import copy from transformers import Qwen3Config from transformers.utils import logging from transformers.configuration_utils import PretrainedConfig from .configuration_neo_vit import NEOVisionConfig logger = logging.get_logger(__name__) class NEOLLMConfig(Qwen3Config): def __init__(self, rope_theta_hw=10000.0, max_position_embeddings_hw=10000, **kwargs): super().__init__(**kwargs) self.rope_theta_hw = rope_theta_hw self.max_position_embeddings_hw = max_position_embeddings_hw class NEOChatConfig(PretrainedConfig): model_type = 'neo_chat' is_composition = True def __init__( self, vision_config=None, llm_config=None, use_backbone_lora=0, use_llm_lora=0, downsample_ratio=0.5, template=None, **kwargs, ): super().__init__(**kwargs) if vision_config is None: vision_config = {'architectures': ['NEOVisionModel']} logger.info('vision_config is None. Initializing the NEOVisionConfig with default values.') if llm_config is None: llm_config = {'architectures': ['Qwen3ForCausalLM']} logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).') assert 'architectures' in llm_config, "Should specify architecture in llm_config" if isinstance(vision_config, dict): self.vision_config = NEOVisionConfig(**vision_config) else: self.vision_config = vision_config if isinstance(llm_config, dict): self.llm_config = NEOLLMConfig(**llm_config) else: self.llm_config = llm_config self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.downsample_ratio = downsample_ratio self.template = template self.tie_word_embeddings = self.llm_config.tie_word_embeddings def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output['vision_config'] = self.vision_config.to_dict() output['llm_config'] = self.llm_config.to_dict() output['model_type'] = self.__class__.model_type output['use_backbone_lora'] = self.use_backbone_lora output['use_llm_lora'] = self.use_llm_lora output['downsample_ratio'] = self.downsample_ratio output['template'] = self.template return output