Peacemann commited on
Commit
27737c8
·
verified ·
1 Parent(s): 5b8d9fc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
4
+ tags:
5
+ - text-generation
6
+ - lmul
7
+ - research
8
+ - experimental
9
+ - qwen3
10
+ ---
11
+
12
+ # L-Mul Optimized: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
13
+
14
+ This is a modified version of DeepSeek AI's [DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) model. The modification consists of replacing the standard attention mechanism with one that uses a custom, approximate matrix multiplication algorithm termed "L-Mul".
15
+
16
+ This work was performed as part of a research project to evaluate the performance and accuracy trade-offs of algorithmic substitutions in transformer architectures.
17
+
18
+ **This model is intended strictly for educational and scientific purposes.**
19
+
20
+ ## Model Description
21
+
22
+ The core architecture of `deepseek-ai/DeepSeek-R1-0528-Qwen3-8B` is preserved. However, the standard `Qwen3Attention` modules have been dynamically replaced with a custom version that utilizes the `l_mul_attention` function for its core computations. This function is defined in the `lmul.py` file included in this repository.
23
+
24
+ - **Base Model:** [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B)
25
+ - **Modification:** Replacement of standard attention with L-Mul approximate attention.
26
+ - **Primary Use-Case:** Research and educational analysis of algorithmic impact on LLMs.
27
+
28
+ ## How to Get Started
29
+
30
+ To use this model, you must use the `trust_remote_code=True` flag when loading it. This is required to execute the custom `lmul.py` file that defines the new attention mechanism.
31
+
32
+ You can load the model directly from this repository using the `transformers` library:
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+ import torch
37
+
38
+ # Define the repository ID for the specific model
39
+ repo_id = "Peacemann/deepseek-ai_DeepSeek-R1-0528-Qwen3-8B_LMUL" # Replace with the correct repo ID if different
40
+
41
+ # Load the tokenizer and model, trusting the remote code to load lmul.py
42
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
43
+ model = AutoModelForCausalLM.from_pretrained(
44
+ repo_id,
45
+ trust_remote_code=True,
46
+ torch_dtype=torch.bfloat16,
47
+ device_map="auto",
48
+ )
49
+
50
+ # Example usage
51
+ prompt = "The L-Mul algorithm is an experimental method for..."
52
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
53
+ outputs = model.generate(**inputs, max_new_tokens=50)
54
+
55
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
56
+ ```
57
+
58
+ For high-throughput inference, you can use `vLLM`:
59
+
60
+ ```python
61
+ from vllm import LLM
62
+
63
+ repo_id = "Peacemann/deepseek-ai_DeepSeek-R1-0528-Qwen3-8B_LMUL" # Replace with the correct repo ID
64
+ llm = LLM(model=repo_id, trust_remote_code=True)
65
+ ```
66
+
67
+ ## Intended Uses & Limitations
68
+
69
+ This model is intended for researchers and students exploring the internal workings of LLMs. It is a tool for visualizing and analyzing the effects of fundamental algorithmic changes.
70
+
71
+ **This model is NOT intended for any commercial or production application.**
72
+
73
+ The modification is experimental. The impact on the model's performance, safety alignment, accuracy, and potential for generating biased or harmful content is **unknown and untested**. It inherits all limitations and biases of the original `DeepSeek-R1-0528-Qwen3-8B` model, and its behavior may be altered in unpredictable ways.
74
+
75
+ ## Licensing Information
76
+
77
+ The use of this model is subject to the original **MIT License**. By using this model, you agree to the terms outlined in the license. The license can be found on the base model's Hugging Face page.