Commit
·
2687dea
1
Parent(s):
10e921e
update config
Browse files- added_tokens.json +267 -0
- config.json +97 -8
- generation_config.json +1 -1
- model-00001-of-00003.safetensors +2 -2
- model-00002-of-00003.safetensors +2 -2
- model.safetensors.index.json +310 -310
- modular_isaac.py +1169 -578
- processor_config.json +37 -199
- tokenizer.json +2 -2
- tokenizer_config.json +2136 -0
added_tokens.json
CHANGED
|
@@ -2,6 +2,273 @@
|
|
| 2 |
"</think>": 151668,
|
| 3 |
"</tool_call>": 151658,
|
| 4 |
"</tool_response>": 151666,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"<think>": 151667,
|
| 6 |
"<tool_call>": 151657,
|
| 7 |
"<tool_response>": 151665,
|
|
|
|
| 2 |
"</think>": 151668,
|
| 3 |
"</tool_call>": 151658,
|
| 4 |
"</tool_response>": 151666,
|
| 5 |
+
"<reserved_0>": 151669,
|
| 6 |
+
"<reserved_100>": 151769,
|
| 7 |
+
"<reserved_101>": 151770,
|
| 8 |
+
"<reserved_102>": 151771,
|
| 9 |
+
"<reserved_103>": 151772,
|
| 10 |
+
"<reserved_104>": 151773,
|
| 11 |
+
"<reserved_105>": 151774,
|
| 12 |
+
"<reserved_106>": 151775,
|
| 13 |
+
"<reserved_107>": 151776,
|
| 14 |
+
"<reserved_108>": 151777,
|
| 15 |
+
"<reserved_109>": 151778,
|
| 16 |
+
"<reserved_10>": 151679,
|
| 17 |
+
"<reserved_110>": 151779,
|
| 18 |
+
"<reserved_111>": 151780,
|
| 19 |
+
"<reserved_112>": 151781,
|
| 20 |
+
"<reserved_113>": 151782,
|
| 21 |
+
"<reserved_114>": 151783,
|
| 22 |
+
"<reserved_115>": 151784,
|
| 23 |
+
"<reserved_116>": 151785,
|
| 24 |
+
"<reserved_117>": 151786,
|
| 25 |
+
"<reserved_118>": 151787,
|
| 26 |
+
"<reserved_119>": 151788,
|
| 27 |
+
"<reserved_11>": 151680,
|
| 28 |
+
"<reserved_120>": 151789,
|
| 29 |
+
"<reserved_121>": 151790,
|
| 30 |
+
"<reserved_122>": 151791,
|
| 31 |
+
"<reserved_123>": 151792,
|
| 32 |
+
"<reserved_124>": 151793,
|
| 33 |
+
"<reserved_125>": 151794,
|
| 34 |
+
"<reserved_126>": 151795,
|
| 35 |
+
"<reserved_127>": 151796,
|
| 36 |
+
"<reserved_128>": 151797,
|
| 37 |
+
"<reserved_129>": 151798,
|
| 38 |
+
"<reserved_12>": 151681,
|
| 39 |
+
"<reserved_130>": 151799,
|
| 40 |
+
"<reserved_131>": 151800,
|
| 41 |
+
"<reserved_132>": 151801,
|
| 42 |
+
"<reserved_133>": 151802,
|
| 43 |
+
"<reserved_134>": 151803,
|
| 44 |
+
"<reserved_135>": 151804,
|
| 45 |
+
"<reserved_136>": 151805,
|
| 46 |
+
"<reserved_137>": 151806,
|
| 47 |
+
"<reserved_138>": 151807,
|
| 48 |
+
"<reserved_139>": 151808,
|
| 49 |
+
"<reserved_13>": 151682,
|
| 50 |
+
"<reserved_140>": 151809,
|
| 51 |
+
"<reserved_141>": 151810,
|
| 52 |
+
"<reserved_142>": 151811,
|
| 53 |
+
"<reserved_143>": 151812,
|
| 54 |
+
"<reserved_144>": 151813,
|
| 55 |
+
"<reserved_145>": 151814,
|
| 56 |
+
"<reserved_146>": 151815,
|
| 57 |
+
"<reserved_147>": 151816,
|
| 58 |
+
"<reserved_148>": 151817,
|
| 59 |
+
"<reserved_149>": 151818,
|
| 60 |
+
"<reserved_14>": 151683,
|
| 61 |
+
"<reserved_150>": 151819,
|
| 62 |
+
"<reserved_151>": 151820,
|
| 63 |
+
"<reserved_152>": 151821,
|
| 64 |
+
"<reserved_153>": 151822,
|
| 65 |
+
"<reserved_154>": 151823,
|
| 66 |
+
"<reserved_155>": 151824,
|
| 67 |
+
"<reserved_156>": 151825,
|
| 68 |
+
"<reserved_157>": 151826,
|
| 69 |
+
"<reserved_158>": 151827,
|
| 70 |
+
"<reserved_159>": 151828,
|
| 71 |
+
"<reserved_15>": 151684,
|
| 72 |
+
"<reserved_160>": 151829,
|
| 73 |
+
"<reserved_161>": 151830,
|
| 74 |
+
"<reserved_162>": 151831,
|
| 75 |
+
"<reserved_163>": 151832,
|
| 76 |
+
"<reserved_164>": 151833,
|
| 77 |
+
"<reserved_165>": 151834,
|
| 78 |
+
"<reserved_166>": 151835,
|
| 79 |
+
"<reserved_167>": 151836,
|
| 80 |
+
"<reserved_168>": 151837,
|
| 81 |
+
"<reserved_169>": 151838,
|
| 82 |
+
"<reserved_16>": 151685,
|
| 83 |
+
"<reserved_170>": 151839,
|
| 84 |
+
"<reserved_171>": 151840,
|
| 85 |
+
"<reserved_172>": 151841,
|
| 86 |
+
"<reserved_173>": 151842,
|
| 87 |
+
"<reserved_174>": 151843,
|
| 88 |
+
"<reserved_175>": 151844,
|
| 89 |
+
"<reserved_176>": 151845,
|
| 90 |
+
"<reserved_177>": 151846,
|
| 91 |
+
"<reserved_178>": 151847,
|
| 92 |
+
"<reserved_179>": 151848,
|
| 93 |
+
"<reserved_17>": 151686,
|
| 94 |
+
"<reserved_180>": 151849,
|
| 95 |
+
"<reserved_181>": 151850,
|
| 96 |
+
"<reserved_182>": 151851,
|
| 97 |
+
"<reserved_183>": 151852,
|
| 98 |
+
"<reserved_184>": 151853,
|
| 99 |
+
"<reserved_185>": 151854,
|
| 100 |
+
"<reserved_186>": 151855,
|
| 101 |
+
"<reserved_187>": 151856,
|
| 102 |
+
"<reserved_188>": 151857,
|
| 103 |
+
"<reserved_189>": 151858,
|
| 104 |
+
"<reserved_18>": 151687,
|
| 105 |
+
"<reserved_190>": 151859,
|
| 106 |
+
"<reserved_191>": 151860,
|
| 107 |
+
"<reserved_192>": 151861,
|
| 108 |
+
"<reserved_193>": 151862,
|
| 109 |
+
"<reserved_194>": 151863,
|
| 110 |
+
"<reserved_195>": 151864,
|
| 111 |
+
"<reserved_196>": 151865,
|
| 112 |
+
"<reserved_197>": 151866,
|
| 113 |
+
"<reserved_198>": 151867,
|
| 114 |
+
"<reserved_199>": 151868,
|
| 115 |
+
"<reserved_19>": 151688,
|
| 116 |
+
"<reserved_1>": 151670,
|
| 117 |
+
"<reserved_200>": 151869,
|
| 118 |
+
"<reserved_201>": 151870,
|
| 119 |
+
"<reserved_202>": 151871,
|
| 120 |
+
"<reserved_203>": 151872,
|
| 121 |
+
"<reserved_204>": 151873,
|
| 122 |
+
"<reserved_205>": 151874,
|
| 123 |
+
"<reserved_206>": 151875,
|
| 124 |
+
"<reserved_207>": 151876,
|
| 125 |
+
"<reserved_208>": 151877,
|
| 126 |
+
"<reserved_209>": 151878,
|
| 127 |
+
"<reserved_20>": 151689,
|
| 128 |
+
"<reserved_210>": 151879,
|
| 129 |
+
"<reserved_211>": 151880,
|
| 130 |
+
"<reserved_212>": 151881,
|
| 131 |
+
"<reserved_213>": 151882,
|
| 132 |
+
"<reserved_214>": 151883,
|
| 133 |
+
"<reserved_215>": 151884,
|
| 134 |
+
"<reserved_216>": 151885,
|
| 135 |
+
"<reserved_217>": 151886,
|
| 136 |
+
"<reserved_218>": 151887,
|
| 137 |
+
"<reserved_219>": 151888,
|
| 138 |
+
"<reserved_21>": 151690,
|
| 139 |
+
"<reserved_220>": 151889,
|
| 140 |
+
"<reserved_221>": 151890,
|
| 141 |
+
"<reserved_222>": 151891,
|
| 142 |
+
"<reserved_223>": 151892,
|
| 143 |
+
"<reserved_224>": 151893,
|
| 144 |
+
"<reserved_225>": 151894,
|
| 145 |
+
"<reserved_226>": 151895,
|
| 146 |
+
"<reserved_227>": 151896,
|
| 147 |
+
"<reserved_228>": 151897,
|
| 148 |
+
"<reserved_229>": 151898,
|
| 149 |
+
"<reserved_22>": 151691,
|
| 150 |
+
"<reserved_230>": 151899,
|
| 151 |
+
"<reserved_231>": 151900,
|
| 152 |
+
"<reserved_232>": 151901,
|
| 153 |
+
"<reserved_233>": 151902,
|
| 154 |
+
"<reserved_234>": 151903,
|
| 155 |
+
"<reserved_235>": 151904,
|
| 156 |
+
"<reserved_236>": 151905,
|
| 157 |
+
"<reserved_237>": 151906,
|
| 158 |
+
"<reserved_238>": 151907,
|
| 159 |
+
"<reserved_239>": 151908,
|
| 160 |
+
"<reserved_23>": 151692,
|
| 161 |
+
"<reserved_240>": 151909,
|
| 162 |
+
"<reserved_241>": 151910,
|
| 163 |
+
"<reserved_242>": 151911,
|
| 164 |
+
"<reserved_243>": 151912,
|
| 165 |
+
"<reserved_244>": 151913,
|
| 166 |
+
"<reserved_245>": 151914,
|
| 167 |
+
"<reserved_246>": 151915,
|
| 168 |
+
"<reserved_247>": 151916,
|
| 169 |
+
"<reserved_248>": 151917,
|
| 170 |
+
"<reserved_249>": 151918,
|
| 171 |
+
"<reserved_24>": 151693,
|
| 172 |
+
"<reserved_250>": 151919,
|
| 173 |
+
"<reserved_251>": 151920,
|
| 174 |
+
"<reserved_252>": 151921,
|
| 175 |
+
"<reserved_253>": 151922,
|
| 176 |
+
"<reserved_254>": 151923,
|
| 177 |
+
"<reserved_255>": 151924,
|
| 178 |
+
"<reserved_256>": 151925,
|
| 179 |
+
"<reserved_257>": 151926,
|
| 180 |
+
"<reserved_258>": 151927,
|
| 181 |
+
"<reserved_259>": 151928,
|
| 182 |
+
"<reserved_25>": 151694,
|
| 183 |
+
"<reserved_260>": 151929,
|
| 184 |
+
"<reserved_261>": 151930,
|
| 185 |
+
"<reserved_262>": 151931,
|
| 186 |
+
"<reserved_263>": 151932,
|
| 187 |
+
"<reserved_264>": 151933,
|
| 188 |
+
"<reserved_265>": 151934,
|
| 189 |
+
"<reserved_266>": 151935,
|
| 190 |
+
"<reserved_26>": 151695,
|
| 191 |
+
"<reserved_27>": 151696,
|
| 192 |
+
"<reserved_28>": 151697,
|
| 193 |
+
"<reserved_29>": 151698,
|
| 194 |
+
"<reserved_2>": 151671,
|
| 195 |
+
"<reserved_30>": 151699,
|
| 196 |
+
"<reserved_31>": 151700,
|
| 197 |
+
"<reserved_32>": 151701,
|
| 198 |
+
"<reserved_33>": 151702,
|
| 199 |
+
"<reserved_34>": 151703,
|
| 200 |
+
"<reserved_35>": 151704,
|
| 201 |
+
"<reserved_36>": 151705,
|
| 202 |
+
"<reserved_37>": 151706,
|
| 203 |
+
"<reserved_38>": 151707,
|
| 204 |
+
"<reserved_39>": 151708,
|
| 205 |
+
"<reserved_3>": 151672,
|
| 206 |
+
"<reserved_40>": 151709,
|
| 207 |
+
"<reserved_41>": 151710,
|
| 208 |
+
"<reserved_42>": 151711,
|
| 209 |
+
"<reserved_43>": 151712,
|
| 210 |
+
"<reserved_44>": 151713,
|
| 211 |
+
"<reserved_45>": 151714,
|
| 212 |
+
"<reserved_46>": 151715,
|
| 213 |
+
"<reserved_47>": 151716,
|
| 214 |
+
"<reserved_48>": 151717,
|
| 215 |
+
"<reserved_49>": 151718,
|
| 216 |
+
"<reserved_4>": 151673,
|
| 217 |
+
"<reserved_50>": 151719,
|
| 218 |
+
"<reserved_51>": 151720,
|
| 219 |
+
"<reserved_52>": 151721,
|
| 220 |
+
"<reserved_53>": 151722,
|
| 221 |
+
"<reserved_54>": 151723,
|
| 222 |
+
"<reserved_55>": 151724,
|
| 223 |
+
"<reserved_56>": 151725,
|
| 224 |
+
"<reserved_57>": 151726,
|
| 225 |
+
"<reserved_58>": 151727,
|
| 226 |
+
"<reserved_59>": 151728,
|
| 227 |
+
"<reserved_5>": 151674,
|
| 228 |
+
"<reserved_60>": 151729,
|
| 229 |
+
"<reserved_61>": 151730,
|
| 230 |
+
"<reserved_62>": 151731,
|
| 231 |
+
"<reserved_63>": 151732,
|
| 232 |
+
"<reserved_64>": 151733,
|
| 233 |
+
"<reserved_65>": 151734,
|
| 234 |
+
"<reserved_66>": 151735,
|
| 235 |
+
"<reserved_67>": 151736,
|
| 236 |
+
"<reserved_68>": 151737,
|
| 237 |
+
"<reserved_69>": 151738,
|
| 238 |
+
"<reserved_6>": 151675,
|
| 239 |
+
"<reserved_70>": 151739,
|
| 240 |
+
"<reserved_71>": 151740,
|
| 241 |
+
"<reserved_72>": 151741,
|
| 242 |
+
"<reserved_73>": 151742,
|
| 243 |
+
"<reserved_74>": 151743,
|
| 244 |
+
"<reserved_75>": 151744,
|
| 245 |
+
"<reserved_76>": 151745,
|
| 246 |
+
"<reserved_77>": 151746,
|
| 247 |
+
"<reserved_78>": 151747,
|
| 248 |
+
"<reserved_79>": 151748,
|
| 249 |
+
"<reserved_7>": 151676,
|
| 250 |
+
"<reserved_80>": 151749,
|
| 251 |
+
"<reserved_81>": 151750,
|
| 252 |
+
"<reserved_82>": 151751,
|
| 253 |
+
"<reserved_83>": 151752,
|
| 254 |
+
"<reserved_84>": 151753,
|
| 255 |
+
"<reserved_85>": 151754,
|
| 256 |
+
"<reserved_86>": 151755,
|
| 257 |
+
"<reserved_87>": 151756,
|
| 258 |
+
"<reserved_88>": 151757,
|
| 259 |
+
"<reserved_89>": 151758,
|
| 260 |
+
"<reserved_8>": 151677,
|
| 261 |
+
"<reserved_90>": 151759,
|
| 262 |
+
"<reserved_91>": 151760,
|
| 263 |
+
"<reserved_92>": 151761,
|
| 264 |
+
"<reserved_93>": 151762,
|
| 265 |
+
"<reserved_94>": 151763,
|
| 266 |
+
"<reserved_95>": 151764,
|
| 267 |
+
"<reserved_96>": 151765,
|
| 268 |
+
"<reserved_97>": 151766,
|
| 269 |
+
"<reserved_98>": 151767,
|
| 270 |
+
"<reserved_99>": 151768,
|
| 271 |
+
"<reserved_9>": 151678,
|
| 272 |
"<think>": 151667,
|
| 273 |
"<tool_call>": 151657,
|
| 274 |
"<tool_response>": 151665,
|
config.json
CHANGED
|
@@ -1,4 +1,9 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"IsaacForConditionalGeneration"
|
| 4 |
],
|
|
@@ -55,26 +60,98 @@
|
|
| 55 |
"num_key_value_heads": 8,
|
| 56 |
"pixel_shuffle_scale": 2,
|
| 57 |
"rms_norm_eps": 1e-06,
|
| 58 |
-
"rope_scaling": {
|
| 59 |
-
"mrope_interleaved": true,
|
| 60 |
-
"mrope_section": null,
|
| 61 |
-
"rope_type": "default"
|
| 62 |
-
},
|
| 63 |
"rope_theta": 1000000.0,
|
| 64 |
"sliding_window": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"tie_word_embeddings": false,
|
| 66 |
-
"transformers_version": "4.
