Tingquan commited on
Commit
c7fc1e6
·
verified ·
1 Parent(s): 65886d5

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # korean_PP-OCRv3_mobile_rec
6
+
7
+ ## Introduction
8
+
9
+ korean_PP-OCRv3_mobile_rec is a text line recognition model within the PP-OCRv3_rec series, developed by the PaddleOCR team. The korean_PP-OCRv3_mobile_rec model is an Korean-specific model trained based on PP-OCRv3_mobile_rec, and it supports Korean recognition. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Model</th>
14
+ <th>Recognition Avg Accuracy(%)</th>
15
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
17
+ <th>Model Storage Size (M)</th>
18
+ <th>Introduction</th>
19
+ </tr>
20
+ <tr>
21
+ <td>korean_PP-OCRv3_mobile_rec</td>
22
+ <td>60.21</td>
23
+ <td>5.40 / 0.97</td>
24
+ <td>9.11 / 4.05</td>
25
+ <td>8.6 M</td>
26
+ <td>An ultra-lightweight Korean recognition model trained based on the PP-OCRv3 recognition model, supporting Korean and numeric character recognition.</td>
27
+ </tr>
28
+
29
+ </table>
30
+
31
+
32
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
33
+
34
+ ## Quick Start
35
+
36
+ ### Installation
37
+
38
+ 1. PaddlePaddle
39
+
40
+ Please refer to the following commands to install PaddlePaddle using pip:
41
+
42
+ ```bash
43
+ # for CUDA11.8
44
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
45
+
46
+ # for CUDA12.6
47
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
48
+
49
+ # for CPU
50
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
51
+ ```
52
+
53
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
54
+
55
+ 2. PaddleOCR
56
+
57
+ Install the latest version of the PaddleOCR inference package from PyPI:
58
+
59
+ ```bash
60
+ python -m pip install paddleocr
61
+ ```
62
+
63
+ ### Model Usage
64
+
65
+ You can quickly experience the functionality with a single command:
66
+
67
+ ```bash
68
+ paddleocr text_recognition \
69
+ --model_name korean_PP-OCRv3_mobile_rec \
70
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/ZTHbb6G5z-OyxRMRquT0f.png
71
+ ```
72
+
73
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
74
+
75
+ ```python
76
+ from paddleocr import TextRecognition
77
+ model = TextRecognition(model_name="korean_PP-OCRv3_mobile_rec")
78
+ output = model.predict(input="ZTHbb6G5z-OyxRMRquT0f.png", batch_size=1)
79
+ for res in output:
80
+ res.print()
81
+ res.save_to_img(save_path="./output/")
82
+ res.save_to_json(save_path="./output/res.json")
83
+ ```
84
+
85
+ After running, the obtained result is as follows:
86
+
87
+ ```json
88
+ {'res': {'input_path': '/root/.paddlex/predict_input/ZTHbb6G5z-OyxRMRquT0f.png', 'page_index': None, 'rec_text': '한국어테스트케이스', 'rec_score': 0.9998695850372314}}
89
+ ```
90
+
91
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
92
+
93
+ ### Pipeline Usage
94
+
95
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
96
+
97
+ #### PP-OCRv3
98
+
99
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
100
+ * Document Image Orientation Classification Module (Optional)
101
+ * Text Image Unwarping Module (Optional)
102
+ * Text Line Orientation Classification Module (Optional)
103
+ * Text Detection Module
104
+ * Text Recognition Module
105
+
106
+ Run a single command to quickly experience the OCR pipeline:
107
+
108
+ ```bash
109
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/MCFByPiFcNs118O8mOiis.png \
110
+ --text_recognition_model_name korean_PP-OCRv3_mobile_rec \
111
+ --use_doc_orientation_classify False \
112
+ --use_doc_unwarping False \
113
+ --use_textline_orientation True \
114
+ --save_path ./output \
115
+ --device gpu:0
116
+ ```
117
+
118
+ Results are printed to the terminal:
119
+
120
+ ```json
121
+ {'res': {'input_path': '/root/.paddlex/predict_input/MCFByPiFcNs118O8mOiis.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[11, 3],
122
+ ...,
123
+ [11, 32]],
124
+
125
+ [[10, 33],
126
+ ...,
127
+ [10, 60]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([0, 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['한국어다중줄텍스트테', '스트케��스'], 'rec_scores': array([0.99944037, 0.9882015 ]), 'rec_polys': array([[[11, 3],
128
+ ...,
129
+ [11, 32]],
130
+
131
+ [[10, 33],
132
+ ...,
133
+ [10, 60]]], dtype=int16), 'rec_boxes': array([[11, ..., 32],
134
+ [10, ..., 62]], dtype=int16)}}
135
+ ```
136
+
137
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
138
+
139
+ ```python
140
+ from paddleocr import PaddleOCR
141
+
142
+ ocr = PaddleOCR(
143
+ text_recognition_model_name="korean_PP-OCRv3_mobile_rec",
144
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
145
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
146
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
147
+ device="gpu:0", # Use device to specify GPU for model inference
148
+ )
149
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/MCFByPiFcNs118O8mOiis.png")
150
+ for res in result:
151
+ res.print()
152
+ res.save_to_img("output")
153
+ res.save_to_json("output")
154
+ ```
155
+
156
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `korean_PP-OCRv3_mobile_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
157
+
158
+ ## Links
159
+
160
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
161
+
162
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)