from typing import List, Optional, Tuple, Union import torch.utils.checkpoint import transformers from torch.nn import CrossEntropyLoss from transformers import GenerationConfig from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from .configuration_neo_chat import NEOChatConfig from .conversation import get_conv_template from .modeling_neo_vit import NEOVisionModel from .modeling_qwen3 import Qwen3ForCausalLM logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) def build_abs_positions_from_grid_hw(grid_hw: torch.Tensor, device=None): """ Compute patch coordinates (x, y) Args: grid_hw: (B, 2) tensor representing (H, W) per image """ device = grid_hw.device B = grid_hw.shape[0] # Get the number of patches per image H = grid_hw[:, 0] W = grid_hw[:, 1] N = H * W N_total = N.sum() # Create the batch index for each patch (B x patch count) patch_to_sample = torch.repeat_interleave(torch.arange(B, device=device), N) # (N_total,) # Generate intra-image patch index (row-major order) patch_id_within_image = torch.arange(N_total, device=device) patch_id_within_image = patch_id_within_image - torch.cumsum( torch.cat([torch.tensor([0], device=device), N[:-1]]), dim=0 )[patch_to_sample] # Get H/W for each patch according to its image W_per_patch = W[patch_to_sample] abs_x = patch_id_within_image % W_per_patch abs_y = patch_id_within_image // W_per_patch return abs_x, abs_y class NEOChatModel(PreTrainedModel): config_class = NEOChatConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _supports_flash_attn_2 = True supports_gradient_checkpointing = True _no_split_modules = [ "NEOVisionModel", "Qwen3DecoderLayer", ] # support transformers 4.51.+ _tp_plan = '' def __init__(self, config: NEOChatConfig, vision_model=None, language_model=None, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') patch_size = config.vision_config.patch_size self.patch_size = patch_size self.template = config.template self.downsample_ratio = config.downsample_ratio config.llm_config._attn_implementation = 'eager' if vision_model is not None: self.vision_model = vision_model else: self.vision_model = NEOVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: self.language_model = Qwen3ForCausalLM(config.llm_config) self.img_context_token_id = None self.img_start_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: raise NotImplementedError('forward') return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values) vit_embeds = vit_embeds[image_flags == 1] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) # if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = min(selected.sum(), vit_embeds.size(0)) input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def extract_feature(self, pixel_values, grid_hw=None): return self.vision_model(pixel_values=pixel_values, output_hidden_states=False, return_dict=True, grid_hw=grid_hw).last_hidden_state def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): raise NotImplementedError('batch_chat') if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(template.sep.strip())[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, grid_hw=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False): if history is None and pixel_values is not None and '' not in question: question = '\n' + question img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN) template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: print(f'dynamic image size: {grid_hw * self.patch_size}') for i in range(grid_hw.shape[0]): num_patch_token = int(grid_hw[i, 0] * grid_hw[i, 1] * self.downsample_ratio**2) image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * num_patch_token + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, grid_hw=grid_hw, attention_mask=attention_mask, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep.strip())[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, grid_hw: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, **generate_kwargs, ) -> torch.LongTensor: assert input_ids.shape[0] == 1 assert self.img_context_token_id is not None indexes = self.get_thw_indexes(input_ids[0], grid_hw) if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values, grid_hw=grid_hw) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, indexes=indexes, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, use_cache=True, **generate_kwargs, ) return outputs @property def lm_head(self): return self.language_model.get_output_embeddings() def get_output_embeddings(self): return self.language_model.get_output_embeddings() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): return self.language_model.set_input_embeddings(value) def set_output_embeddings(self, value): return self.language_model.set_output_embeddings(value) def get_thw_indexes(self, input_ids, grid_hw): img_start_shift = torch.cat([torch.zeros(1, dtype=torch.long).to(input_ids.device), (input_ids == self.img_start_token_id).long()], dim=0)[:-1] not_img_token = (input_ids != self.img_context_token_id).long() t_indexes = ((img_start_shift + not_img_token).cumsum(0) - 1) h_indexes = torch.zeros_like(t_indexes).to(t_indexes.device) w_indexes = torch.zeros_like(t_indexes).to(t_indexes.device) selected = (input_ids == self.img_context_token_id) if selected.long().sum() > 0: abs_pos_w, abs_pos_h = build_abs_positions_from_grid_hw( grid_hw // int(1 / self.downsample_ratio), device=t_indexes.device) h_indexes[selected] = abs_pos_h.to(t_indexes.device, t_indexes.dtype) w_indexes[selected] = abs_pos_w.to(t_indexes.device, t_indexes.dtype) return torch.stack([t_indexes, h_indexes, w_indexes], dim=0)