|
| 67 |
"use_cache": true,
|
| 68 |
"use_sliding_window": false,
|
| 69 |
-
"video_patch_size": 16,
|
| 70 |
"vision_config": {
|
|
|
|
| 71 |
"attention_dropout": 0.0,
|
| 72 |
"hidden_act": "gelu_pytorch_tanh",
|
| 73 |
"hidden_size": 1152,
|
| 74 |
"image_size": 256,
|
| 75 |
"intermediate_size": 4304,
|
| 76 |
"layer_norm_eps": 1e-06,
|
| 77 |
-
"model_type": "
|
| 78 |
"num_attention_heads": 16,
|
| 79 |
"num_channels": 3,
|
| 80 |
"num_hidden_layers": 27,
|
|
@@ -83,7 +160,19 @@
|
|
| 83 |
"pixel_shuffle_scale_factor": 2
|
| 84 |
},
|
| 85 |
"vision_max_num_patches": 6144,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
"vision_min_num_patches": 256,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
"vision_token": "<image>",
|
| 88 |
"vocab_size": 151936
|
| 89 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_rope_scaling": {
|
| 3 |
+
"mrope_interleaved": true,
|
| 4 |
+
"mrope_section": null,
|
| 5 |
+
"rope_type": "default"
|
| 6 |
+
},
|
| 7 |
"architectures": [
|
| 8 |
"IsaacForConditionalGeneration"
|
| 9 |
],
|
|
|
|
| 60 |
"num_key_value_heads": 8,
|
| 61 |
"pixel_shuffle_scale": 2,
|
| 62 |
"rms_norm_eps": 1e-06,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
"rope_theta": 1000000.0,
|
| 64 |
"sliding_window": null,
|
| 65 |
+
"text_config": {
|
| 66 |
+
"_name_or_path": "/tmp/qwen3_temp_j1e9g12y/hf-checkpoint",
|
| 67 |
+
"architectures": [
|
| 68 |
+
"IsaacForConditionalGeneration"
|
| 69 |
+
],
|
| 70 |
+
"attention_bias": false,
|
| 71 |
+
"attention_dropout": 0.0,
|
| 72 |
+
"bos_token_id": 151643,
|
| 73 |
+
"dtype": "float32",
|
| 74 |
+
"eos_token_id": 151645,
|
| 75 |
+
"head_dim": 128,
|
| 76 |
+
"hidden_act": "silu",
|
| 77 |
+
"hidden_size": 2048,
|
| 78 |
+
"initializer_range": 0.02,
|
| 79 |
+
"intermediate_size": 6144,
|
| 80 |
+
"layer_types": [
|
| 81 |
+
"full_attention",
|
| 82 |
+
"full_attention",
|
| 83 |
+
"full_attention",
|
| 84 |
+
"full_attention",
|
| 85 |
+
"full_attention",
|
| 86 |
+
"full_attention",
|
| 87 |
+
"full_attention",
|
| 88 |
+
"full_attention",
|
| 89 |
+
"full_attention",
|
| 90 |
+
"full_attention",
|
| 91 |
+
"full_attention",
|
| 92 |
+
"full_attention",
|
| 93 |
+
"full_attention",
|
| 94 |
+
"full_attention",
|
| 95 |
+
"full_attention",
|
| 96 |
+
"full_attention",
|
| 97 |
+
"full_attention",
|
| 98 |
+
"full_attention",
|
| 99 |
+
"full_attention",
|
| 100 |
+
"full_attention",
|
| 101 |
+
"full_attention",
|
| 102 |
+
"full_attention",
|
| 103 |
+
"full_attention",
|
| 104 |
+
"full_attention",
|
| 105 |
+
"full_attention",
|
| 106 |
+
"full_attention",
|
| 107 |
+
"full_attention",
|
| 108 |
+
"full_attention"
|
| 109 |
+
],
|
| 110 |
+
"max_position_embeddings": 40960,
|
| 111 |
+
"max_window_layers": 28,
|
| 112 |
+
"model_type": "qwen3",
|
| 113 |
+
"num_attention_heads": 16,
|
| 114 |
+
"num_hidden_layers": 28,
|
| 115 |
+
"num_key_value_heads": 8,
|
| 116 |
+
"pixel_shuffle_scale": 2,
|
| 117 |
+
"rms_norm_eps": 1e-06,
|
| 118 |
+
"rope_scaling": {
|
| 119 |
+
"mrope_interleaved": true,
|
| 120 |
+
"mrope_section": null,
|
| 121 |
+
"rope_type": "default"
|
| 122 |
+
},
|
| 123 |
+
"rope_theta": 1000000.0,
|
| 124 |
+
"sliding_window": null,
|
| 125 |
+
"use_cache": true,
|
| 126 |
+
"use_sliding_window": false,
|
| 127 |
+
"vision_max_num_patches": 6144,
|
| 128 |
+
"vision_mean": [
|
| 129 |
+
0.5,
|
| 130 |
+
0.5,
|
| 131 |
+
0.5
|
| 132 |
+
],
|
| 133 |
+
"vision_min_num_patches": 256,
|
| 134 |
+
"vision_patch_size": 16,
|
| 135 |
+
"vision_std": [
|
| 136 |
+
0.5,
|
| 137 |
+
0.5,
|
| 138 |
+
0.5
|
| 139 |
+
],
|
| 140 |
+
"vocab_size": 151936
|
| 141 |
+
},
|
| 142 |
"tie_word_embeddings": false,
|
| 143 |
+
"transformers_version": "4.57.1",
|
| 144 |
"use_cache": true,
|
| 145 |
"use_sliding_window": false,
|
|
|
|
| 146 |
"vision_config": {
|
| 147 |
+
"_attn_implementation": "flash_attention_2",
|
| 148 |
"attention_dropout": 0.0,
|
| 149 |
"hidden_act": "gelu_pytorch_tanh",
|
| 150 |
"hidden_size": 1152,
|
| 151 |
"image_size": 256,
|
| 152 |
"intermediate_size": 4304,
|
| 153 |
"layer_norm_eps": 1e-06,
|
| 154 |
+
"model_type": "isaac_vision",
|
| 155 |
"num_attention_heads": 16,
|
| 156 |
"num_channels": 3,
|
| 157 |
"num_hidden_layers": 27,
|
|
|
|
| 160 |
"pixel_shuffle_scale_factor": 2
|
| 161 |
},
|
| 162 |
"vision_max_num_patches": 6144,
|
| 163 |
+
"vision_mean": [
|
| 164 |
+
0.5,
|
| 165 |
+
0.5,
|
| 166 |
+
0.5
|
| 167 |
+
],
|
| 168 |
"vision_min_num_patches": 256,
|
| 169 |
+
"vision_patch_size": 16,
|
| 170 |
+
"vision_rescale_factor": 0.00392156862745098,
|
| 171 |
+
"vision_std": [
|
| 172 |
+
0.5,
|
| 173 |
+
0.5,
|
| 174 |
+
0.5
|
| 175 |
+
],
|
| 176 |
"vision_token": "<image>",
|
| 177 |
"vocab_size": 151936
|
| 178 |
}
|
generation_config.json
CHANGED
|
@@ -2,5 +2,5 @@
|
|
| 2 |
"_from_model_config": true,
|
| 3 |
"bos_token_id": 151643,
|
| 4 |
"eos_token_id": 151645,
|
| 5 |
-
"transformers_version": "4.
|
| 6 |
}
|
|
|
|
| 2 |
"_from_model_config": true,
|
| 3 |
"bos_token_id": 151643,
|
| 4 |
"eos_token_id": 151645,
|
| 5 |
+
"transformers_version": "4.57.1"
|
| 6 |
}
|
model-00001-of-00003.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6bb45f8ee129e542e12ea62717345ce39118f3f26971a082410b70f898aad3f3
|
| 3 |
+
size 4969541832
|
model-00002-of-00003.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf4c2c3f1ba00b71d2c21fdf777535dcf56655e0d0e9d9fbd037f9a5f3181a57
|
| 3 |
+
size 4054188968
|
model.safetensors.index.json
CHANGED
|
@@ -5,316 +5,316 @@
|
|
| 5 |
},
|
| 6 |
"weight_map": {
|
| 7 |
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 8 |
-
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 9 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 10 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 13 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 14 |
-
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 15 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
-
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 21 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 22 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 25 |
-
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 26 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 27 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
-
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 29 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 31 |
-
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 32 |
-
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 36 |
-
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 37 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 38 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 39 |
-
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 40 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
-
"model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 43 |
-
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 45 |
-
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 46 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 47 |
-
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 48 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 49 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 50 |
-
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 51 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 52 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 53 |
-
"model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 54 |
-
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 55 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 56 |
-
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 57 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 58 |
-
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 59 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 60 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 61 |
-
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 62 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 63 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 64 |
-
"model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 65 |
-
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 66 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 67 |
-
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 68 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 69 |
-
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 70 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 71 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 72 |
-
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 73 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 74 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 75 |
-
"model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 76 |
-
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 77 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 78 |
-
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 79 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 80 |
-
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 81 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 82 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 83 |
-
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 84 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 85 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 86 |
-
"model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 87 |
-
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 88 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 89 |
-
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 90 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 91 |
-
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 92 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 93 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 94 |
-
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 95 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 96 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 97 |
-
"model.layers.16.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 98 |
-
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 99 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 100 |
-
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 101 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 102 |
-
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 103 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 104 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 105 |
-
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 106 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 107 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 108 |
-
"model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 109 |
-
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 110 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 111 |
-
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 112 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 113 |
-
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 114 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 115 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 116 |
-
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 120 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 121 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 123 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 124 |
-
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 125 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 126 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 127 |
-
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 128 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 129 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 130 |
-
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 131 |
-
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
-
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 136 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
-
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 142 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 143 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 144 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 145 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 146 |
-
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 147 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 148 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 149 |
-
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 150 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 151 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 152 |
-
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 153 |
-
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 154 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
-
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 156 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 157 |
-
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 158 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
-
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 161 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 162 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 163 |
-
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 164 |
-
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 165 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 166 |
-
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 167 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 168 |
-
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 169 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 170 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 171 |
-
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 172 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 173 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 174 |
-
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 175 |
-
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 176 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 177 |
-
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 178 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 179 |
-
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 180 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 181 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 182 |
-
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 183 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 184 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 185 |
-
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 186 |
-
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 187 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 188 |
-
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 189 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 190 |
-
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 191 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 192 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 193 |
-
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 194 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 195 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 196 |
-
"model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 197 |
-
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 198 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 199 |
-
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 200 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 201 |
-
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 202 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 203 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 204 |
-
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 205 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 206 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 207 |
-
"model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 208 |
-
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 209 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 210 |
-
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 211 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 212 |
-
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 213 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 214 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 215 |
-
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 216 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 217 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 218 |
-
"model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 219 |
-
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 220 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 221 |
-
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 222 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 223 |
-
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 224 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 225 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 226 |
-
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 227 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 228 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 229 |
-
"model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 230 |
-
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 231 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 232 |
-
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 233 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 234 |
-
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 235 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 236 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 237 |
-
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 238 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 239 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 240 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 241 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 242 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 243 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 245 |
-
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 246 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 247 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
-
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 249 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
-
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 257 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
-
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 260 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 261 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 263 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 265 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 267 |
-
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 268 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 270 |
-
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 271 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 278 |
-
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
-
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 282 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 283 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 285 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 288 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 289 |
-
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 290 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 292 |
-
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 293 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 296 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 297 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 298 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 299 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 300 |
-
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 301 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 302 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 303 |
-
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 304 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 305 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 306 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 307 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 308 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 309 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 310 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 311 |
-
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 312 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 313 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 314 |
-
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 315 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 316 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 317 |
-
"model.norm.weight": "model-00002-of-00003.safetensors",
|
| 318 |
"model.vision_embedding.0.embeddings.patch_embedding.bias": "model-00002-of-00003.safetensors",
|
| 319 |
"model.vision_embedding.0.embeddings.patch_embedding.weight": "model-00002-of-00003.safetensors",
|
| 320 |
"model.vision_embedding.0.embeddings.position_embedding.weight": "model-00002-of-00003.safetensors",
|
|
|
|
| 5 |
},
|
| 6 |
"weight_map": {
|
| 7 |
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 8 |
+
"model.text_model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.text_model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.text_model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.text_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.text_model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.text_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.text_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.text_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.text_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.text_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.text_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.text_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.text_model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.text_model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.text_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.text_model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.text_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.text_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.text_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.text_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.text_model.layers.1.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.text_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.text_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.text_model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.text_model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.text_model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.text_model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.text_model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 36 |
+
"model.text_model.layers.10.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 37 |
+
"model.text_model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.text_model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 39 |
+
"model.text_model.layers.10.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 40 |
+
"model.text_model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.text_model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.text_model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.text_model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.text_model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 45 |
+
"model.text_model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 46 |
+
"model.text_model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 47 |
+
"model.text_model.layers.11.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 48 |
+
"model.text_model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 49 |
+
"model.text_model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 50 |
+
"model.text_model.layers.11.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 51 |
+
"model.text_model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 52 |
+
"model.text_model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 53 |
+
"model.text_model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 54 |
+
"model.text_model.layers.12.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 55 |
+
"model.text_model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 56 |
+
"model.text_model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 57 |
+
"model.text_model.layers.12.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 58 |
+
"model.text_model.layers.12.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 59 |
+
"model.text_model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 60 |
+
"model.text_model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 61 |
+
"model.text_model.layers.12.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 62 |
+
"model.text_model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 63 |
+
"model.text_model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 64 |
+
"model.text_model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 65 |
+
"model.text_model.layers.13.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 66 |
+
"model.text_model.layers.13.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 67 |
+
"model.text_model.layers.13.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 68 |
+
"model.text_model.layers.13.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 69 |
+
"model.text_model.layers.13.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 70 |
+
"model.text_model.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 71 |
+
"model.text_model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 72 |
+
"model.text_model.layers.13.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 73 |
+
"model.text_model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 74 |
+
"model.text_model.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 75 |
+
"model.text_model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 76 |
+
"model.text_model.layers.14.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 77 |
+
"model.text_model.layers.14.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 78 |
+
"model.text_model.layers.14.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 79 |
+
"model.text_model.layers.14.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 80 |
+
"model.text_model.layers.14.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 81 |
+
"model.text_model.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 82 |
+
"model.text_model.layers.14.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 83 |
+
"model.text_model.layers.14.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 84 |
+
"model.text_model.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 85 |
+
"model.text_model.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 86 |
+
"model.text_model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 87 |
+
"model.text_model.layers.15.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 88 |
+
"model.text_model.layers.15.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 89 |
+
"model.text_model.layers.15.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 90 |
+
"model.text_model.layers.15.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 91 |
+
"model.text_model.layers.15.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 92 |
+
"model.text_model.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 93 |
+
"model.text_model.layers.15.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 94 |
+
"model.text_model.layers.15.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 95 |
+
"model.text_model.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 96 |
+
"model.text_model.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 97 |
+
"model.text_model.layers.16.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 98 |
+
"model.text_model.layers.16.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 99 |
+
"model.text_model.layers.16.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 100 |
+
"model.text_model.layers.16.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 101 |
+
"model.text_model.layers.16.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 102 |
+
"model.text_model.layers.16.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 103 |
+
"model.text_model.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 104 |
+
"model.text_model.layers.16.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 105 |
+
"model.text_model.layers.16.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 106 |
+
"model.text_model.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 107 |
+
"model.text_model.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 108 |
+
"model.text_model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 109 |
+
"model.text_model.layers.17.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 110 |
+
"model.text_model.layers.17.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 111 |
+
"model.text_model.layers.17.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 112 |
+
"model.text_model.layers.17.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 113 |
+
"model.text_model.layers.17.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 114 |
+
"model.text_model.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 115 |
+
"model.text_model.layers.17.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 116 |
+
"model.text_model.layers.17.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.text_model.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.text_model.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.text_model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 120 |
+
"model.text_model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 121 |
+
"model.text_model.layers.18.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.text_model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 123 |
+
"model.text_model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 124 |
+
"model.text_model.layers.18.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.text_model.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 126 |
+
"model.text_model.layers.18.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 127 |
+
"model.text_model.layers.18.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 128 |
+
"model.text_model.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 129 |
+
"model.text_model.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 130 |
+
"model.text_model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.text_model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.text_model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.text_model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.text_model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.text_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.text_model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.text_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.text_model.layers.19.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.text_model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.text_model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.text_model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 142 |
+
"model.text_model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 143 |
+
"model.text_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 144 |
+
"model.text_model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 145 |
+
"model.text_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 146 |
+
"model.text_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 147 |
+
"model.text_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 148 |
+
"model.text_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 149 |
+
"model.text_model.layers.2.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 150 |
+
"model.text_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 151 |
+
"model.text_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 152 |
+
"model.text_model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 153 |
+
"model.text_model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 154 |
+
"model.text_model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.text_model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.text_model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 157 |
+
"model.text_model.layers.20.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.text_model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.text_model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.text_model.layers.20.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.text_model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 162 |
+
"model.text_model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 163 |
+
"model.text_model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 164 |
+
"model.text_model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 165 |
+
"model.text_model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 166 |
+
"model.text_model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 167 |
+
"model.text_model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 168 |
+
"model.text_model.layers.21.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 169 |
+
"model.text_model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 170 |
+
"model.text_model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 171 |
+
"model.text_model.layers.21.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 172 |
+
"model.text_model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 173 |
+
"model.text_model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 174 |
+
"model.text_model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 175 |
+
"model.text_model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 176 |
+
"model.text_model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 177 |
+
"model.text_model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 178 |
+
"model.text_model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 179 |
+
"model.text_model.layers.22.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 180 |
+
"model.text_model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 181 |
+
"model.text_model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 182 |
+
"model.text_model.layers.22.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 183 |
+
"model.text_model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 184 |
+
"model.text_model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 185 |
+
"model.text_model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 186 |
+
"model.text_model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 187 |
+
"model.text_model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 188 |
+
"model.text_model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 189 |
+
"model.text_model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 190 |
+
"model.text_model.layers.23.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 191 |
+
"model.text_model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 192 |
+
"model.text_model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 193 |
+
"model.text_model.layers.23.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 194 |
+
"model.text_model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 195 |
+
"model.text_model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 196 |
+
"model.text_model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 197 |
+
"model.text_model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 198 |
+
"model.text_model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 199 |
+
"model.text_model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 200 |
+
"model.text_model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 201 |
+
"model.text_model.layers.24.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 202 |
+
"model.text_model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 203 |
+
"model.text_model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 204 |
+
"model.text_model.layers.24.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 205 |
+
"model.text_model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 206 |
+
"model.text_model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 207 |
+
"model.text_model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 208 |
+
"model.text_model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 209 |
+
"model.text_model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 210 |
+
"model.text_model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 211 |
+
"model.text_model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 212 |
+
"model.text_model.layers.25.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 213 |
+
"model.text_model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 214 |
+
"model.text_model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 215 |
+
"model.text_model.layers.25.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 216 |
+
"model.text_model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 217 |
+
"model.text_model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 218 |
+
"model.text_model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 219 |
+
"model.text_model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 220 |
+
"model.text_model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 221 |
+
"model.text_model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 222 |
+
"model.text_model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 223 |
+
"model.text_model.layers.26.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 224 |
+
"model.text_model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 225 |
+
"model.text_model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 226 |
+
"model.text_model.layers.26.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 227 |
+
"model.text_model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 228 |
+
"model.text_model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 229 |
+
"model.text_model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 230 |
+
"model.text_model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 231 |
+
"model.text_model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 232 |
+
"model.text_model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 233 |
+
"model.text_model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 234 |
+
"model.text_model.layers.27.self_attn.k_norm.weight": "model-00002-of-00003.safetensors",
|
| 235 |
+
"model.text_model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 236 |
+
"model.text_model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 237 |
+
"model.text_model.layers.27.self_attn.q_norm.weight": "model-00002-of-00003.safetensors",
|
| 238 |
+
"model.text_model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 239 |
+
"model.text_model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 240 |
+
"model.text_model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 241 |
+
"model.text_model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 242 |
+
"model.text_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.text_model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.text_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.text_model.layers.3.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.text_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.text_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.text_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.text_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.text_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.text_model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.text_model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.text_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.text_model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.text_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.text_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.text_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.text_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.text_model.layers.4.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.text_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.text_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.text_model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.text_model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.text_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.text_model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.text_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.text_model.layers.5.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.text_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.text_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.text_model.layers.5.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.text_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.text_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.text_model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.text_model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.text_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.text_model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.text_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.text_model.layers.6.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.text_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.text_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.text_model.layers.6.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.text_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.text_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.text_model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.text_model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.text_model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.text_model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.text_model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.text_model.layers.7.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.text_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.text_model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.text_model.layers.7.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.text_model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.text_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.text_model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.text_model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 297 |
+
"model.text_model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 298 |
+
"model.text_model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 299 |
+
"model.text_model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 300 |
+
"model.text_model.layers.8.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 301 |
+
"model.text_model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 302 |
+
"model.text_model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 303 |
+
"model.text_model.layers.8.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 304 |
+
"model.text_model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 305 |
+
"model.text_model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 306 |
+
"model.text_model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 307 |
+
"model.text_model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 308 |
+
"model.text_model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 309 |
+
"model.text_model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 310 |
+
"model.text_model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 311 |
+
"model.text_model.layers.9.self_attn.k_norm.weight": "model-00001-of-00003.safetensors",
|
| 312 |
+
"model.text_model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 313 |
+
"model.text_model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 314 |
+
"model.text_model.layers.9.self_attn.q_norm.weight": "model-00001-of-00003.safetensors",
|
| 315 |
+
"model.text_model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 316 |
+
"model.text_model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 317 |
+
"model.text_model.norm.weight": "model-00002-of-00003.safetensors",
|
| 318 |
"model.vision_embedding.0.embeddings.patch_embedding.bias": "model-00002-of-00003.safetensors",
|
| 319 |
"model.vision_embedding.0.embeddings.patch_embedding.weight": "model-00002-of-00003.safetensors",
|
| 320 |
"model.vision_embedding.0.embeddings.position_embedding.weight": "model-00002-of-00003.safetensors",
|
modular_isaac.py
CHANGED
|
@@ -1,17 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
from collections import defaultdict
|
| 4 |
-
from typing import Any,
|
| 5 |
|
| 6 |
-
import
|
| 7 |
-
import numpy as np
|
| 8 |
import torch
|
| 9 |
import torch.nn as nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
-
import PIL.Image
|
| 12 |
-
|
| 13 |
-
|
| 14 |
from transformers import (
|
|
|
|
|
|
|
| 15 |
AutoTokenizer,
|
| 16 |
BatchFeature,
|
| 17 |
Cache,
|
|
@@ -21,44 +104,86 @@ from transformers import (
|
|
| 21 |
)
|
| 22 |
from transformers.cache_utils import SlidingWindowCache, StaticCache
|
| 23 |
from transformers.generation.utils import GenerationMixin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 25 |
-
from transformers.
