--- language: - en license: apache-2.0 library_name: transformers tags: - merge - model-merging - mergekit - lazymergekit - qwen3 - 4b - text-generation - causal-lm - llama-cpp - gguf-my-repo datasets: - Idavidrein/gpqa metrics: - accuracy base_model: ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0 base_model_relation: merge model-index: - name: qwen3-4b-merged---configuration-1 results: - task: type: text-generation name: Text Generation dataset: name: MMLU (Massive Multitask Language Understanding) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: accuracy value: 72.51 name: MMLU (5-shot) verified: false - task: type: text-generation name: Text Generation dataset: name: GPQA (Graduate-level Physics Q&A) type: Idavidrein/gpqa config: gpqa_diamond split: test args: num_few_shot: 0 metrics: - type: accuracy value: 45.45 name: GPQA Diamond (0-shot) verified: false --- # parrotrouter/Qwen3-4B-Instruct-2507-20250808-233922-0-Q8_0-GGUF This model was converted to GGUF format from [`ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0`](https://huggingface.co/ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0-Q8_0-GGUF --hf-file qwen3-4b-instruct-2507-20250808-233922-0-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0-Q8_0-GGUF --hf-file qwen3-4b-instruct-2507-20250808-233922-0-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0-Q8_0-GGUF --hf-file qwen3-4b-instruct-2507-20250808-233922-0-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ParrotRouter/Qwen3-4B-Instruct-2507-20250808-233922-0-Q8_0-GGUF --hf-file qwen3-4b-instruct-2507-20250808-233922-0-q8_0.gguf -c 2048 ```