=True, batch_first=True
)
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, input):
"""
input : visual feature [batch_size x T x input_size]
output : contextual feature [batch_size x T x output_size]
"""
try: # multi gpu needs this
self.rnn.flatten_parameters()
except: # quantization doesn't work with this
pass
recurrent, _ = self.rnn(
input
) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
output = self.linear(recurrent) # batch_size x T x output_size
return output
class VGG_FeatureExtractor(nn.Module):
def __init__(self, input_channel, output_channel=256):
super(VGG_FeatureExtractor, self).__init__()
self.output_channel = [
int(output_channel / 8),
int(output_channel / 4),
int(output_channel / 2),
output_channel,
]
self.ConvNet = nn.Sequential(
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1),
nn.ReLU(True),
nn.MaxPool2d(2, 2),
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1),
nn.ReLU(True),
nn.MaxPool2d(2, 2),
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1),
nn.ReLU(True),
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1),
nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)),
nn.Conv2d(
self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False
),
nn.BatchNorm2d(self.output_channel[3]),
nn.ReLU(True),
nn.Conv2d(
self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False
),
nn.BatchNorm2d(self.output_channel[3]),
nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)),
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0),
nn.ReLU(True),
)
def forward(self, input):
return self.ConvNet(input)
class Model(nn.Module):
def __init__(self, input_channel, output_channel, hidden_size, num_class):
super(Model, self).__init__()
""" FeatureExtraction """
self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel)
self.FeatureExtraction_output = output_channel
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1))
""" Sequence modeling"""
self.SequenceModeling = nn.Sequential(
BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size),
BidirectionalLSTM(hidden_size, hidden_size, hidden_size),
)
self.SequenceModeling_output = hidden_size
""" Prediction """
self.Prediction = nn.Linear(self.SequenceModeling_output, num_class)
def forward(self, input, text):
"""Feature extraction stage"""
visual_feature = self.FeatureExtraction(input)
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2))
visual_feature = visual_feature.squeeze(3)
""" Sequence modeling stage """
contextual_feature = self.SequenceModeling(visual_feature)
""" Prediction stage """
prediction = self.Prediction(contextual_feature.contiguous())
return prediction