|
| 26 |
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
|
| 27 |
-
from transformers.
|
| 28 |
-
from transformers.tokenization_utils import TensorType
|
| 29 |
-
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 30 |
-
import re
|
| 31 |
-
|
| 32 |
-
from transformers.models.siglip2.modeling_siglip2 import (
|
| 33 |
-
Siglip2MLP,
|
| 34 |
-
)
|
| 35 |
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
| 36 |
-
from
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
VisionType,
|
| 42 |
-
create_stream,
|
| 43 |
-
group_streams,
|
| 44 |
-
)
|
| 45 |
-
from perceptron.tensorstream.ops import (
|
| 46 |
-
compute_mrope_pos_tensor,
|
| 47 |
-
modality_mask,
|
| 48 |
-
reconstruct_tensor_stream_from_compact_dict,
|
| 49 |
-
slice as ts_slice,
|
| 50 |
-
tensor_stream_token_view,
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
-
class
|
| 55 |
"""Vision configuration for Isaac with Pixel Shuffle support.
|
| 56 |
|
| 57 |
Extends Siglip2VisionConfig with additional fields for pixel shuffle.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
"""
|
| 59 |
|
| 60 |
-
model_type = "
|
| 61 |
base_config_key = "vision_config"
|
|
|
|
| 62 |
|
| 63 |
def __init__(
|
| 64 |
self,
|
|
@@ -72,13 +197,261 @@ class PixelShuffleSiglip2VisionConfig(Siglip2VisionConfig):
|
|
| 72 |
self.pixel_shuffle_scale_factor = pixel_shuffle_scale_factor
|
| 73 |
self.num_patches = num_patches
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
def create_cumulative_seq_lengths(seq_sizes: torch.Tensor, device: torch.device) -> tuple[torch.Tensor, int]:
|
| 77 |
-
"""Create cumulative sequence lengths for variable-length attention."""
|
| 78 |
-
cu_seqlens = torch.zeros(len(seq_sizes) + 1, dtype=torch.int32, device=device)
|
| 79 |
-
cu_seqlens[1:] = seq_sizes.cumsum(0)
|
| 80 |
-
max_seqlen = int(seq_sizes.max().item()) if len(seq_sizes) > 0 else 0
|
| 81 |
-
return cu_seqlens, max_seqlen
|
| 82 |
|
| 83 |
|
| 84 |
def _max_from_cu(cu: torch.Tensor | None, fallback: int) -> int:
|
|
@@ -88,7 +461,53 @@ def _max_from_cu(cu: torch.Tensor | None, fallback: int) -> int:
|
|
| 88 |
return int((cu[1:] - cu[:-1]).max().item())
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def flash_attention_document_mask_forward(
|
|
|
|
| 92 |
q_lhd: torch.Tensor, # (L, H, D)
|
| 93 |
k_lhd: torch.Tensor, # (L, H, D)
|
| 94 |
v_lhd: torch.Tensor, # (L, H, D)
|
|
@@ -144,7 +563,8 @@ def sdpa_document_mask_forward(
|
|
| 144 |
v_lhd: torch.Tensor, # (L, H, D)
|
| 145 |
dropout: float,
|
| 146 |
scaling: float | None,
|
| 147 |
-
|
|
|
|
| 148 |
) -> torch.Tensor:
|
| 149 |
"""SDPA with block-diagonal masking for variable-length sequences."""
|
| 150 |
L, H, D = q_lhd.shape
|
|
@@ -155,108 +575,132 @@ def sdpa_document_mask_forward(
|
|
| 155 |
V = v_lhd.permute(1, 0, 2).unsqueeze(0)
|
| 156 |
|
| 157 |
# Build block-diagonal mask for variable-length sequences
|
| 158 |
-
attn_mask =
|
| 159 |
-
if
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
Y = F.scaled_dot_product_attention(Q, K, V, attn_mask=attn_mask, dropout_p=dropout, scale=scaling)
|
| 166 |
return Y.squeeze(0).permute(1, 0, 2) # Back to (L, H, D)
|
| 167 |
|
| 168 |
|
| 169 |
-
class
|
| 170 |
-
|
| 171 |
-
super().__init__()
|
| 172 |
-
self.config = config
|
| 173 |
-
self.embed_dim = config.hidden_size
|
| 174 |
-
self.patch_size = config.patch_size
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
out_features=self.embed_dim,
|
| 179 |
-
)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
| 184 |
|
| 185 |
-
|
| 186 |
-
self
|
| 187 |
-
) -> torch.Tensor:
|
| 188 |
-
# Prepare positional embeddings grid: (1, embed_dim, h, w)
|
| 189 |
-
positional_embeddings = (
|
| 190 |
-
self.position_embedding.weight.reshape(self.position_embedding_size, self.position_embedding_size, -1)
|
| 191 |
-
.permute(2, 0, 1)
|
| 192 |
-
.unsqueeze(0)
|
| 193 |
-
)
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
resized_pos_embed = resized_pos_embed.reshape(self.embed_dim, height * width).transpose(0, 1)
|
| 213 |
-
else:
|
| 214 |
-
# Fallback - should never happen in practice
|
| 215 |
-
resized_pos_embed = positional_embeddings.reshape(
|
| 216 |
-
self.embed_dim, self.position_embedding_size * self.position_embedding_size
|
| 217 |
-
).transpose(0, 1)[: height * width]
|
| 218 |
-
pos_embeds_list.append(resized_pos_embed)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
target_dtype = self.patch_embedding.weight.dtype
|
| 229 |
-
patch_embeds = self.patch_embedding(seq_patches.to(dtype=target_dtype))
|
| 230 |
-
pos_embeds = self.positional_embeddings(packed_seq_patches)
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
self.config = config
|
| 243 |
-
self.embed_dim = config.hidden_size
|
| 244 |
-
self.num_heads = config.num_attention_heads
|
| 245 |
-
self.head_dim = self.embed_dim // self.num_heads
|
| 246 |
-
if self.head_dim * self.num_heads != self.embed_dim:
|
| 247 |
-
raise ValueError(
|
| 248 |
-
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 249 |
-
f" {self.num_heads})."
|
| 250 |
-
)
|
| 251 |
-
self.scale = self.head_dim**-0.5
|
| 252 |
-
self.dropout = config.attention_dropout
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
def forward(self, hidden_states, cu_seqlens=None, max_seqlen=None):
|
| 260 |
# Expect packed sequences with batch_size == 1
|
| 261 |
batch_size, L, _ = hidden_states.shape
|
| 262 |
if batch_size != 1:
|
|
@@ -272,102 +716,326 @@ class Siglip2VariableLengthAttention(nn.Module):
|
|
| 272 |
k = self.k_proj(x).view(L, H, D)
|
| 273 |
v = self.v_proj(x).view(L, H, D)
|
| 274 |
|
| 275 |
-
attn_impl = getattr(self.
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
# Merge heads and project
|
| 294 |
y = self.out_proj(y_lhd.reshape(L, self.embed_dim))
|
| 295 |
return y.unsqueeze(0), None # (1, L, E)
|
| 296 |
|
| 297 |
|
| 298 |
-
class
|
| 299 |
-
"""
|
| 300 |
-
|
| 301 |
-
def __init__(self, config: PixelShuffleSiglip2VisionConfig):
|
| 302 |
-
super().__init__()
|
| 303 |
-
self.embed_dim = config.hidden_size
|
| 304 |
-
self.self_attn = Siglip2VariableLengthAttention(config)
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
self.
|
| 309 |
|
| 310 |
def forward(
|
| 311 |
self,
|
| 312 |
hidden_states: torch.Tensor,
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
cu_seqlens
|
| 323 |
-
|
|
|
|
|
|
|
| 324 |
)
|
| 325 |
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
residual = hidden_states
|
| 329 |
-
hidden_states = self.layer_norm2(hidden_states)
|
| 330 |
-
hidden_states = self.mlp(hidden_states)
|
| 331 |
-
hidden_states = residual + hidden_states
|
| 332 |
|
| 333 |
-
|
|
|
|
| 334 |
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
|
|
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
| 343 |
|
|
|
|
| 344 |
def forward(
|
| 345 |
self,
|
| 346 |
inputs_embeds,
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
| 350 |
):
|
| 351 |
-
|
| 352 |
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
layer_outputs = encoder_layer(
|
| 360 |
-
hidden_states,
|
| 361 |
-
cu_seqlens,
|
| 362 |
-
max_seqlen,
|
| 363 |
-
)
|
| 364 |
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
-
|
| 368 |
-
|
| 369 |
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
|
| 373 |
def create_pixel_shuffle_index_map(
|
|
@@ -397,16 +1065,19 @@ def create_pixel_shuffle_index_map(
|
|
| 397 |
if device is None:
|
| 398 |
device = seq_sizes.device
|
| 399 |
|
| 400 |
-
|
| 401 |
-
if
|
| 402 |
raise ValueError("`scale_factor` must be ≥ 2")
|
| 403 |
|
| 404 |
-
# Safety: all spatial dims must be divisible by
|
| 405 |
# Cannot run under torch compile fullgraph mode hence
|
| 406 |
-
if not
|
| 407 |
-
if not (
|
|
|
|
|
|
|
| 408 |
raise AssertionError(
|
| 409 |
-
|
|
|
|
| 410 |
)
|
| 411 |
|
| 412 |
gather_chunks: list[torch.Tensor] = []
|
|
@@ -418,19 +1089,21 @@ def create_pixel_shuffle_index_map(
|
|
| 418 |
grid = grid.view(h, w) # (H, W)
|
| 419 |
|
| 420 |
# -------- identical ordering to your fixed-res routine --------
|
| 421 |
-
# Step 1: split width into blocks of
|
| 422 |
-
grid = grid.view(h, w //
|
| 423 |
-
# Step 2: now split height into blocks of
|
| 424 |
-
grid = grid.view(h //
|
| 425 |
-
#
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
| 429 |
|
| 430 |
tok_offset += seq_len
|
| 431 |
|
| 432 |
# Concatenate over all images in the packed batch
|
| 433 |
-
gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/
|
| 434 |
return gather_idx
|
| 435 |
|
| 436 |
|
|
@@ -469,7 +1142,7 @@ def pixel_shuffle_varlen(
|
|
| 469 |
x_ = x # (seq, embed)
|
| 470 |
|
| 471 |
embed_dim = x_.size(-1)
|
| 472 |
-
|
| 473 |
|
| 474 |
# Calculate seq_sizes from token_grids
|
| 475 |
seq_sizes = torch.prod(token_grids, dim=-1)
|
|
@@ -478,15 +1151,15 @@ def pixel_shuffle_varlen(
|
|
| 478 |
gather_idx = create_pixel_shuffle_index_map(
|
| 479 |
seq_sizes=seq_sizes,
|
| 480 |
token_grids=token_grids,
|
| 481 |
-
scale_factor=
|
| 482 |
device=x_.device,
|
| 483 |
-
) # (new_seq,
|
| 484 |
|
| 485 |
-
# Gather → (new_seq,
|
| 486 |
gathered = x_[gather_idx] # fancy indexing keeps gradient
|
| 487 |
|
| 488 |
-
# Merge the
|
| 489 |
-
out = gathered.reshape(gathered.size(0), embed_dim *
|
| 490 |
|
| 491 |
# Restore batch dimension if needed
|
| 492 |
if keep_batch_dim:
|
|
@@ -494,12 +1167,12 @@ def pixel_shuffle_varlen(
|
|
| 494 |
return out
|
| 495 |
|
| 496 |
|
| 497 |
-
class
|
| 498 |
-
def __init__(self, config:
|
| 499 |
super().__init__()
|
| 500 |
self.config = config
|
| 501 |
-
self.embeddings =
|
| 502 |
-
self.encoder =
|
| 503 |
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 504 |
self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor
|
| 505 |
|
|
@@ -508,20 +1181,24 @@ class Siglip2SequenceVisionTransformer(nn.Module):
|
|
| 508 |
seq_sizes = torch.prod(token_grids, dim=-1)
|
| 509 |
|
| 510 |
# Get embeddings from packed sequence
|
| 511 |
-
hidden_states = self.embeddings(
|
| 512 |
|
| 513 |
# Add a pseudo batch dimension for the encoder
|
| 514 |
hidden_states = hidden_states.unsqueeze(0)
|
| 515 |
|
| 516 |
# Generate cumulative sequence lengths for variable-length attention
|
| 517 |
-
cu_seqlens
|
|
|
|
|
|
|
| 518 |
|
| 519 |
# Pass through encoder with variable-length attention parameters
|
| 520 |
-
|
| 521 |
inputs_embeds=hidden_states,
|
| 522 |
cu_seqlens=cu_seqlens,
|
| 523 |
max_seqlen=max_seqlen,
|
|
|
|
| 524 |
)
|
|
|
|
| 525 |
|
| 526 |
# Apply final layer normalization
|
| 527 |
hidden_states = self.post_layernorm(hidden_states)
|
|
@@ -539,44 +1216,17 @@ class Siglip2SequenceVisionTransformer(nn.Module):
|
|
| 539 |
return hidden_states
|
| 540 |
|
| 541 |
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
def _make_writeable(arr: np.ndarray) -> np.ndarray:
|
| 555 |
-
"""Return *arr* itself if it is already writeable, otherwise try to flip the
|
| 556 |
-
write flag in-place and finally fall back to `arr.copy()`.
|
| 557 |
-
This guarantees the buffer handed to `torch.from_numpy()` is always
|
| 558 |
-
writeable, silencing the PyTorch warning about undefined behaviour.
|
| 559 |
-
"""
|
| 560 |
-
if arr.flags.writeable:
|
| 561 |
-
return arr
|
| 562 |
-
|
| 563 |
-
# First, try the cheap path — in‑place flag toggle (works for mmap'd arrays
|
| 564 |
-
# and some shared memory buffers):
|
| 565 |
-
try:
|
| 566 |
-
arr.setflags(write=True)
|
| 567 |
-
return arr # success: no data copy
|
| 568 |
-
except ValueError:
|
| 569 |
-
# Buffer is inherently read‑only (e.g. backed by PyAV / PIL): make copy
|
| 570 |
-
return arr.copy()
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
def extract_image_pil(image: PIL.Image.Image) -> torch.Tensor | None:
|
| 574 |
-
if image.width * image.height > MAX_PIXELS:
|
| 575 |
-
raise ValueError(f"Image (w={image.width}, h={image.height}) > MAX=`{MAX_PIXELS}`")
|
| 576 |
-
img = image if image.mode == "RGB" else image.convert("RGB")
|
| 577 |
-
arr = np.asarray(img)
|
| 578 |
-
arr = _make_writeable(arr)
|
| 579 |
-
return torch.from_numpy(arr)
|
| 580 |
|
| 581 |
|
| 582 |
def get_image_size_for_max_num_patches(
|
|
@@ -611,13 +1261,6 @@ def get_image_size_for_max_num_patches(
|
|
| 611 |
and respect both the maximum and optional minimum patch-count constraints.
|
| 612 |
"""
|
| 613 |
|
| 614 |
-
def get_scaled_image_size(scale, original_size, patch_size, pixel_shuffle_scale):
|
| 615 |
-
scaled_size = scale * original_size
|
| 616 |
-
divisor = patch_size * pixel_shuffle_scale
|
| 617 |
-
scaled_size = math.ceil(scaled_size / divisor) * divisor
|
| 618 |
-
scaled_size = max(divisor, scaled_size)
|
| 619 |
-
return int(scaled_size)
|
| 620 |
-
|
| 621 |
# Ensure divisibility
|
| 622 |
divisor = patch_size * pixel_shuffle_scale
|
| 623 |
adjusted_height = math.ceil(image_height / divisor) * divisor
|
|
@@ -663,37 +1306,6 @@ def get_image_size_for_max_num_patches(
|
|
| 663 |
return target_height, target_width
|
| 664 |
|
| 665 |
|
| 666 |
-
_MEAN_TENSOR = torch.tensor(VISION_MEAN, dtype=torch.float32).view(1, 1, 1, -1)
|
| 667 |
-
_STD_TENSOR = torch.tensor(VISION_STD, dtype=torch.float32).view(1, 1, 1, -1)
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
def prepare_image_tensor(
|
| 671 |
-
image: torch.Tensor,
|
| 672 |
-
scale: float = VISION_SCALE,
|
| 673 |
-
) -> torch.Tensor:
|
| 674 |
-
r"""Standardize RGB images prior to patch extraction via rescaling and whitening.
|
| 675 |
-
|
| 676 |
-
Args:
|
| 677 |
-
image (`torch.Tensor`):
|
| 678 |
-
Tensor with shape `(..., height, width, 3)` containing RGB values. The tensor is converted to floating
|
| 679 |
-
point if needed.
|
| 680 |
-
scale (`float`, *optional*, defaults to `VISION_SCALE`):
|
| 681 |
-
Scalar multiplier applied before normalization.
|
| 682 |
-
Returns:
|
| 683 |
-
`torch.Tensor`: Normalized tensor with the same shape as the input and dtype `torch.float32`.
|
| 684 |
-
"""
|
| 685 |
-
if not torch.is_floating_point(image):
|
| 686 |
-
image = image.float()
|
| 687 |
-
rescaled = image * scale
|
| 688 |
-
|
| 689 |
-
# Use precomputed tensors and move to the correct device if needed
|
| 690 |
-
mean_tensor = _MEAN_TENSOR.to(image.device)
|
| 691 |
-
std_tensor = _STD_TENSOR.to(image.device)
|
| 692 |
-
|
| 693 |
-
normalized = (rescaled - mean_tensor) / std_tensor
|
| 694 |
-
return normalized
|
| 695 |
-
|
| 696 |
-
|
| 697 |
def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor:
|
| 698 |
r"""Convert normalized images into flattened ViT-style patches.
|
| 699 |
|
|
@@ -719,184 +1331,90 @@ def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor:
|
|
| 719 |
return patches
|
| 720 |
|
| 721 |
|
| 722 |
-
def process_vision_for_patches(
|
| 723 |
-
images: torch.Tensor,
|
| 724 |
-
patch_size: int,
|
| 725 |
-
max_num_patches: int,
|
| 726 |
-
min_num_patches: int | None = None,
|
| 727 |
-
pixel_shuffle_scale: int = 1,
|
| 728 |
-
) -> tuple[torch.Tensor, list[int]]:
|
| 729 |
-
r"""Resize, normalize, and patchify RGB images for the vision encoder.
|
| 730 |
-
|
| 731 |
-
Args:
|
| 732 |
-
images (`torch.Tensor`):
|
| 733 |
-
Either `(height, width, channels)` for a single image or `(num_images, height, width, channels)` for a
|
| 734 |
-
batch. Channels are expected to be RGB.
|
| 735 |
-
patch_size (`int`):
|
| 736 |
-
Edge length of square patches; implictly controls resize grid granularity.
|
| 737 |
-
max_num_patches (`int`):
|
| 738 |
-
Maximum number of patches allowed after resizing.
|
| 739 |
-
min_num_patches (`int`, *optional*):
|
| 740 |
-
Minimum number of patches. If provided, the routine upsamples images as needed to satisfy the lower bound.
|
| 741 |
-
pixel_shuffle_scale (`int`, *optional*, defaults to 1):
|
| 742 |
-
pixel shuffle scale factor; influences the target grid that the function produces.
