NEO1_0-2B-SFT / configuration_neo_chat.py
Paranioar's picture
Upload folder using huggingface_hub
d585119 verified
import copy
from transformers import Qwen3Config
from transformers.utils import logging
from transformers.configuration_utils import PretrainedConfig
from .configuration_neo_vit import NEOVisionConfig
logger = logging.get_logger(__name__)
class NEOLLMConfig(Qwen3Config):
def __init__(self, rope_theta_hw=10000.0, max_position_embeddings_hw=10000, **kwargs):
super().__init__(**kwargs)
self.rope_theta_hw = rope_theta_hw
self.max_position_embeddings_hw = max_position_embeddings_hw
class NEOChatConfig(PretrainedConfig):
model_type = 'neo_chat'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
use_backbone_lora=0,
use_llm_lora=0,
downsample_ratio=0.5,
template=None,
**kwargs,
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {'architectures': ['NEOVisionModel']}
logger.info('vision_config is None. Initializing the NEOVisionConfig with default values.')
if llm_config is None:
llm_config = {'architectures': ['Qwen3ForCausalLM']}
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
assert 'architectures' in llm_config, "Should specify architecture in llm_config"
if isinstance(vision_config, dict):
self.vision_config = NEOVisionConfig(**vision_config)
else:
self.vision_config = vision_config
if isinstance(llm_config, dict):
self.llm_config = NEOLLMConfig(**llm_config)
else:
self.llm_config = llm_config
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.downsample_ratio = downsample_ratio
self.template = template
self.tie_word_embeddings = self.llm_config.tie_word_embeddings
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['llm_config'] = self.llm_config.to_dict()
output['model_type'] = self.__class__.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
return output