import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class NEOVisionConfig(PretrainedConfig): model_type = 'neo_vision' def __init__( self, num_channels=3, patch_size=16, hidden_size=1024, llm_hidden_size=2048, downsample_ratio=0.5, rope_theta_vision=10000.0, max_position_embeddings_vision=10000, min_pixels=65536, max_pixels=4194304, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.llm_hidden_size = llm_hidden_size, self.downsample_ratio = downsample_ratio, self.rope_theta_vision = rope_theta_vision self.max_position_embeddings_vision = max_position_embeddings_vision self.num_channels = num_channels self.patch_size = patch_size self.min_pixels = min_pixels self.max_pixels = max_pixels @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if 'vision_config' in config_dict: config_dict = config_dict['vision_config'] if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(config_dict, **kwargs)