|
| 743 |
-
|
| 744 |
-
Returns:
|
| 745 |
-
`tuple[torch.Tensor, list[int]]`: A pair `(patches, dims_virtual)` where `patches` has shape
|
| 746 |
-
`(num_images, target_h / patch_size, target_w / patch_size, channels * patch_size**2)` and `dims_virtual`
|
| 747 |
-
encodes effective `(images, height, width)` dimensions after optional pixel shuffling.
|
| 748 |
-
"""
|
| 749 |
-
# Add batch dim if single image
|
| 750 |
-
if images.dim() == 3:
|
| 751 |
-
images = images.unsqueeze(0)
|
| 752 |
-
|
| 753 |
-
# Permute to channel first for resize
|
| 754 |
-
images = images.permute(0, 3, 1, 2)
|
| 755 |
-
|
| 756 |
-
# Get target dimensions
|
| 757 |
-
_, _, orig_height, orig_width = images.shape
|
| 758 |
-
target_height, target_width = get_image_size_for_max_num_patches(
|
| 759 |
-
orig_height,
|
| 760 |
-
orig_width,
|
| 761 |
-
patch_size,
|
| 762 |
-
max_num_patches,
|
| 763 |
-
min_num_patches=min_num_patches,
|
| 764 |
-
pixel_shuffle_scale=pixel_shuffle_scale,
|
| 765 |
-
)
|
| 766 |
-
|
| 767 |
-
# Resize
|
| 768 |
-
images = F.interpolate(
|
| 769 |
-
images,
|
| 770 |
-
size=(target_height, target_width),
|
| 771 |
-
mode="bilinear",
|
| 772 |
-
align_corners=False,
|
| 773 |
-
)
|
| 774 |
-
|
| 775 |
-
# Back to channel last
|
| 776 |
-
images = images.permute(0, 2, 3, 1)
|
| 777 |
-
|
| 778 |
-
# Normalize
|
| 779 |
-
images = prepare_image_tensor(images)
|
| 780 |
-
|
| 781 |
-
# Patchify
|
| 782 |
-
patches = patchify_vision(images, patch_size=patch_size)
|
| 783 |
-
|
| 784 |
-
# Calculate dimensions for the patches
|
| 785 |
-
n_images, h_patches, w_patches, _ = patches.shape
|
| 786 |
-
dims_virtual = (
|
| 787 |
-
[1, h_patches, w_patches]
|
| 788 |
-
if pixel_shuffle_scale == 1
|
| 789 |
-
else [1, h_patches // pixel_shuffle_scale, w_patches // pixel_shuffle_scale]
|
| 790 |
-
)
|
| 791 |
-
|
| 792 |
-
return patches, dims_virtual
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
def precompute_inv_freq(theta: float, dim: int) -> torch.Tensor:
|
| 796 |
-
"""
|
| 797 |
-
Returns shape (dim//2,).
|
| 798 |
-
"""
|
| 799 |
-
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
| 800 |
-
return inv_freq # type: ignore[return-value]
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
def precompute_cos_sin_3d(
|
| 804 |
-
position_ids: torch.Tensor, # shape (3, B, T)
|
| 805 |
-
inv_freq: torch.Tensor, # shape (dim//2,)
|
| 806 |
-
mrope_half_section: list[int], # sum to dim//2
|
| 807 |
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 808 |
-
r"""Generate 3D rotary embeddings for multi-axis positions.
|
| 809 |
-
|
| 810 |
-
Args:
|
| 811 |
-
position_ids (`torch.Tensor`):
|
| 812 |
-
Tensor of shape `(3, batch_size, seq_len)` containing positional indices for the x/y/t axes.
|
| 813 |
-
inv_freq (`torch.Tensor`):
|
| 814 |
-
Precomputed inverse frequency vector used to derive rotary phases.
|
| 815 |
-
mrope_half_section (`list[int]`):
|
| 816 |
-
Sizes the axis-specific frequency blocks.
|
| 817 |
-
|
| 818 |
-
Returns:
|
| 819 |
-
`tuple[torch.Tensor, torch.Tensor]`: Cosine and sine tensors, each of shape `(batch_size, seq_len, dim)`, ready
|
| 820 |
-
to be passed into rotary attention layers.
|
| 821 |
-
"""
|
| 822 |
-
B = position_ids.shape[1]
|
| 823 |
-
T = position_ids.shape[2]
|
| 824 |
-
dim_half = inv_freq.shape[0]
|
| 825 |
-
device = position_ids.device
|
| 826 |
-
|
| 827 |
-
# Initialize with full dimension (not half) to match LLaMA
|
| 828 |
-
cos_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device)
|
| 829 |
-
sin_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device)
|
| 830 |
-
|
| 831 |
-
offset = 0
|
| 832 |
-
for d in range(3):
|
| 833 |
-
block_size = mrope_half_section[d]
|
| 834 |
-
freq_slice = inv_freq[offset : offset + block_size] # shape => (block_size,)
|
| 835 |
-
# shape => (B, T, block_size)
|
| 836 |
-
phase = position_ids[d].unsqueeze(-1).float() * freq_slice
|
| 837 |
-
|
| 838 |
-
cos_part = phase.cos()
|
| 839 |
-
sin_part = phase.sin()
|
| 840 |
-
|
| 841 |
-
# Duplicate values for both halves of the dimension
|
| 842 |
-
cos_3d[:, :, offset : offset + block_size] = cos_part
|
| 843 |
-
cos_3d[:, :, dim_half + offset : dim_half + offset + block_size] = cos_part
|
| 844 |
-
sin_3d[:, :, offset : offset + block_size] = sin_part
|
| 845 |
-
sin_3d[:, :, dim_half + offset : dim_half + offset + block_size] = sin_part
|
| 846 |
-
|
| 847 |
-
offset += block_size
|
| 848 |
-
|
| 849 |
-
return cos_3d, sin_3d
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
class RopeScaling(TypedDict, total=False):
|
| 853 |
-
rope_type: str
|
| 854 |
-
factor: float
|
| 855 |
-
mrope_section: list[int]
|
| 856 |
-
mrope_interleaved: bool
|
| 857 |
-
low_freq_factor: float
|
| 858 |
-
high_freq_factor: float
|
| 859 |
-
original_max_position_embeddings: int
|
| 860 |
-
|
| 861 |
-
|
| 862 |
class IsaacConfig(Qwen3Config):
|
| 863 |
"""Configuration class for Isaac multimodal model."""
|
| 864 |
|
| 865 |
model_type = "isaac"
|
| 866 |
-
sub_configs = {"vision_config":
|
|
|
|
| 867 |
|
| 868 |
def __init__(
|
| 869 |
self,
|
| 870 |
-
vision_config=None,
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
vision_min_num_patches: int | None = None,
|
| 874 |
-
pixel_shuffle_scale: int = 1,
|
| 875 |
max_sequence_length: int = 16384,
|
| 876 |
vision_token: str = "<image>",
|
| 877 |
-
vision_attn_implementation: str | None = None,
|
| 878 |
**kwargs,
|
| 879 |
):
|
| 880 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 881 |
|
| 882 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 883 |
if isinstance(vision_config, dict):
|
| 884 |
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
|
|
|
|
|
|
| 885 |
elif vision_config is None:
|
| 886 |
self.vision_config = self.sub_configs["vision_config"]()
|
| 887 |
-
else:
|
| 888 |
-
self.vision_config = vision_config
|
| 889 |
|
| 890 |
-
#
|
| 891 |
-
self.
|
| 892 |
-
self.vision_max_num_patches = vision_max_num_patches
|
| 893 |
-
self.vision_min_num_patches = vision_min_num_patches
|
| 894 |
-
self.pixel_shuffle_scale = pixel_shuffle_scale
|
| 895 |
|
| 896 |
# Processing parameters
|
| 897 |
self.max_sequence_length = max_sequence_length
|
| 898 |
self.vision_token = vision_token
|
| 899 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
|
| 901 |
|
| 902 |
# ============================================================================
|
|
@@ -948,43 +1466,50 @@ def create_text_event(tokenizer: AutoTokenizer, text: str, time: float = 0.0) ->
|
|
| 948 |
|
| 949 |
|
| 950 |
class IsaacProcessor(ProcessorMixin):
|
| 951 |
-
attributes = ["tokenizer"]
|
|
|
|
| 952 |
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
|
|
|
| 953 |
|
| 954 |
def __init__(
|
| 955 |
self,
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 961 |
|
| 962 |
if isinstance(config, dict):
|
| 963 |
config = IsaacConfig(**config)
|
| 964 |
-
self.config = config
|
| 965 |
|
| 966 |
-
|
| 967 |
-
|
|
|
|
|
|
|
| 968 |
|
| 969 |
-
|
| 970 |
-
|
|
|
|
| 971 |
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
self.max_num_patches = config.vision_max_num_patches
|
| 975 |
-
self.min_num_patches = config.vision_min_num_patches
|
| 976 |
-
self.pixel_shuffle_scale = config.pixel_shuffle_scale
|
| 977 |
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
|
|
|
| 988 |
|
| 989 |
def build_event_stream_simple(
|
| 990 |
self,
|
|
@@ -1002,60 +1527,32 @@ class IsaacProcessor(ProcessorMixin):
|
|
| 1002 |
for current_time, part in enumerate(parts):
|
| 1003 |
if part == self.vision_token:
|
| 1004 |
# Replace vision token with image event
|
| 1005 |
-
if image_idx
|
| 1006 |
-
|
| 1007 |
-
image_tensor = extract_image_pil(images[image_idx])
|
| 1008 |
-
if image_tensor is not None:
|
| 1009 |
-
# Create a vision event with the image tensor
|
| 1010 |
-
vision_event = Event(
|
| 1011 |
-
data=image_tensor.unsqueeze(0), # HWC format from extract_image_pil
|
| 1012 |
-
type=VisionType.image, # I-frame
|
| 1013 |
-
time=(current_time, current_time),
|
| 1014 |
-
)
|
| 1015 |
-
events.append(vision_event)
|
| 1016 |
-
image_idx += 1
|
| 1017 |
-
elif part: # Non-empty text part
|
| 1018 |
-
# tokens = self.text_processor.tokenize(part, add_special_tokens=False)
|
| 1019 |
-
text_event = create_text_event(self.tokenizer, part, time=current_time)
|
| 1020 |
-
events.append(text_event)
|
| 1021 |
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
text_events = [event for event in events if event.type == TextType.text]
|
| 1026 |
-
vision_events = [event for event in events if event.type == VisionType.image]
|
| 1027 |
-
|
| 1028 |
-
# Process vision events using functional approach
|
| 1029 |
-
processed_vision_events = []
|
| 1030 |
-
for vision_event in vision_events:
|
| 1031 |
-
# Process the vision data
|
| 1032 |
-
patches, dims_virtual = process_vision_for_patches(
|
| 1033 |
-
vision_event.data.squeeze(0), # Remove the extra dimension
|
| 1034 |
-
patch_size=self.patch_size,
|
| 1035 |
-
max_num_patches=self.max_num_patches,
|
| 1036 |
-
min_num_patches=self.min_num_patches,
|
| 1037 |
-
pixel_shuffle_scale=self.pixel_shuffle_scale,
|
| 1038 |
)
|
| 1039 |
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
)
|
| 1052 |
-
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
events = text_events + processed_vision_events
|
| 1059 |
|
| 1060 |
# Create stream without scheduling (events already in order)
|
| 1061 |
return create_stream(events, priority=[TextType.text, VisionType.image], schedule=True)
|
|
@@ -1155,68 +1652,112 @@ def compute_position_ids_input_ids(input_ids: torch.Tensor) -> torch.Tensor:
|
|
| 1155 |
|
| 1156 |
|
| 1157 |
class IsaacRotaryEmbedding(nn.Module):
|
|
|
|
|
|
|
| 1158 |
def __init__(self, config: IsaacConfig, device=None):
|
| 1159 |
super().__init__()
|
| 1160 |
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
|
|
|
|
|
|
| 1165 |
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
|
| 1169 |
-
|
| 1170 |
-
self.
|
|
|
|
| 1171 |
|
| 1172 |
-
|
| 1173 |
-
|
| 1174 |
-
|
| 1175 |
-
|
| 1176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1177 |
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1181 |
|
| 1182 |
-
def forward(self, position_ids: torch.Tensor, modality_tensor: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 1183 |
with torch.no_grad():
|
| 1184 |
-
|
| 1185 |
-
not_spatial =
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1194 |
|
| 1195 |
-
return
|
| 1196 |
|
|
|
|
|
|
|
| 1197 |
|
| 1198 |
-
class IsaacModel(Qwen3Model):
|
| 1199 |
def __init__(self, config: IsaacConfig):
|
| 1200 |
-
|
| 1201 |
-
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1205 |
self.rotary_emb = IsaacRotaryEmbedding(config, device=self.device)
|
| 1206 |
|
| 1207 |
-
|
| 1208 |
-
# Use vision_attn_implementation if specified, otherwise fall back to general attn_implementation
|
| 1209 |
-
vision_cfg._attn_implementation = (
|
| 1210 |
-
config.vision_attn_implementation
|
| 1211 |
-
if config.vision_attn_implementation is not None
|
| 1212 |
-
else config._attn_implementation
|
| 1213 |
-
)
|
| 1214 |
-
if vision_cfg is None:
|
| 1215 |
raise ValueError("IsaacConfig should always have vision_config")
|
| 1216 |
|
| 1217 |
-
hidden_dim =
|
| 1218 |
self.vision_embedding = nn.Sequential(
|
| 1219 |
-
|
| 1220 |
nn.Linear(
|
| 1221 |
hidden_dim,
|
| 1222 |
4 * hidden_dim,
|
|
@@ -1232,10 +1773,37 @@ class IsaacModel(Qwen3Model):
|
|
| 1232 |
VisionType: self.embed_vision,
|
| 1233 |
}
|
| 1234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1235 |
def embed_text_tokens(self, token_ids: torch.Tensor) -> torch.Tensor:
|
| 1236 |
"""Embed text tokens, squeezing singleton dimensions."""
|
| 1237 |
# Text events are shaped as (..., 1); squeeze the singleton index dim
|
| 1238 |
-
h = self.embed_tokens(token_ids)
|
| 1239 |
if h.dim() >= 2 and h.size(-2) == 1:
|
| 1240 |
h = h[..., 0, :]
|
| 1241 |
return h
|
|
@@ -1317,7 +1885,7 @@ class IsaacModel(Qwen3Model):
|
|
| 1317 |
elif input_ids is not None and inputs_embeds is not None:
|
| 1318 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1319 |
elif input_ids is not None:
|
| 1320 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 1321 |
# Create text modality tensor if not provided
|
| 1322 |
if modality_tensor is None:
|
| 1323 |
batch_size, seq_length = input_ids.shape
|
|
@@ -1335,7 +1903,11 @@ class IsaacModel(Qwen3Model):
|
|
| 1335 |
position_ids = compute_position_ids_input_ids(input_ids)
|
| 1336 |
|
| 1337 |
# Compute MRoPE position embeddings if we have custom rotary_emb
|
| 1338 |
-
cos, sin = self.rotary_emb(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1339 |
cos = cos.to(inputs_embeds.dtype)
|
| 1340 |
sin = sin.to(inputs_embeds.dtype)
|
| 1341 |
|
|
@@ -1348,7 +1920,7 @@ class IsaacModel(Qwen3Model):
|
|
| 1348 |
# Initialize hidden states
|
| 1349 |
hidden_states = inputs_embeds
|
| 1350 |
|
| 1351 |
-
for decoder_layer in self.layers:
|
| 1352 |
layer_outputs = decoder_layer(
|
| 1353 |
hidden_states,
|
| 1354 |
attention_mask=attention_mask,
|
|
@@ -1363,7 +1935,7 @@ class IsaacModel(Qwen3Model):
|
|
| 1363 |
hidden_states = layer_outputs[0] if isinstance(layer_outputs, tuple) else layer_outputs
|
| 1364 |
|
| 1365 |
# Final layer norm
|
| 1366 |
-
hidden_states = self.norm(hidden_states)
|
| 1367 |
|
| 1368 |
return BaseModelOutputWithPast(
|
| 1369 |
last_hidden_state=hidden_states,
|
|
@@ -1527,15 +2099,13 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin):
|
|
| 1527 |
config_class = IsaacConfig
|
| 1528 |
|
| 1529 |
def __init__(self, config: IsaacConfig):
|
| 1530 |
-
|
| 1531 |
self.model = IsaacModel(config) # Use our custom model
|
| 1532 |
self.vocab_size = config.vocab_size
|
| 1533 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1534 |
# Tracks rotary position offsets computed during a full forward pass so decode steps can reuse them.
|
| 1535 |
self.rope_deltas = None
|
| 1536 |
|
| 1537 |
-
self.config = config
|
| 1538 |
-
|
| 1539 |
def get_rope_index(
|
| 1540 |
self,
|
| 1541 |
input_ids: torch.Tensor | None,
|
|
@@ -1691,9 +2261,30 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin):
|
|
| 1691 |
return True
|
| 1692 |
|
| 1693 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1694 |
__all__ = [
|
| 1695 |
"IsaacConfig",
|
| 1696 |
"IsaacModel",
|
| 1697 |
"IsaacForConditionalGeneration",
|
|
|
|
| 1698 |
"IsaacProcessor",
|
| 1699 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Perceptron, Inc. All rights reserved.
|
| 2 |
+
# Perceptron, Inc. Non-Production License (2024-01-01)
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
### 1. Scope and acceptance
|
| 6 |
+
|
| 7 |
+
# **1.1. Scope of the Agreement.**
|
| 8 |
+
# This Agreement applies to any use, modification, or Distribution of any Perceptron Model by You, regardless of the source You obtained a copy of such Perceptron Model.
|
| 9 |
+
#
|
| 10 |
+
# **1.2. Acceptance.** By accessing, using, modifying, Distributing a Perceptron Model, or by creating, using or distributing a Derivative of the Perceptron Model, You agree to be bound by this Agreement.
|
| 11 |
+
#
|
| 12 |
+
# **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word “You” in this Agreement will refer to Your employer or such other person or entity.
|
| 13 |
+
#
|
| 14 |
+
# ## 2. License
|
| 15 |
+
# **2.1. Grant of rights.** Subject to Section 3 below, Perceptron, Inc. hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Perceptron Model and any Derivatives made by or for Perceptron, Inc. and to create Derivatives of the Perceptron Model.
|
| 16 |
+
#
|
| 17 |
+
# **2.2. Distribution of Perceptron Model and Derivatives made by or for Perceptron, Inc..** Subject to Section 3 below, You may Distribute copies of the Perceptron Model and/or Derivatives made by or for Perceptron, Inc., under the following conditions:
|
| 18 |
+
# - You must make available a copy of this Agreement to third-party recipients of the Perceptron Models and/or Derivatives made by or for Perceptron, Inc. you Distribute, it being specified that any rights to use the Perceptron Models and/or Derivatives made by or for Perceptron, Inc. shall be directly granted by Perceptron, Inc. to said third-party recipients pursuant to the Perceptron, Inc. Non-Production License agreement executed between these parties;
|
| 19 |
+
# - You must retain in all copies of the Perceptron Models the following attribution notice within a “Notice” text file distributed as part of such copies: “Licensed by Perceptron, Inc. under the Perceptron, Inc. Non-Production License”.
|
| 20 |
+
#
|
| 21 |
+
# **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that:
|
| 22 |
+
# - In any event, the use and modification of Perceptron Model and/or Derivatives made by or for Perceptron, Inc. shall remain governed by the terms and conditions of this Agreement;
|
| 23 |
+
# - You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Perceptron Model; and
|
| 24 |
+
# - Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients’ use of the Perceptron Model or any Derivatives made by or for Perceptron, Inc. in accordance with the Perceptron, Inc. Non-Production License nor conflict with any of its terms and conditions.
|
| 25 |
+
#
|
| 26 |
+
# ## 3. Limitations
|
| 27 |
+
# **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Perceptron Model You Distribute under your name and responsibility is an official product of Perceptron, Inc. or has been endorsed, approved or validated by Perceptron, Inc., unless You are authorized by Us to do so in writing.
|
| 28 |
+
#
|
| 29 |
+
# **3.2. Usage Limitation**
|
| 30 |
+
# - You shall only use the Perceptron Models and Derivatives (whether or not created by Perceptron, Inc.) for testing, research, Personal, or evaluation purposes in Non-Production Environments;
|
| 31 |
+
# - Subject to the foregoing, You shall not supply the Perceptron Models or Derivatives in the course of a commercial activity, whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer.
|
| 32 |
+
#
|
| 33 |
+
# **3.3. Usage not permitted under this Agreement.** If You want to use a Perceptron Model or a Derivative for any purpose that is not expressly authorized under this Agreement, You must request a license from Perceptron, Inc., which Perceptron, Inc. may grant to You in Perceptron, Inc.’s sole discretion. Please contact Perceptron, Inc. at the following e-mail address if You want to discuss such a license: [email protected]
|
| 34 |
+
#
|
| 35 |
+
# ## 4. Intellectual Property
|
| 36 |
+
# **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Perceptron Models, You may not use any name or mark owned by or associated with Perceptron, Inc. or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Perceptron Models and Derivatives made by or for Perceptron, Inc. and (ii) for attribution purposes as required by this Agreement.
|
| 37 |
+
#
|
| 38 |
+
# **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement.
|
| 39 |
+
#
|
| 40 |
+
# **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement.
|
| 41 |
+
#
|
| 42 |
+
# # 5. Liability
|
| 43 |
+
# **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Perceptron, Inc. be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Perceptron Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Perceptron, Inc. has been advised of the possibility of such damages.
|
| 44 |
+
#
|
| 45 |
+
# **5.2. Indemnification.** You agree to indemnify and hold harmless Perceptron, Inc. from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Perceptron Models and Derivatives.
|
| 46 |
+
#
|
| 47 |
+
# ## 6. Warranty
|
| 48 |
+
# **6.1. Disclaimer.** Unless required by applicable law or agreed to in writing, Perceptron, Inc. provides the Perceptron Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Perceptron, Inc. does not represent nor warrant that the Perceptron Models and Derivatives will be error-free, meet Your or any third party’s requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Perceptron Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement.
|
| 49 |
+
#
|
| 50 |
+
# # 7. Termination
|
| 51 |
+
# **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Perceptron Models or Derivatives and will continue until terminated in accordance with the following terms.
|
| 52 |
+
#
|
| 53 |
+
# **7.2. Termination.** Perceptron, Inc. may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Perceptron Models and Derivatives and shall permanently delete any copy thereof. Sections 5, 6, 7 and 8 shall survive the termination of this Agreement.
|
| 54 |
+
#
|
| 55 |
+
# **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated.
|
| 56 |
+
#
|
| 57 |
+
# # 8. General provisions
|
| 58 |
+
# 8.1. Governing Law. This Agreement will be governed by and construed in accordance with the laws of the State of Washington, without regard to its conflict of law principles.
|
| 59 |
+
#
|
| 60 |
+
# 8.2. Jurisdiction. The state and federal courts located in King County, Washington shall have exclusive jurisdiction over any dispute arising out of or relating to this Agreement, and You and We consent to personal jurisdiction and venue in such courts.
|
| 61 |
+
#
|
| 62 |
+
# **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
|
| 63 |
+
#
|
| 64 |
+
# # 9. Definitions
|
| 65 |
+
# **“Agreement”**: means this Perceptron, Inc. Non-Production License agreement governing the access, use, and Distribution of the Perceptron Models and Derivatives.
|
| 66 |
+
#
|
| 67 |
+
# **“Derivative”**: means any (i) modified version of the Perceptron Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Perceptron Model, or (iii) any other derivative work thereof. For the avoidance of doubt, Outputs are not considered as Derivatives under this Agreement.
|
| 68 |
+
#
|
| 69 |
+
# **“Distribution”**, **“Distributing”**, **“Distribute”** or **“Distributed”**: means providing or making available, by any means, a copy of the Perceptron Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement.
|
| 70 |
+
#
|
| 71 |
+
# **“Perceptron, Inc.”**, **“We”** or **“Us”**: means Perceptron, Inc., a Delaware corporation with its principal place of business at 10900 NE 8th St Suite 613, Bellevue, WA 98004.
|
| 72 |
+
#
|
| 73 |
+
# **“Perceptron Model”**: means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Perceptron, Inc. under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof.
|
| 74 |
+
#
|
| 75 |
+
# **“Non-Production Environment”**: means any setting, use case, or application of the Perceptron Models or Derivatives that expressly excludes live, real-world conditions, commercial operations, revenue-generating activities, or direct interactions with or impacts on end users (such as, for instance, Your employees or customers). Non-Production Environment may include, but is not limited to, any setting, use case, or application for research, development, testing, quality assurance, training, internal evaluation (other than any internal usage by employees in the context of the company’s business activities), and demonstration purposes.
|
| 76 |
+
#
|
| 77 |
+
# **“Outputs”**: means any content generated by the operation of the Perceptron Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Perceptron Models, such as any fine-tuned versions of the Perceptron Models, the weights, or parameters.
|
| 78 |
+
#
|
| 79 |
+
# **“Personal”**: means any use of a Perceptron Model or a Derivative that is (i) solely for personal, non-profit and non-commercial purposes and (ii) not directly or indirectly connected to any commercial activities, business operations, or employment responsibilities. For illustration purposes, Personal use of a Model or a Derivative does not include any usage by individuals employed in companies in the context of their daily tasks, any activity that is intended to generate revenue, or that is performed on behalf of a commercial entity.
|
| 80 |
+
#
|
| 81 |
+
# **“You”**: means the individual or entity entering into this Agreement with Perceptron, Inc..
|
| 82 |
+
|
| 83 |
from __future__ import annotations
|
| 84 |
|
| 85 |
+
import copy
|
| 86 |
+
import math
|
| 87 |
+
import re
|
| 88 |
from collections import defaultdict
|
| 89 |
+
from typing import Any, Callable, Optional, Sequence, Union
|
| 90 |
|
| 91 |
+
import PIL.Image
|
|
|
|
| 92 |
import torch
|
| 93 |
import torch.nn as nn
|
| 94 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
| 95 |
from transformers import (
|
| 96 |
+
AutoImageProcessor,
|
| 97 |
+
AutoModel,
|
| 98 |
AutoTokenizer,
|
| 99 |
BatchFeature,
|
| 100 |
Cache,
|
|
|
|
| 104 |
)
|
| 105 |
from transformers.cache_utils import SlidingWindowCache, StaticCache
|
| 106 |
from transformers.generation.utils import GenerationMixin
|
| 107 |
+
from transformers.image_processing_utils_fast import (
|
| 108 |
+
BaseImageProcessorFast,
|
| 109 |
+
SizeDict,
|
| 110 |
+
group_images_by_shape,
|
| 111 |
+
reorder_images,
|
| 112 |
+
DefaultFastImageProcessorKwargs,
|
| 113 |
+
)
|
| 114 |
+
from transformers.image_utils import (
|
| 115 |
+
ChannelDimension,
|
| 116 |
+
PILImageResampling,
|
| 117 |
+
)
|
| 118 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 119 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 120 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
| 121 |
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
|
| 122 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLRotaryEmbedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
| 124 |
+
from transformers.models.siglip2.modeling_siglip2 import (
|
| 125 |
+
Siglip2Attention,
|
| 126 |
+
Siglip2Encoder as HFSiglip2Encoder,
|
| 127 |
+
Siglip2EncoderLayer as HFSiglip2EncoderLayer,
|
| 128 |
+
Siglip2VisionEmbeddings as HFSiglip2VisionEmbeddings,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
)
|
| 130 |
+
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, Unpack
|
| 131 |
+
from transformers.tokenization_utils import TensorType
|
| 132 |
+
from transformers.utils import auto_docstring
|
| 133 |
+
from transformers.utils.generic import can_return_tuple
|
| 134 |
+
|
| 135 |
+
# Vision preprocessing constants
|
| 136 |
+
from transformers.utils.constants import IMAGENET_STANDARD_MEAN as VISION_MEAN
|
| 137 |
+
from transformers.utils.constants import IMAGENET_STANDARD_STD as VISION_STD
|
| 138 |
+
from transformers.utils.import_utils import is_torchdynamo_compiling
|
| 139 |
+
|
| 140 |
+
try:
|
| 141 |
+
from genesis.public.tensorstream.tensor_stream import (
|
| 142 |
+
Event,
|
| 143 |
+
Stream,
|
| 144 |
+
TensorStream,
|
| 145 |
+
TextType,
|
| 146 |
+
VisionType,
|
| 147 |
+
create_stream,
|
| 148 |
+
group_streams,
|
| 149 |
+
)
|
| 150 |
+
from genesis.public.tensorstream.tensor_stream_utils import (
|
| 151 |
+
compute_mrope_pos_tensor,
|
| 152 |
+
modality_mask,
|
| 153 |
+
reconstruct_tensor_stream_from_compact_dict,
|
| 154 |
+
tensor_stream_token_view,
|
| 155 |
+
)
|
| 156 |
+
from genesis.public.tensorstream.tensor_stream_utils import (
|
| 157 |
+
slice as ts_slice,
|
| 158 |
+
)
|
| 159 |
+
except ModuleNotFoundError as exc: # pragma: no cover - import guard
|
| 160 |
+
raise ModuleNotFoundError(
|
| 161 |
+
"genesis.public.tensorstream is required for the Isaac HuggingFace integration. "
|
| 162 |
+
"Ensure the TensorStream package is installed and on PYTHONPATH."
|
| 163 |
+
) from exc
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
_ORIGINAL_ATTENTION_FUNCTIONS: dict[str, Callable[..., tuple[torch.Tensor, Optional[torch.Tensor]]]] = {}
|
| 167 |
+
for _attn_name in ("flash_attention_2", "sdpa", "eager"):
|
| 168 |
+
if _attn_name in ALL_ATTENTION_FUNCTIONS:
|
| 169 |
+
_ORIGINAL_ATTENTION_FUNCTIONS[_attn_name] = ALL_ATTENTION_FUNCTIONS[_attn_name]
|
| 170 |
|
| 171 |
|
| 172 |
+
class IsaacVisionConfig(Siglip2VisionConfig):
|
| 173 |
"""Vision configuration for Isaac with Pixel Shuffle support.
|
| 174 |
|
| 175 |
Extends Siglip2VisionConfig with additional fields for pixel shuffle.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
pixel_shuffle_scale_factor (`int`, *optional*, defaults to 1):
|
| 179 |
+
Spatial factor applied before pixel shuffle reduces the resolution.
|
| 180 |
+
num_patches (`int`, *optional*, defaults to 256):
|
| 181 |
+
Maximum number of learnable positional embeddings to initialize.
|
| 182 |
"""
|
| 183 |
|
| 184 |
+
model_type = "isaac_vision"
|
| 185 |
base_config_key = "vision_config"
|
| 186 |
+
_attn_implementation: str | None = None
|
| 187 |
|
| 188 |
def __init__(
|
| 189 |
self,
|
|
|
|
| 197 |
self.pixel_shuffle_scale_factor = pixel_shuffle_scale_factor
|
| 198 |
self.num_patches = num_patches
|
| 199 |
|
| 200 |
+
if self._attn_implementation is None:
|
| 201 |
+
self._attn_implementation = "flash_attention_2"
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class IsaacImageProcessorKwargs(DefaultFastImageProcessorKwargs, total=False):
|
| 205 |
+
patch_size: int | None
|
| 206 |
+
max_num_patches: int | None
|
| 207 |
+
min_num_patches: int | None
|
| 208 |
+
pixel_shuffle_scale: int | None
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class IsaacProcessorKwargs(ProcessingKwargs, total=False):
|
| 212 |
+
images_kwargs: IsaacImageProcessorKwargs
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# Ensure python<=3.9 compatibility with TypedDict overrides.
|
| 216 |
+
IsaacProcessorKwargs.__annotations__["images_kwargs"] = IsaacImageProcessorKwargs
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@auto_docstring
|
| 220 |
+
class IsaacImageProcessorFast(BaseImageProcessorFast):
|
| 221 |
+
MAX_PIXELS = 60_000_000 # 60‑megapixel ceiling ≈ 8200 × 7300 px
|
| 222 |
+
r"""Fast torch-based image processor for Isaac vision inputs."""
|
| 223 |
+
|
| 224 |
+
resample = PILImageResampling.BILINEAR
|
| 225 |
+
model_input_names = ["patches", "token_grids"]
|
| 226 |
+
valid_kwargs = IsaacImageProcessorKwargs
|
| 227 |
+
unused_kwargs = ["size", "do_center_crop", "crop_size"]
|
| 228 |
+
|
| 229 |
+
do_resize = True
|
| 230 |
+
size: SizeDict | None = None
|
| 231 |
+
default_to_square: bool | None = None
|
| 232 |
+
do_center_crop = False
|
| 233 |
+
crop_size: SizeDict | None = None
|
| 234 |
+
patch_size: int | None = 16
|
| 235 |
+
max_num_patches: int | None = 256
|
| 236 |
+
min_num_patches: int | None = None
|
| 237 |
+
pixel_shuffle_scale: int | None = 1
|
| 238 |
+
do_pad = False
|
| 239 |
+
pad_size: SizeDict | None = None
|
| 240 |
+
do_rescale = True
|
| 241 |
+
rescale_factor = 1 / 255
|
| 242 |
+
do_normalize = True
|
| 243 |
+
image_mean = list(VISION_MEAN)
|
| 244 |
+
image_std = list(VISION_STD)
|
| 245 |
+
do_convert_rgb = True
|
| 246 |
+
return_tensors = None
|
| 247 |
+
data_format = ChannelDimension.FIRST
|
| 248 |
+
input_data_format = None
|
| 249 |
+
device = None
|
| 250 |
+
disable_grouping = False
|
| 251 |
+
size_divisor: int | None = None
|
| 252 |
+
|
| 253 |
+
def __init__(
|
| 254 |
+
self,
|
| 255 |
+
**kwargs: Unpack[IsaacImageProcessorKwargs],
|
| 256 |
+
) -> None:
|
| 257 |
+
super().__init__(**kwargs)
|
| 258 |
+
|
| 259 |
+
pixel_shuffle_scale = 1 if self.pixel_shuffle_scale is None else int(self.pixel_shuffle_scale)
|
| 260 |
+
if pixel_shuffle_scale < 1:
|
| 261 |
+
raise ValueError("`pixel_shuffle_scale` must be >= 1")
|
| 262 |
+
self.pixel_shuffle_scale = pixel_shuffle_scale
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def _validate_preprocess_kwargs(self, **kwargs):
|
| 266 |
+
# Allow callers to omit resize-related placeholders that BaseImageProcessorFast checks for.
|
| 267 |
+
kwargs.pop("do_resize", None)
|
| 268 |
+
kwargs.pop("size", None)
|
| 269 |
+
kwargs.pop("do_center_crop", None)
|
| 270 |
+
kwargs.pop("crop_size", None)
|
| 271 |
+
kwargs.pop("disable_grouping", None)
|
| 272 |
+
return super()._validate_preprocess_kwargs(**kwargs)
|
| 273 |
+
|
| 274 |
+
def resize(
|
| 275 |
+
self,
|
| 276 |
+
image: "torch.Tensor",
|
| 277 |
+
size: SizeDict,
|
| 278 |
+
interpolation: Optional[Any] = None,
|
| 279 |
+
antialias: bool = True,
|
| 280 |
+
**kwargs,
|
| 281 |
+
) -> torch.Tensor:
|
| 282 |
+
if size.height is None or size.width is None:
|
| 283 |
+
raise ValueError("IsaacImageProcessorFast requires explicit `height` and `width` when resizing.")
|
| 284 |
+
|
| 285 |
+
resize_mode: Any = interpolation
|
| 286 |
+
if hasattr(resize_mode, "value"):
|
| 287 |
+
resize_mode = resize_mode.value
|
| 288 |
+
elif hasattr(resize_mode, "name"):
|
| 289 |
+
resize_mode = resize_mode.name.lower()
|
| 290 |
+
elif resize_mode is None:
|
| 291 |
+
resize_mode = "bilinear"
|
| 292 |
+
|
| 293 |
+
if isinstance(resize_mode, str):
|
| 294 |
+
mode_key = resize_mode.lower()
|
| 295 |
+
else:
|
| 296 |
+
mode_key = resize_mode
|
| 297 |
+
|
| 298 |
+
resize_kwargs: dict[str, Any] = {}
|
| 299 |
+
if mode_key in {"linear", "bilinear", "bicubic", "trilinear"}:
|
| 300 |
+
resize_kwargs["align_corners"] = False
|
| 301 |
+
|
| 302 |
+
return F.interpolate(
|
| 303 |
+
image,
|
| 304 |
+
size=(size.height, size.width),
|
| 305 |
+
mode=resize_mode,
|
| 306 |
+
**resize_kwargs,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
def _preprocess(
|
| 310 |
+
self,
|
| 311 |
+
images: list["torch.Tensor"],
|
| 312 |
+
do_resize: bool,
|
| 313 |
+
size: Optional[SizeDict],
|
| 314 |
+
interpolation: Optional[Any],
|
| 315 |
+
do_center_crop: bool,
|
| 316 |
+
crop_size: Optional[SizeDict],
|
| 317 |
+
do_rescale: Optional[bool],
|
| 318 |
+
rescale_factor: Optional[float],
|
| 319 |
+
do_normalize: Optional[bool],
|
| 320 |
+
image_mean: Optional[Union[float, Sequence[float]]],
|
| 321 |
+
image_std: Optional[Union[float, Sequence[float]]],
|
| 322 |
+
disable_grouping: Optional[bool] = None,
|
| 323 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 324 |
+
do_pad: Optional[bool] = None,
|
| 325 |
+
pad_size: Optional[SizeDict] = None,
|
| 326 |
+
*,
|
| 327 |
+
patch_size: int | None = None,
|
| 328 |
+
max_num_patches: int | None = None,
|
| 329 |
+
min_num_patches: int | None = None,
|
| 330 |
+
pixel_shuffle_scale: int | None = None,
|
| 331 |
+
**kwargs,
|
| 332 |
+
) -> BatchFeature:
|
| 333 |
+
if do_center_crop:
|
| 334 |
+
raise ValueError("`do_center_crop` is not supported by IsaacImageProcessorFast.")
|
| 335 |
+
if do_pad:
|
| 336 |
+
raise ValueError("`do_pad` is not supported by IsaacImageProcessorFast.")
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
|
| 340 |
+
processed_patches_grouped: dict[tuple[int, ...], torch.Tensor] = {}
|
| 341 |
+
token_grids_grouped: dict[tuple[int, ...], torch.Tensor] = {}
|
| 342 |
+
virtual_dims_grouped: dict[tuple[int, ...], torch.Tensor] = {}
|
| 343 |
+
real_dims_grouped: dict[tuple[int, ...], torch.Tensor] = {}
|
| 344 |
+
|
| 345 |
+
for shape, stacked_images in grouped_images.items():
|
| 346 |
+
if stacked_images.ndim != 4:
|
| 347 |
+
raise ValueError("Expected batched channel-first image tensors.")
|
| 348 |
+
|
| 349 |
+
batch_size, channels, original_height, original_width = stacked_images.shape
|
| 350 |
+
|
| 351 |
+
if bool(self.do_convert_rgb) and channels == 1:
|
| 352 |
+
stacked_images = stacked_images.repeat(1, 3, 1, 1)
|
| 353 |
+
channels = 3
|
| 354 |
+
|
| 355 |
+
if original_height * original_width > self.MAX_PIXELS:
|
| 356 |
+
raise ValueError(
|
| 357 |
+
f"Image (w={original_width}, h={original_height}) > MAX=`{self.MAX_PIXELS}`"
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
target_height, target_width = get_image_size_for_max_num_patches(
|
| 361 |
+
original_height,
|
| 362 |
+
original_width,
|
| 363 |
+
patch_size,
|
| 364 |
+
max_num_patches,
|
| 365 |
+
min_num_patches=min_num_patches,
|
| 366 |
+
pixel_shuffle_scale=pixel_shuffle_scale,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
if do_resize:
|
| 370 |
+
resize_size = SizeDict(height=target_height, width=target_width)
|
| 371 |
+
image_batch = self.resize(
|
| 372 |
+
image=stacked_images,
|
| 373 |
+
size=resize_size,
|
| 374 |
+
interpolation=interpolation,
|
| 375 |
+
)
|
| 376 |
+
else:
|
| 377 |
+
if ((original_height % patch_size) != 0) or ((original_width % patch_size) != 0):
|
| 378 |
+
raise ValueError(
|
| 379 |
+
"Image dimensions must be divisible by patch_size when resize is disabled."
|
| 380 |
+
)
|
| 381 |
+
image_batch = stacked_images
|
| 382 |
+
target_height, target_width = original_height, original_width
|
| 383 |
+
|
| 384 |
+
if do_rescale:
|
| 385 |
+
image_batch = self.rescale_and_normalize(
|
| 386 |
+
image_batch,
|
| 387 |
+
do_rescale=do_rescale,
|
| 388 |
+
rescale_factor=rescale_factor,
|
| 389 |
+
do_normalize=do_normalize,
|
| 390 |
+
image_mean=image_mean,
|
| 391 |
+
image_std=image_std,
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
nhwc_images = image_batch.permute(0, 2, 3, 1)
|
| 395 |
+
nhwc_images = _compute_residual_p_frames(nhwc_images, is_p_frame=[False] * batch_size)
|
| 396 |
+
|
| 397 |
+
patches = patchify_vision(nhwc_images, patch_size=patch_size)
|
| 398 |
+
_, height_tokens, width_tokens, _ = patches.shape
|
| 399 |
+
|
| 400 |
+
token_grid = torch.tensor(
|
| 401 |
+
[height_tokens, width_tokens],
|
| 402 |
+
dtype=torch.long,
|
| 403 |
+
device=patches.device,
|
| 404 |
+
).unsqueeze(0).repeat(batch_size, 1)
|
| 405 |
+
|
| 406 |
+
real_dim = torch.tensor(
|
| 407 |
+
[1, height_tokens, width_tokens],
|
| 408 |
+
dtype=torch.long,
|
| 409 |
+
device=patches.device,
|
| 410 |
+
).unsqueeze(0).repeat(batch_size, 1)
|
| 411 |
+
|
| 412 |
+
if pixel_shuffle_scale > 1:
|
| 413 |
+
if (height_tokens % pixel_shuffle_scale) or (width_tokens % pixel_shuffle_scale):
|
| 414 |
+
raise ValueError(
|
| 415 |
+
"Spatial dimensions must be divisible by pixel_shuffle_scale when pixel shuffle is enabled."
|
| 416 |
+
)
|
| 417 |
+
virtual_height = height_tokens // pixel_shuffle_scale
|
| 418 |
+
virtual_width = width_tokens // pixel_shuffle_scale
|
| 419 |
+
else:
|
| 420 |
+
virtual_height = height_tokens
|
| 421 |
+
virtual_width = width_tokens
|
| 422 |
+
|
| 423 |
+
virtual_dim = torch.tensor(
|
| 424 |
+
[1, virtual_height, virtual_width],
|
| 425 |
+
dtype=torch.long,
|
| 426 |
+
device=patches.device,
|
| 427 |
+
).unsqueeze(0).repeat(batch_size, 1)
|
| 428 |
+
|
| 429 |
+
processed_patches_grouped[shape] = patches
|
| 430 |
+
token_grids_grouped[shape] = token_grid
|
| 431 |
+
virtual_dims_grouped[shape] = virtual_dim
|
| 432 |
+
real_dims_grouped[shape] = real_dim
|
| 433 |
+
|
| 434 |
+
patches_slices = reorder_images(processed_patches_grouped, grouped_images_index)
|
| 435 |
+
token_grid_slices = reorder_images(token_grids_grouped, grouped_images_index)
|
| 436 |
+
virtual_dim_slices = reorder_images(virtual_dims_grouped, grouped_images_index)
|
| 437 |
+
real_dim_slices = reorder_images(real_dims_grouped, grouped_images_index)
|
| 438 |
+
|
| 439 |
+
patches_tensor = torch.stack(patches_slices, dim=0)
|
| 440 |
+
token_grids_tensor = torch.stack(token_grid_slices, dim=0)
|
| 441 |
+
virtual_dims_tensor = torch.stack(virtual_dim_slices, dim=0)
|
| 442 |
+
real_dims_tensor = torch.stack(real_dim_slices, dim=0)
|
| 443 |
+
|
| 444 |
+
return BatchFeature(
|
| 445 |
+
data={
|
| 446 |
+
"patches": patches_tensor,
|
| 447 |
+
"token_grids": token_grids_tensor,
|
| 448 |
+
"virtual_pixel_size": virtual_dims_tensor,
|
| 449 |
+
"real_pixel_size": real_dims_tensor,
|
| 450 |
+
},
|
| 451 |
+
tensor_type=return_tensors,
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
|
| 456 |
|
| 457 |
def _max_from_cu(cu: torch.Tensor | None, fallback: int) -> int:
|
|
|
|
| 461 |
return int((cu[1:] - cu[:-1]).max().item())
|
| 462 |
|
| 463 |
|
| 464 |
+
def build_document_attention_mask(
|
| 465 |
+
cu_seqlens: torch.Tensor | None,
|
| 466 |
+
total_tokens: int,
|
| 467 |
+
dtype: torch.dtype,
|
| 468 |
+
device: torch.device,
|
| 469 |
+
) -> torch.Tensor | None:
|
| 470 |
+
"""Creates an additive attention mask that blocks cross-document attention."""
|
| 471 |
+
|
| 472 |
+
if cu_seqlens is None:
|
| 473 |
+
return None
|
| 474 |
+
|
| 475 |
+
if cu_seqlens.numel() < 2:
|
| 476 |
+
return None
|
| 477 |
+
|
| 478 |
+
seq_sizes = (cu_seqlens[1:] - cu_seqlens[:-1]).long()
|
| 479 |
+
if seq_sizes.numel() == 0:
|
| 480 |
+
return None
|
| 481 |
+
|
| 482 |
+
seg_ids = torch.repeat_interleave(torch.arange(seq_sizes.numel(), device=device), seq_sizes)
|
| 483 |
+
block_mask = seg_ids[:, None] != seg_ids[None, :]
|
| 484 |
+
additive_mask = torch.zeros((total_tokens, total_tokens), dtype=dtype, device=device)
|
| 485 |
+
additive_mask.masked_fill_(block_mask, float("-inf"))
|
| 486 |
+
return additive_mask.view(1, 1, total_tokens, total_tokens)
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def ensure_document_attention_mask(
|
| 492 |
+
attention_mask: Optional[torch.Tensor],
|
| 493 |
+
cu_seqlens: Optional[torch.Tensor],
|
| 494 |
+
total_tokens: int,
|
| 495 |
+
dtype: torch.dtype,
|
| 496 |
+
device: torch.device,
|
| 497 |
+
) -> Optional[torch.Tensor]:
|
| 498 |
+
if attention_mask is not None or cu_seqlens is None:
|
| 499 |
+
return attention_mask
|
| 500 |
+
|
| 501 |
+
return build_document_attention_mask(
|
| 502 |
+
cu_seqlens=cu_seqlens,
|
| 503 |
+
total_tokens=total_tokens,
|
| 504 |
+
dtype=dtype,
|
| 505 |
+
device=device,
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
|
| 509 |
def flash_attention_document_mask_forward(
|
| 510 |
+
module: torch.nn.Module,
|
| 511 |
q_lhd: torch.Tensor, # (L, H, D)
|
| 512 |
k_lhd: torch.Tensor, # (L, H, D)
|
| 513 |
v_lhd: torch.Tensor, # (L, H, D)
|
|
|
|
| 563 |
v_lhd: torch.Tensor, # (L, H, D)
|
| 564 |
dropout: float,
|
| 565 |
scaling: float | None,
|
| 566 |
+
attention_mask: torch.Tensor | None = None,
|
| 567 |
+
cu_seqlens: torch.Tensor | None = None,
|
| 568 |
) -> torch.Tensor:
|
| 569 |
"""SDPA with block-diagonal masking for variable-length sequences."""
|
| 570 |
L, H, D = q_lhd.shape
|
|
|
|
| 575 |
V = v_lhd.permute(1, 0, 2).unsqueeze(0)
|
| 576 |
|
| 577 |
# Build block-diagonal mask for variable-length sequences
|
| 578 |
+
attn_mask = attention_mask
|
| 579 |
+
if attn_mask is None:
|
| 580 |
+
attn_mask = build_document_attention_mask(
|
| 581 |
+
cu_seqlens=cu_seqlens,
|
| 582 |
+
total_tokens=L,
|
| 583 |
+
dtype=q_lhd.dtype,
|
| 584 |
+
device=q_lhd.device,
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
if attn_mask is not None and attn_mask.dtype != Q.dtype:
|
| 588 |
+
attn_mask = attn_mask.to(Q.dtype)
|
| 589 |
|
| 590 |
Y = F.scaled_dot_product_attention(Q, K, V, attn_mask=attn_mask, dropout_p=dropout, scale=scaling)
|
| 591 |
return Y.squeeze(0).permute(1, 0, 2) # Back to (L, H, D)
|
| 592 |
|
| 593 |
|
| 594 |
+
class IsaacVisionEmbeddings(HFSiglip2VisionEmbeddings):
|
| 595 |
+
"""Adapter around SigLIP2 vision embeddings that consumes packed patch sequences."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
+
def __init__(self, config: IsaacVisionConfig):
|
| 598 |
+
super().__init__(config)
|
|
|
|
|
|
|
| 599 |
|
| 600 |
+
def forward(self, seq_patches: torch.Tensor, spatial_shapes: torch.Tensor) -> torch.Tensor:
|
| 601 |
+
packed_pixel_values, seq_lengths = self._pack_to_batch(seq_patches, spatial_shapes)
|
| 602 |
+
if packed_pixel_values is None:
|
| 603 |
+
return seq_patches.new_zeros((0, self.embed_dim))
|
| 604 |
|
| 605 |
+
embeddings = super().forward(packed_pixel_values, spatial_shapes)
|
| 606 |
+
return self._unpack_from_batch(embeddings, seq_lengths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
|
| 608 |
+
def _pack_to_batch(
|
| 609 |
+
self,
|
| 610 |
+
seq_patches: torch.Tensor,
|
| 611 |
+
spatial_shapes: torch.Tensor,
|
| 612 |
+
) -> tuple[torch.Tensor | None, torch.Tensor]:
|
| 613 |
+
if seq_patches.ndim != 2:
|
| 614 |
+
raise ValueError("`seq_patches` is expected to be 2D (total_patches, patch_dim).")
|
| 615 |
+
if spatial_shapes.ndim != 2 or spatial_shapes.size(-1) != 2:
|
| 616 |
+
raise ValueError("`spatial_shapes` must have shape (num_images, 2) with (height_tokens, width_tokens).")
|
| 617 |
+
|
| 618 |
+
seq_lengths = spatial_shapes.long().prod(dim=-1)
|
| 619 |
+
total_patches = int(seq_lengths.sum().item())
|
| 620 |
+
if total_patches != seq_patches.size(0):
|
| 621 |
+
raise ValueError(
|
| 622 |
+
"Mismatch between packed patches and spatial shapes: got "
|
| 623 |
+
f"{seq_patches.size(0)} patches but spatial shapes imply {total_patches}."
|
| 624 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
|
| 626 |
+
batch_size = spatial_shapes.size(0)
|
| 627 |
+
if batch_size == 0:
|
| 628 |
+
return None, seq_lengths
|
| 629 |
|
| 630 |
+
max_length = int(seq_lengths.max().item())
|
| 631 |
+
patch_dim = seq_patches.size(-1)
|
| 632 |
+
device = seq_patches.device
|
| 633 |
|
| 634 |
+
packed_pixel_values = seq_patches.new_zeros((batch_size, max_length, patch_dim), device=device)
|
|
|
|
|
|
|
|
|
|
| 635 |
|
| 636 |
+
start = 0
|
| 637 |
+
for batch_idx, length in enumerate(seq_lengths.tolist()):
|
| 638 |
+
if length == 0:
|
| 639 |
+
continue
|
| 640 |
+
end = start + length
|
| 641 |
+
packed_pixel_values[batch_idx, :length] = seq_patches[start:end]
|
| 642 |
+
start = end
|
| 643 |
|
| 644 |
+
return packed_pixel_values, seq_lengths
|
| 645 |
|
| 646 |
+
def _unpack_from_batch(self, embeddings: torch.Tensor, seq_lengths: torch.Tensor) -> torch.Tensor:
|
| 647 |
+
output_chunks: list[torch.Tensor] = []
|
| 648 |
+
for batch_idx, length in enumerate(seq_lengths.tolist()):
|
| 649 |
+
if length == 0:
|
| 650 |
+
continue
|
| 651 |
+
output_chunks.append(embeddings[batch_idx, :length])
|
| 652 |
|
| 653 |
+
if not output_chunks:
|
| 654 |
+
return embeddings.new_zeros((0, embeddings.size(-1)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
|
| 656 |
+
return torch.cat(output_chunks, dim=0)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
class IsaacVisionAttention(Siglip2Attention):
|
| 660 |
+
"""Custom attention that supports variable-length sequences with flash attention."""
|
| 661 |
+
|
| 662 |
+
ATTENTION_KEY_MAP: dict[str, str] = {
|
| 663 |
+
"flash_attention_2": "isaac_flash_attention_2",
|
| 664 |
+
"flash_attention_3": "isaac_flash_attention_3",
|
| 665 |
+
"isaac_flash_attention_2": "isaac_flash_attention_2",
|
| 666 |
+
"isaac_flash_attention_3": "isaac_flash_attention_3",
|
| 667 |
+
"sdpa": "isaac_sdpa",
|
| 668 |
+
"isaac_sdpa": "isaac_sdpa",
|
| 669 |
+
"eager": "isaac_eager",
|
| 670 |
+
"isaac_eager": "isaac_eager",
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
def __init__(self, vision_config):
|
| 674 |
+
super().__init__(vision_config)
|
| 675 |
+
self.vision_config = vision_config
|
| 676 |
+
self._variable_length_metadata = None
|
| 677 |
+
|
| 678 |
+
def _variable_length_context(self, *, cu_seqlens=None, max_seqlen=None):
|
| 679 |
+
"""Store packed-sequence metadata for the next forward call."""
|
| 680 |
+
self._variable_length_metadata = (cu_seqlens, max_seqlen)
|
| 681 |
+
|
| 682 |
+
def _consume_variable_length_metadata(self):
|
| 683 |
+
if self._variable_length_metadata is None:
|
| 684 |
+
return None, None
|
| 685 |
+
cu_seqlens, max_seqlen = self._variable_length_metadata
|
| 686 |
+
self._variable_length_metadata = None
|
| 687 |
+
return cu_seqlens, max_seqlen
|
| 688 |
+
|
| 689 |
+
def forward(self, hidden_states, attention_mask=None, **kwargs):
|
| 690 |
+
cu_seqlens = kwargs.pop("cu_seqlens", None)
|
| 691 |
+
max_seqlen = kwargs.pop("max_seqlen", None)
|
| 692 |
+
kwargs.pop("output_attentions", None)
|
| 693 |
+
kwargs.pop("output_hidden_states", None)
|
| 694 |
+
kwargs.pop("return_dict", None)
|
| 695 |
+
if kwargs:
|
| 696 |
+
unexpected = ', '.join(sorted(kwargs))
|
| 697 |
+
raise TypeError(f'Unexpected kwargs for IsaacVisionAttention.forward: {unexpected}')
|
| 698 |
+
cached_cu, cached_max = self._consume_variable_length_metadata()
|
| 699 |
+
if cu_seqlens is None:
|
| 700 |
+
cu_seqlens = cached_cu
|
| 701 |
+
if max_seqlen is None:
|
| 702 |
+
max_seqlen = cached_max
|
| 703 |
|
|
|
|
| 704 |
# Expect packed sequences with batch_size == 1
|
| 705 |
batch_size, L, _ = hidden_states.shape
|
| 706 |
if batch_size != 1:
|
|
|
|
| 716 |
k = self.k_proj(x).view(L, H, D)
|
| 717 |
v = self.v_proj(x).view(L, H, D)
|
| 718 |
|
| 719 |
+
attn_impl = getattr(self.vision_config, "_attn_implementation", "flash_attention_3")
|
| 720 |
+
|
| 721 |
+
attn_mask = ensure_document_attention_mask(
|
| 722 |
+
attention_mask,
|
| 723 |
+
cu_seqlens,
|
| 724 |
+
L,
|
| 725 |
+
q.dtype,
|
| 726 |
+
q.device,
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
resolved_key = self.ATTENTION_KEY_MAP.get(attn_impl)
|
| 730 |
+
attention_fn = ALL_ATTENTION_FUNCTIONS.get(resolved_key) if resolved_key is not None else None
|
| 731 |
+
if attention_fn is None:
|
| 732 |
+
raise ValueError(f"Attention implementation {attn_impl} not found.")
|
| 733 |
+
|
| 734 |
+
query_states = q.transpose(0, 1).unsqueeze(0)
|
| 735 |
+
key_states = k.transpose(0, 1).unsqueeze(0)
|
| 736 |
+
value_states = v.transpose(0, 1).unsqueeze(0)
|
| 737 |
+
|
| 738 |
+
attention_kwargs: dict[str, Any] = {
|
| 739 |
+
"dropout": p_drop,
|
| 740 |
+
"scaling": self.scale,
|
| 741 |
+
"is_causal": False,
|
| 742 |
+
}
|
| 743 |
+
if cu_seqlens is not None:
|
| 744 |
+
attention_kwargs["cu_seq_lens_q"] = cu_seqlens
|
| 745 |
+
attention_kwargs["cu_seq_lens_k"] = cu_seqlens
|
| 746 |
+
if max_seqlen is not None:
|
| 747 |
+
attention_kwargs["max_length_q"] = max_seqlen
|
| 748 |
+
attention_kwargs["max_length_k"] = max_seqlen
|
| 749 |
+
|
| 750 |
+
attn_output, _ = attention_fn(
|
| 751 |
+
self,
|
| 752 |
+
query_states,
|
| 753 |
+
key_states,
|
| 754 |
+
value_states,
|
| 755 |
+
attn_mask,
|
| 756 |
+
**attention_kwargs,
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
y_lhd = attn_output.squeeze(0).permute(1, 0, 2).contiguous()
|
| 760 |
|
| 761 |
# Merge heads and project
|
| 762 |
y = self.out_proj(y_lhd.reshape(L, self.embed_dim))
|
| 763 |
return y.unsqueeze(0), None # (1, L, E)
|
| 764 |
|
| 765 |
|
| 766 |
+
class IsaacVisionEncoderLayer(HFSiglip2EncoderLayer):
|
| 767 |
+
"""Isaac vision encoder layer with variable-length attention."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 768 |
|
| 769 |
+
def __init__(self, vision_config: IsaacVisionConfig):
|
| 770 |
+
super().__init__(vision_config)
|
| 771 |
+
self.self_attn = IsaacVisionAttention(vision_config)
|
| 772 |
|
| 773 |
def forward(
|
| 774 |
self,
|
| 775 |
hidden_states: torch.Tensor,
|
| 776 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 777 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 778 |
+
max_seqlen: Optional[int] = None,
|
| 779 |
+
output_attentions: bool = False,
|
| 780 |
+
output_hidden_states: Optional[bool] = None,
|
| 781 |
+
):
|
| 782 |
+
if cu_seqlens is not None or max_seqlen is not None:
|
| 783 |
+
self.self_attn._variable_length_context(
|
| 784 |
+
cu_seqlens=cu_seqlens,
|
| 785 |
+
max_seqlen=max_seqlen,
|
| 786 |
+
)
|
| 787 |
|
| 788 |
+
attention_mask = ensure_document_attention_mask(
|
| 789 |
+
attention_mask,
|
| 790 |
+
cu_seqlens,
|
| 791 |
+
hidden_states.size(1),
|
| 792 |
+
hidden_states.dtype,
|
| 793 |
+
hidden_states.device,
|
| 794 |
)
|
| 795 |
|
| 796 |
+
return super().forward(
|
| 797 |
+
hidden_states,
|
| 798 |
+
attention_mask=attention_mask,
|
| 799 |
+
output_attentions=output_attentions,
|
| 800 |
+
)
|
| 801 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 802 |
|
| 803 |
+
class IsaacVisionEncoder(HFSiglip2Encoder):
|
| 804 |
+
"""Encoder using Isaac encoder layers with variable-length attention support."""
|
| 805 |
|
| 806 |
+
def __init__(self, config: IsaacVisionConfig):
|
| 807 |
+
super().__init__(config)
|
| 808 |
+
self.layers = nn.ModuleList([IsaacVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 809 |
|
| 810 |
+
def __variable_length_context(self, cu_seqlens, max_seqlen) -> None:
|
| 811 |
+
if cu_seqlens is None and max_seqlen is None:
|
| 812 |
+
return
|
| 813 |
|
| 814 |
+
for layer in self.layers:
|
| 815 |
+
if isinstance(layer, IsaacVisionEncoderLayer):
|
| 816 |
+
layer.self_attn._variable_length_context(
|
| 817 |
+
cu_seqlens=cu_seqlens,
|
| 818 |
+
max_seqlen=max_seqlen,
|
| 819 |
+
)
|
| 820 |
|
| 821 |
+
@can_return_tuple
|
| 822 |
def forward(
|
| 823 |
self,
|
| 824 |
inputs_embeds,
|
| 825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 826 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 827 |
+
max_seqlen: Optional[int] = None,
|
| 828 |
+
output_attentions: Optional[bool] = None,
|
| 829 |
+
output_hidden_states: Optional[bool] = None,
|
| 830 |
+
return_dict: Optional[bool] = None,
|
| 831 |
):
|
| 832 |
+
self.__variable_length_context(cu_seqlens, max_seqlen)
|
| 833 |
|
| 834 |
+
attention_mask = ensure_document_attention_mask(
|
| 835 |
+
attention_mask,
|
| 836 |
+
cu_seqlens,
|
| 837 |
+
inputs_embeds.size(1),
|
| 838 |
+
inputs_embeds.dtype,
|
| 839 |
+
inputs_embeds.device,
|
| 840 |
+
)
|
| 841 |
|
| 842 |
+
return super().forward(
|
| 843 |
+
inputs_embeds,
|
| 844 |
+
attention_mask=attention_mask,
|
| 845 |
+
output_attentions=output_attentions,
|
| 846 |
+
#output_hidden_states=output_hidden_states,
|
| 847 |
+
#return_dict=return_dict,
|
| 848 |
+
)
|
| 849 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 850 |
|
| 851 |
+
def _isaac_flash_attention_forward(
|
| 852 |
+
module: nn.Module,
|
| 853 |
+
query: torch.Tensor,
|
| 854 |
+
key: torch.Tensor,
|
| 855 |
+
value: torch.Tensor,
|
| 856 |
+
attention_mask: Optional[torch.Tensor],
|
| 857 |
+
dropout: float = 0.0,
|
| 858 |
+
scaling: Optional[float] = None,
|
| 859 |
+
is_causal: bool = False,
|
| 860 |
+
**kwargs,
|
| 861 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 862 |
+
base_fn = _ORIGINAL_ATTENTION_FUNCTIONS.get("flash_attention_2")
|
| 863 |
+
if not isinstance(module, IsaacVisionAttention) or base_fn is None:
|
| 864 |
+
if base_fn is None:
|
| 865 |
+
raise ValueError("Base flash attention function unavailable for fallback.")
|
| 866 |
+
return base_fn(
|
| 867 |
+
module,
|
| 868 |
+
query,
|
| 869 |
+
key,
|
| 870 |
+
value,
|
| 871 |
+
attention_mask,
|
| 872 |
+
dropout=dropout,
|
| 873 |
+
scaling=scaling,
|
| 874 |
+
is_causal=is_causal,
|
| 875 |
+
**kwargs,
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
if query.dim() != 4 or query.size(0) != 1:
|
| 879 |
+
raise ValueError("IsaacVisionAttention expects packed sequences with batch size 1 when using packed attention.")
|
| 880 |
+
|
| 881 |
+
_, num_heads, seq_len, head_dim = query.shape
|
| 882 |
+
q_lhd = query.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 883 |
+
k_lhd = key.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 884 |
+
v_lhd = value.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 885 |
+
|
| 886 |
+
cum_seq_q = kwargs.get("cu_seq_lens_q")
|
| 887 |
+
cum_seq_k = kwargs.get("cu_seq_lens_k", cum_seq_q)
|
| 888 |
+
max_seqlen = kwargs.get("max_length_q")
|
| 889 |
+
|
| 890 |
+
effective_dropout = dropout if dropout is not None else (module.dropout if module.training else 0.0)
|
| 891 |
+
effective_scaling = module.scale if scaling is None else scaling
|
| 892 |
+
|
| 893 |
+
attn_mask = attention_mask
|
| 894 |
+
if attn_mask is None:
|
| 895 |
+
attn_mask = build_document_attention_mask(
|
| 896 |
+
cu_seqlens=cum_seq_q,
|
| 897 |
+
total_tokens=seq_len,
|
| 898 |
+
dtype=q_lhd.dtype,
|
| 899 |
+
device=q_lhd.device,
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
attn_output_lhd, attn_weights = flash_attention_document_mask_forward(
|
| 903 |
+
module,
|
| 904 |
+
q_lhd,
|
| 905 |
+
k_lhd,
|
| 906 |
+
v_lhd,
|
| 907 |
+
attention_mask=attn_mask,
|
| 908 |
+
dropout=effective_dropout,
|
| 909 |
+
scaling=effective_scaling,
|
| 910 |
+
cum_seq_q=cum_seq_q,
|
| 911 |
+
cum_seq_k=cum_seq_k,
|
| 912 |
+
max_seqlen=max_seqlen,
|
| 913 |
+
is_causal=is_causal,
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
attn_output = attn_output_lhd.permute(1, 0, 2).unsqueeze(0)
|
| 917 |
+
return attn_output, attn_weights
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
def _isaac_sdpa_forward(
|
| 921 |
+
module: nn.Module,
|
| 922 |
+
query: torch.Tensor,
|
| 923 |
+
key: torch.Tensor,
|
| 924 |
+
value: torch.Tensor,
|
| 925 |
+
attention_mask: Optional[torch.Tensor],
|
| 926 |
+
dropout: float = 0.0,
|
| 927 |
+
scaling: Optional[float] = None,
|
| 928 |
+
is_causal: bool = False,
|
| 929 |
+
**kwargs,
|
| 930 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 931 |
+
base_fn = _ORIGINAL_ATTENTION_FUNCTIONS.get("sdpa")
|
| 932 |
+
if not isinstance(module, IsaacVisionAttention) or base_fn is None:
|
| 933 |
+
if base_fn is None:
|
| 934 |
+
raise ValueError("Base SDPA function unavailable for fallback.")
|
| 935 |
+
return base_fn(
|
| 936 |
+
module,
|
| 937 |
+
query,
|
| 938 |
+
key,
|
| 939 |
+
value,
|
| 940 |
+
attention_mask,
|
| 941 |
+
dropout=dropout,
|
| 942 |
+
scaling=scaling,
|
| 943 |
+
is_causal=is_causal,
|
| 944 |
+
**kwargs,
|
| 945 |
+
)
|
| 946 |
+
|
| 947 |
+
if query.dim() != 4 or query.size(0) != 1:
|
| 948 |
+
raise ValueError("IsaacVisionAttention expects packed sequences with batch size 1 when using packed attention.")
|
| 949 |
+
|
| 950 |
+
_, num_heads, seq_len, head_dim = query.shape
|
| 951 |
+
q_lhd = query.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 952 |
+
k_lhd = key.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 953 |
+
v_lhd = value.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 954 |
+
|
| 955 |
+
cum_seq = kwargs.get("cu_seq_lens_q")
|
| 956 |
+
effective_dropout = dropout if dropout is not None else (module.dropout if module.training else 0.0)
|
| 957 |
+
effective_scaling = module.scale if scaling is None else scaling
|
| 958 |
+
|
| 959 |
+
attn_mask = attention_mask
|
| 960 |
+
if attn_mask is None:
|
| 961 |
+
attn_mask = build_document_attention_mask(
|
| 962 |
+
cu_seqlens=cum_seq,
|
| 963 |
+
total_tokens=seq_len,
|
| 964 |
+
dtype=q_lhd.dtype,
|
| 965 |
+
device=q_lhd.device,
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
attn_output_lhd = sdpa_document_mask_forward(
|
| 969 |
+
q_lhd,
|
| 970 |
+
k_lhd,
|
| 971 |
+
v_lhd,
|
| 972 |
+
dropout=effective_dropout,
|
| 973 |
+
scaling=effective_scaling,
|
| 974 |
+
attention_mask=attn_mask,
|
| 975 |
+
cu_seqlens=cum_seq,
|
| 976 |
+
)
|
| 977 |
|
| 978 |
+
attn_output = attn_output_lhd.permute(1, 0, 2).unsqueeze(0)
|
| 979 |
+
return attn_output, None
|
| 980 |
|
| 981 |
+
|
| 982 |
+
def _isaac_eager_forward(
|
| 983 |
+
module: nn.Module,
|
| 984 |
+
query: torch.Tensor,
|
| 985 |
+
key: torch.Tensor,
|
| 986 |
+
value: torch.Tensor,
|
| 987 |
+
attention_mask: Optional[torch.Tensor],
|
| 988 |
+
dropout: float = 0.0,
|
| 989 |
+
scaling: Optional[float] = None,
|
| 990 |
+
is_causal: bool = False,
|
| 991 |
+
**kwargs,
|
| 992 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 993 |
+
base_fn = _ORIGINAL_ATTENTION_FUNCTIONS.get("eager")
|
| 994 |
+
if not isinstance(module, IsaacVisionAttention) or base_fn is None:
|
| 995 |
+
if base_fn is None:
|
| 996 |
+
raise ValueError("Base eager attention function unavailable for fallback.")
|
| 997 |
+
return base_fn(
|
| 998 |
+
module,
|
| 999 |
+
query,
|
| 1000 |
+
key,
|
| 1001 |
+
value,
|
| 1002 |
+
attention_mask,
|
| 1003 |
+
dropout=dropout,
|
| 1004 |
+
scaling=scaling,
|
| 1005 |
+
is_causal=is_causal,
|
| 1006 |
+
**kwargs,
|
| 1007 |
+
)
|
| 1008 |
+
|
| 1009 |
+
if query.dim() != 4 or query.size(0) != 1:
|
| 1010 |
+
raise ValueError("IsaacVisionAttention expects packed sequences with batch size 1 when using packed attention.")
|
| 1011 |
+
|
| 1012 |
+
_, num_heads, seq_len, head_dim = query.shape
|
| 1013 |
+
q_lhd = query.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 1014 |
+
k_lhd = key.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 1015 |
+
v_lhd = value.transpose(1, 2).reshape(seq_len, num_heads, head_dim)
|
| 1016 |
+
|
| 1017 |
+
effective_scaling = module.scale if scaling is None else scaling
|
| 1018 |
+
attn_weights = torch.matmul(q_lhd, k_lhd.transpose(1, 2)) * effective_scaling
|
| 1019 |
+
|
| 1020 |
+
if attention_mask is not None:
|
| 1021 |
+
mask = attention_mask
|
| 1022 |
+
if mask.dim() == 4:
|
| 1023 |
+
mask = mask.squeeze(0).squeeze(0)
|
| 1024 |
+
attn_weights = attn_weights + mask
|
| 1025 |
+
|
| 1026 |
+
attn_weights = torch.softmax(attn_weights, dim=-1)
|
| 1027 |
+
if dropout and module.training:
|
| 1028 |
+
attn_weights = F.dropout(attn_weights, p=dropout, training=True)
|
| 1029 |
+
|
| 1030 |
+
attn_output_lhd = torch.matmul(attn_weights, v_lhd)
|
| 1031 |
+
attn_output = attn_output_lhd.permute(1, 0, 2).unsqueeze(0)
|
| 1032 |
+
return attn_output, attn_weights
|
| 1033 |
+
|
| 1034 |
+
|
| 1035 |
+
ALL_ATTENTION_FUNCTIONS.register("isaac_flash_attention_2", _isaac_flash_attention_forward)
|
| 1036 |
+
ALL_ATTENTION_FUNCTIONS.register("isaac_flash_attention_3", _isaac_flash_attention_forward)
|
| 1037 |
+
ALL_ATTENTION_FUNCTIONS.register("isaac_sdpa", _isaac_sdpa_forward)
|
| 1038 |
+
ALL_ATTENTION_FUNCTIONS.register("isaac_eager", _isaac_eager_forward)
|
| 1039 |
|
| 1040 |
|
| 1041 |
def create_pixel_shuffle_index_map(
|
|
|
|
| 1065 |
if device is None:
|
| 1066 |
device = seq_sizes.device
|
| 1067 |
|
| 1068 |
+
scale_factor = int(scale_factor)
|
| 1069 |
+
if scale_factor < 2:
|
| 1070 |
raise ValueError("`scale_factor` must be ≥ 2")
|
| 1071 |
|
| 1072 |
+
# Safety: all spatial dims must be divisible by the scale factor
|
| 1073 |
# Cannot run under torch compile fullgraph mode hence
|
| 1074 |
+
if not is_torchdynamo_compiling():
|
| 1075 |
+
if not (
|
| 1076 |
+
(token_grids[:, 0] % scale_factor == 0).all() and (token_grids[:, 1] % scale_factor == 0).all()
|
| 1077 |
+
):
|
| 1078 |
raise AssertionError(
|
| 1079 |
+
"Every (H,W) in `token_grids` must be divisible by "
|
| 1080 |
+
f"scale_factor={scale_factor}, got {token_grids.tolist()}"
|
| 1081 |
)
|
| 1082 |
|
| 1083 |
gather_chunks: list[torch.Tensor] = []
|
|
|
|
| 1089 |
grid = grid.view(h, w) # (H, W)
|
| 1090 |
|
| 1091 |
# -------- identical ordering to your fixed-res routine --------
|
| 1092 |
+
# Step 1: split width into blocks of scale_factor
|
| 1093 |
+
grid = grid.view(h, w // scale_factor, scale_factor) # (H, W/scale_factor, scale_factor)
|
| 1094 |
+
# Step 2: now split height into blocks of scale_factor
|
| 1095 |
+
grid = grid.view(h // scale_factor, scale_factor, w // scale_factor, scale_factor)
|
| 1096 |
+
# (H/scale_factor, scale_factor, W/scale_factor, scale_factor)
|
| 1097 |
+
# Step 3: final permutation to (H/scale_factor, W/scale_factor, scale_factor, scale_factor)
|
| 1098 |
+
grid = grid.permute(0, 2, 1, 3).contiguous() # (H/scale_factor, W/scale_factor, scale_factor, scale_factor)
|
| 1099 |
+
# Step 4: each (scale_factor, scale_factor) block forms one output token
|
| 1100 |
+
gather_chunks.append(grid.reshape(-1, scale_factor * scale_factor))
|
| 1101 |
+
# (H*W / scale_factor**2, scale_factor**2)
|
| 1102 |
|
| 1103 |
tok_offset += seq_len
|
| 1104 |
|
| 1105 |
# Concatenate over all images in the packed batch
|
| 1106 |
+
gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/scale_factor**2, scale_factor**2)
|
| 1107 |
return gather_idx
|
| 1108 |
|
| 1109 |
|
|
|
|
| 1142 |
x_ = x # (seq, embed)
|
| 1143 |
|
| 1144 |
embed_dim = x_.size(-1)
|
| 1145 |
+
scale_factor = int(scale_factor)
|
| 1146 |
|
| 1147 |
# Calculate seq_sizes from token_grids
|
| 1148 |
seq_sizes = torch.prod(token_grids, dim=-1)
|
|
|
|
| 1151 |
gather_idx = create_pixel_shuffle_index_map(
|
| 1152 |
seq_sizes=seq_sizes,
|
| 1153 |
token_grids=token_grids,
|
| 1154 |
+
scale_factor=scale_factor,
|
| 1155 |
device=x_.device,
|
| 1156 |
+
) # (new_seq, scale_factor**2)
|
| 1157 |
|
| 1158 |
+
# Gather → (new_seq, scale_factor**2, embed_dim)
|
| 1159 |
gathered = x_[gather_idx] # fancy indexing keeps gradient
|
| 1160 |
|
| 1161 |
+
# Merge the scale_factor**2 group dimension into channels to finish the shuffle
|
| 1162 |
+
out = gathered.reshape(gathered.size(0), embed_dim * scale_factor * scale_factor)
|
| 1163 |
|
| 1164 |
# Restore batch dimension if needed
|
| 1165 |
if keep_batch_dim:
|
|
|
|
| 1167 |
return out
|
| 1168 |
|
| 1169 |
|
| 1170 |
+
class IsaacVisionTransformer(nn.Module):
|
| 1171 |
+
def __init__(self, config: IsaacVisionConfig):
|
| 1172 |
super().__init__()
|
| 1173 |
self.config = config
|
| 1174 |
+
self.embeddings = IsaacVisionEmbeddings(config)
|
| 1175 |
+
self.encoder = IsaacVisionEncoder(config)
|
| 1176 |
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1177 |
self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor
|
| 1178 |
|
|
|
|
| 1181 |
seq_sizes = torch.prod(token_grids, dim=-1)
|
| 1182 |
|
| 1183 |
# Get embeddings from packed sequence
|
| 1184 |
+
hidden_states = self.embeddings(seq_patches, token_grids)
|
| 1185 |
|
| 1186 |
# Add a pseudo batch dimension for the encoder
|
| 1187 |
hidden_states = hidden_states.unsqueeze(0)
|
| 1188 |
|
| 1189 |
# Generate cumulative sequence lengths for variable-length attention
|
| 1190 |
+
cu_seqlens = torch.zeros(seq_sizes.size(0) + 1, dtype=torch.int32, device=hidden_states.device)
|
| 1191 |
+
cu_seqlens[1:] = seq_sizes.cumsum(0)
|
| 1192 |
+
max_seqlen = int(seq_sizes.max().item()) if seq_sizes.numel() > 0 else 0
|
| 1193 |
|
| 1194 |
# Pass through encoder with variable-length attention parameters
|
| 1195 |
+
encoder_outputs = self.encoder(
|
| 1196 |
inputs_embeds=hidden_states,
|
| 1197 |
cu_seqlens=cu_seqlens,
|
| 1198 |
max_seqlen=max_seqlen,
|
| 1199 |
+
return_dict=True,
|
| 1200 |
)
|
| 1201 |
+
hidden_states = encoder_outputs.last_hidden_state
|
| 1202 |
|
| 1203 |
# Apply final layer normalization
|
| 1204 |
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
| 1216 |
return hidden_states
|
| 1217 |
|
| 1218 |
|
| 1219 |
+
def get_scaled_image_size(
|
| 1220 |
+
scale: float,
|
| 1221 |
+
original_size: int,
|
| 1222 |
+
patch_size: int,
|
| 1223 |
+
pixel_shuffle_scale: int,
|
| 1224 |
+
) -> int:
|
| 1225 |
+
scaled_size = scale * original_size
|
| 1226 |
+
divisor = patch_size * pixel_shuffle_scale
|
| 1227 |
+
scaled_size = math.ceil(scaled_size / divisor) * divisor
|
| 1228 |
+
scaled_size = max(divisor, scaled_size)
|
| 1229 |
+
return int(scaled_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1230 |
|
| 1231 |
|
| 1232 |
def get_image_size_for_max_num_patches(
|
|
|
|
| 1261 |
and respect both the maximum and optional minimum patch-count constraints.
|
| 1262 |
"""
|
| 1263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1264 |
# Ensure divisibility
|
| 1265 |
divisor = patch_size * pixel_shuffle_scale
|
| 1266 |
adjusted_height = math.ceil(image_height / divisor) * divisor
|
|
|
|
| 1306 |
return target_height, target_width
|
| 1307 |
|
| 1308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1309 |
def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor:
|
| 1310 |
r"""Convert normalized images into flattened ViT-style patches.
|
| 1311 |
|
|
|
|
| 1331 |
return patches
|
| 1332 |
|
| 1333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1334 |
class IsaacConfig(Qwen3Config):
|
| 1335 |
"""Configuration class for Isaac multimodal model."""
|
| 1336 |
|
| 1337 |
model_type = "isaac"
|
| 1338 |
+
sub_configs = {"vision_config": IsaacVisionConfig, "text_config": Qwen3Config}
|
| 1339 |
+
image_processor_type = "IsaacImageProcessor"
|
| 1340 |
|
| 1341 |
def __init__(
|
| 1342 |
self,
|
| 1343 |
+
vision_config: IsaacVisionConfig | None = None,
|
| 1344 |
+
text_config: Qwen3Config | dict | None = None,
|
| 1345 |
+
vision_rescale_factor: float = 1/255,
|
|
|
|
|
|
|
| 1346 |
max_sequence_length: int = 16384,
|
| 1347 |
vision_token: str = "<image>",
|
|
|
|
| 1348 |
**kwargs,
|
| 1349 |
):
|
| 1350 |
+
self._rope_scaling: dict[str, Any] | None = None
|
| 1351 |
+
resolved_text_config = kwargs.pop("text_config", text_config)
|
| 1352 |
+
if isinstance(resolved_text_config, Qwen3Config):
|
| 1353 |
+
text_config_kwargs = copy.deepcopy(resolved_text_config.to_dict())
|
| 1354 |
+
elif isinstance(resolved_text_config, dict):
|
| 1355 |
+
text_config_kwargs = copy.deepcopy(resolved_text_config)
|
| 1356 |
+
elif resolved_text_config is None:
|
| 1357 |
+
text_config_kwargs = {}
|
| 1358 |
+
else:
|
| 1359 |
+
raise TypeError("`text_config` must be a mapping or `Qwen3Config` instance when provided.")
|
| 1360 |
|
| 1361 |
+
text_config_kwargs.update(kwargs)
|
| 1362 |
+
|
| 1363 |
+
super().__init__(**text_config_kwargs)
|
| 1364 |
+
self.text_config = Qwen3Config(**text_config_kwargs)
|
| 1365 |
+
if self._rope_scaling is None:
|
| 1366 |
+
self._rope_scaling = getattr(self.text_config, "rope_scaling", None)
|
| 1367 |
+
else:
|
| 1368 |
+
self.text_config.rope_scaling = self._rope_scaling
|
| 1369 |
+
|
| 1370 |
+
# Handle vision config - either dict or IsaacVisionConfig instance
|
| 1371 |
if isinstance(vision_config, dict):
|
| 1372 |
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
| 1373 |
+
elif isinstance(vision_config, IsaacVisionConfig):
|
| 1374 |
+
self.vision_config = vision_config
|
| 1375 |
elif vision_config is None:
|
| 1376 |
self.vision_config = self.sub_configs["vision_config"]()
|
|
|
|
|
|
|
| 1377 |
|
| 1378 |
+
# Vision normalization parameters
|
| 1379 |
+
self.vision_rescale_factor = float(vision_rescale_factor)
|
|
|
|
|
|
|
|
|
|
| 1380 |
|
| 1381 |
# Processing parameters
|
| 1382 |
self.max_sequence_length = max_sequence_length
|
| 1383 |
self.vision_token = vision_token
|
| 1384 |
+
|
| 1385 |
+
def get_text_config(self, *_, **kwargs) -> Qwen3Config:
|
| 1386 |
+
# Accept optional decoder/encoder flags to align with HF composite configs
|
| 1387 |
+
kwargs.pop("decoder", None)
|
| 1388 |
+
kwargs.pop("encoder", None)
|
| 1389 |
+
return self.text_config
|
| 1390 |
+
|
| 1391 |
+
@property
|
| 1392 |
+
def rope_scaling(self):
|
| 1393 |
+
if hasattr(self, "text_config") and self.text_config is not None:
|
| 1394 |
+
return getattr(self.text_config, "rope_scaling", None)
|
| 1395 |
+
return self._rope_scaling
|
| 1396 |
+
|
| 1397 |
+
@rope_scaling.setter
|
| 1398 |
+
def rope_scaling(self, value):
|
| 1399 |
+
self._rope_scaling = value
|
| 1400 |
+
if hasattr(self, "text_config") and self.text_config is not None:
|
| 1401 |
+
self.text_config.rope_scaling = value
|
| 1402 |
+
|
| 1403 |
+
@property
|
| 1404 |
+
def vision_attn_implementation(self) -> str | None:
|
| 1405 |
+
|
| 1406 |
+
value = getattr(self.vision_config, "_attn_implementation", None)
|
| 1407 |
+
if value is None:
|
| 1408 |
+
value = getattr(self.vision_config, "attn_implementation", None)
|
| 1409 |
+
return value
|
| 1410 |
+
|
| 1411 |
+
@vision_attn_implementation.setter
|
| 1412 |
+
def vision_attn_implementation(self, value: str | None) -> None:
|
| 1413 |
+
self.vision_config._attn_implementation = value
|
| 1414 |
+
if value is not None:
|
| 1415 |
+
self.vision_config.attn_implementation = value
|
| 1416 |
+
elif hasattr(self.vision_config, "attn_implementation"):
|
| 1417 |
+
delattr(self.vision_config, "attn_implementation")
|
| 1418 |
|
| 1419 |
|
| 1420 |
# ============================================================================
|
|
|
|
| 1466 |
|
| 1467 |
|
| 1468 |
class IsaacProcessor(ProcessorMixin):
|
| 1469 |
+
attributes = ["image_processor", "tokenizer"]
|
| 1470 |
+
image_processor_class = ("IsaacImageProcessorFast",)
|
| 1471 |
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 1472 |
+
valid_processor_kwargs = IsaacProcessorKwargs
|
| 1473 |
|
| 1474 |
def __init__(
|
| 1475 |
self,
|
| 1476 |
+
image_processor: IsaacImageProcessorFast | None = None,
|
| 1477 |
+
tokenizer: Qwen2Tokenizer | None = None,
|
| 1478 |
+
*,
|
| 1479 |
+
vision_token: str = "<image>",
|
| 1480 |
+
max_sequence_length: int = 16384,
|
| 1481 |
+
rescale_factor: float | None = None,
|
| 1482 |
+
config: IsaacConfig | dict | None = None,
|
| 1483 |
+
) -> None:
|
| 1484 |
+
if tokenizer is None:
|
| 1485 |
+
raise ValueError("`tokenizer` must be provided to initialize IsaacProcessor.")
|
| 1486 |
|
| 1487 |
if isinstance(config, dict):
|
| 1488 |
config = IsaacConfig(**config)
|
|
|
|
| 1489 |
|
| 1490 |
+
if config is not None:
|
| 1491 |
+
max_sequence_length = config.max_sequence_length
|
| 1492 |
+
vision_token = config.vision_token
|
| 1493 |
+
rescale_factor = config.vision_rescale_factor
|
| 1494 |
|
| 1495 |
+
resolved_rescale_factor = (
|
| 1496 |
+
float(rescale_factor) if rescale_factor is not None else float(1/255)
|
| 1497 |
+
)
|
| 1498 |
|
| 1499 |
+
if config is not None:
|
| 1500 |
+
config.vision_rescale_factor = resolved_rescale_factor
|
|
|
|
|
|
|
|
|
|
| 1501 |
|
| 1502 |
+
self.image_processor = image_processor
|
| 1503 |
+
|
| 1504 |
+
super().__init__(image_processor, tokenizer)
|
| 1505 |
+
self.current_processor = self.image_processor
|
| 1506 |
+
self.config = config
|
| 1507 |
+
|
| 1508 |
+
# Mirror tokenizer chat template so ProcessorMixin.apply_chat_template works.
|
| 1509 |
+
self.chat_template = getattr(self.tokenizer, "chat_template", None)
|
| 1510 |
+
|
| 1511 |
+
self.vision_token = vision_token
|
| 1512 |
+
self.max_sequence_length = max_sequence_length
|
| 1513 |
|
| 1514 |
def build_event_stream_simple(
|
| 1515 |
self,
|
|
|
|
| 1527 |
for current_time, part in enumerate(parts):
|
| 1528 |
if part == self.vision_token:
|
| 1529 |
# Replace vision token with image event
|
| 1530 |
+
if images is None or image_idx >= len(images):
|
| 1531 |
+
raise ValueError("Encountered vision token without a corresponding image.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1532 |
|
| 1533 |
+
features = self.image_processor(
|
| 1534 |
+
images=images[image_idx],
|
| 1535 |
+
return_tensors=TensorType.PYTORCH,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1536 |
)
|
| 1537 |
|
| 1538 |
+
patches = features["patches"][0] # (H_tokens, W_tokens, embed)
|
| 1539 |
+
virtual_dims = features["virtual_pixel_size"][0].tolist()
|
| 1540 |
+
real_dims = features["real_pixel_size"][0].tolist()
|
| 1541 |
+
|
| 1542 |
+
vision_event = Event(
|
| 1543 |
+
data=patches.reshape(-1, patches.shape[-1]),
|
| 1544 |
+
type=VisionType.image,
|
| 1545 |
+
time=(current_time, current_time),
|
| 1546 |
+
dims_virtual=virtual_dims,
|
| 1547 |
+
dims_real=real_dims,
|
| 1548 |
+
idx_range=(0, math.prod(virtual_dims)),
|
| 1549 |
)
|
| 1550 |
+
events.append(vision_event)
|
| 1551 |
+
image_idx += 1
|
| 1552 |
+
elif part: # Non-empty text part
|
| 1553 |
+
# tokens = self.text_processor.tokenize(part, add_special_tokens=False)
|
| 1554 |
+
text_event = create_text_event(self.tokenizer, part, time=current_time)
|
| 1555 |
+
events.append(text_event)
|
|
|
|
| 1556 |
|
| 1557 |
# Create stream without scheduling (events already in order)
|
| 1558 |
return create_stream(events, priority=[TextType.text, VisionType.image], schedule=True)
|
|
|
|
| 1652 |
|
| 1653 |
|
| 1654 |
class IsaacRotaryEmbedding(nn.Module):
|
| 1655 |
+
EXTRA_ROPE_KEYS = {"mrope_section", "mrope_interleaved"}
|
| 1656 |
+
|
| 1657 |
def __init__(self, config: IsaacConfig, device=None):
|
| 1658 |
super().__init__()
|
| 1659 |
|
| 1660 |
+
rope_source_cfg = config.get_text_config() if hasattr(config, "get_text_config") else config
|
| 1661 |
+
rope_scaling = getattr(rope_source_cfg, "rope_scaling", None) or {}
|
| 1662 |
+
|
| 1663 |
+
sanitized_scaling = {k: v for k, v in rope_scaling.items() if k not in self.EXTRA_ROPE_KEYS}
|
| 1664 |
+
config_for_rope = copy.copy(rope_source_cfg)
|
| 1665 |
+
config_for_rope.rope_scaling = sanitized_scaling if sanitized_scaling else None
|
| 1666 |
|
| 1667 |
+
init_device = device if device is not None and getattr(device, "type", None) != "meta" else None
|
| 1668 |
+
self._qwen_rotary = Qwen2_5_VLRotaryEmbedding(config_for_rope, device=init_device)
|
| 1669 |
|
| 1670 |
+
rotary_half_dim = self._qwen_rotary.inv_freq.shape[0]
|
| 1671 |
+
self.mrope_section = self._resolve_mrope_section(rope_scaling.get("mrope_section"), rotary_half_dim)
|
| 1672 |
+
self.hidden_size = getattr(rope_source_cfg, "hidden_size", None) or config.hidden_size
|
| 1673 |
|
| 1674 |
+
@staticmethod
|
| 1675 |
+
def _resolve_mrope_section(section: list[int] | None, rotary_half_dim: int) -> list[int]:
|
| 1676 |
+
if section is None:
|
| 1677 |
+
weights = (2, 1, 1)
|
| 1678 |
+
base = [rotary_half_dim * w // sum(weights) for w in weights]
|
| 1679 |
+
base[0] += rotary_half_dim - sum(base)
|
| 1680 |
+
return base
|
| 1681 |
+
|
| 1682 |
+
section = [int(v) for v in section]
|
| 1683 |
+
if len(section) != 3:
|
| 1684 |
+
raise ValueError("`mrope_section` must contain exactly three elements (temporal, height, width)")
|
| 1685 |
+
if sum(section) != rotary_half_dim:
|
| 1686 |
+
raise ValueError(
|
| 1687 |
+
f"`mrope_section` must sum to the rotary half-dimension ({rotary_half_dim}). Received {section}."
|
| 1688 |
+
)
|
| 1689 |
+
return section
|
| 1690 |
|
| 1691 |
+
def _combine_axes(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 1692 |
+
split_sections = tuple(self.mrope_section * 2)
|
| 1693 |
+
chunks = tensor.split(split_sections, dim=-1)
|
| 1694 |
+
return torch.cat([chunk[i % 3] for i, chunk in enumerate(chunks)], dim=-1)
|
| 1695 |
+
|
| 1696 |
+
@property
|
| 1697 |
+
def inv_freq(self) -> torch.Tensor:
|
| 1698 |
+
return self._qwen_rotary.inv_freq
|
| 1699 |
+
|
| 1700 |
+
def forward(
|
| 1701 |
+
self,
|
| 1702 |
+
position_ids: torch.Tensor,
|
| 1703 |
+
modality_tensor: torch.Tensor,
|
| 1704 |
+
hidden_states: torch.Tensor | None = None,
|
| 1705 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 1706 |
+
if position_ids.ndim != 3 or position_ids.size(-1) != 3:
|
| 1707 |
+
raise ValueError("`position_ids` must have shape (batch, seq_len, 3) for MRoPE")
|
| 1708 |
+
if modality_tensor.shape != position_ids.shape[:2]:
|
| 1709 |
+
raise ValueError("`modality_tensor` must align with the first two dims of `position_ids`")
|
| 1710 |
+
|
| 1711 |
+
if hidden_states is None:
|
| 1712 |
+
batch, seq_len, _ = position_ids.shape
|
| 1713 |
+
hidden_states = torch.zeros(
|
| 1714 |
+
batch,
|
| 1715 |
+
seq_len,
|
| 1716 |
+
self.hidden_size,
|
| 1717 |
+
dtype=torch.float32,
|
| 1718 |
+
device=position_ids.device,
|
| 1719 |
+
)
|
| 1720 |
|
|
|
|
| 1721 |
with torch.no_grad():
|
| 1722 |
+
pos = position_ids.clone()
|
| 1723 |
+
not_spatial = modality_tensor != VisionType.image.value
|
| 1724 |
+
if not_spatial.any():
|
| 1725 |
+
data_1d = pos[not_spatial][..., 0].unsqueeze(-1)
|
| 1726 |
+
pos[not_spatial] = data_1d.expand(-1, pos.shape[-1])
|
| 1727 |
+
|
| 1728 |
+
pos_axes = pos.permute(2, 0, 1).contiguous()
|
| 1729 |
+
|
| 1730 |
+
cos_axes, sin_axes = self._qwen_rotary(hidden_states, pos_axes)
|
| 1731 |
+
|
| 1732 |
+
cos_axes = cos_axes.to(hidden_states.dtype)
|
| 1733 |
+
sin_axes = sin_axes.to(hidden_states.dtype)
|
| 1734 |
+
|
| 1735 |
+
cos_combined = self._combine_axes(cos_axes)
|
| 1736 |
+
sin_combined = self._combine_axes(sin_axes)
|
| 1737 |
|
| 1738 |
+
return cos_combined, sin_combined
|
| 1739 |
|
| 1740 |
+
class IsaacModel(Qwen3PreTrainedModel):
|
| 1741 |
+
supports_gradient_checkpointing = True
|
| 1742 |
|
|
|
|
| 1743 |
def __init__(self, config: IsaacConfig):
|
| 1744 |
+
Qwen3PreTrainedModel.__init__(self, config)
|
| 1745 |
+
|
| 1746 |
+
text_cfg_source = getattr(config, "get_text_config", lambda: config)()
|
| 1747 |
+
text_cfg = copy.deepcopy(text_cfg_source)
|
| 1748 |
+
text_cfg._attn_implementation = config._attn_implementation
|
| 1749 |
+
self.text_model = AutoModel.from_config(text_cfg)
|
| 1750 |
+
# Ensure downstream callers observe the composed config
|
| 1751 |
+
self.text_model.config = config
|
| 1752 |
+
|
| 1753 |
self.rotary_emb = IsaacRotaryEmbedding(config, device=self.device)
|
| 1754 |
|
| 1755 |
+
if config.vision_config is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1756 |
raise ValueError("IsaacConfig should always have vision_config")
|
| 1757 |
|
| 1758 |
+
hidden_dim = config.vision_config.hidden_size * (config.vision_config.pixel_shuffle_scale_factor**2)
|
| 1759 |
self.vision_embedding = nn.Sequential(
|
| 1760 |
+
IsaacVisionTransformer(config.vision_config),
|
| 1761 |
nn.Linear(
|
| 1762 |
hidden_dim,
|
| 1763 |
4 * hidden_dim,
|
|
|
|
| 1773 |
VisionType: self.embed_vision,
|
| 1774 |
}
|
| 1775 |
|
| 1776 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1777 |
+
return self.text_model.get_input_embeddings()
|
| 1778 |
+
|
| 1779 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
| 1780 |
+
self.text_model.set_input_embeddings(value)
|
| 1781 |
+
|
| 1782 |
+
@property
|
| 1783 |
+
def embed_tokens(self) -> nn.Module:
|
| 1784 |
+
return self.text_model.embed_tokens
|
| 1785 |
+
|
| 1786 |
+
@embed_tokens.setter
|
| 1787 |
+
def embed_tokens(self, value: nn.Module) -> None:
|
| 1788 |
+
self.text_model.embed_tokens = value
|
| 1789 |
+
|
| 1790 |
+
@property
|
| 1791 |
+
def layers(self) -> nn.ModuleList:
|
| 1792 |
+
return self.text_model.layers
|
| 1793 |
+
|
| 1794 |
+
@property
|
| 1795 |
+
def norm(self) -> nn.Module:
|
| 1796 |
+
return self.text_model.norm
|
| 1797 |
+
|
| 1798 |
+
def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func=None):
|
| 1799 |
+
self.text_model._set_gradient_checkpointing(
|
| 1800 |
+
enable=enable, gradient_checkpointing_func=gradient_checkpointing_func
|
| 1801 |
+
)
|
| 1802 |
+
|
| 1803 |
def embed_text_tokens(self, token_ids: torch.Tensor) -> torch.Tensor:
|
| 1804 |
"""Embed text tokens, squeezing singleton dimensions."""
|
| 1805 |
# Text events are shaped as (..., 1); squeeze the singleton index dim
|
| 1806 |
+
h = self.text_model.embed_tokens(token_ids)
|
| 1807 |
if h.dim() >= 2 and h.size(-2) == 1:
|
| 1808 |
h = h[..., 0, :]
|
| 1809 |
return h
|
|
|
|
| 1885 |
elif input_ids is not None and inputs_embeds is not None:
|
| 1886 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1887 |
elif input_ids is not None:
|
| 1888 |
+
inputs_embeds = self.text_model.embed_tokens(input_ids)
|
| 1889 |
# Create text modality tensor if not provided
|
| 1890 |
if modality_tensor is None:
|
| 1891 |
batch_size, seq_length = input_ids.shape
|
|
|
|
| 1903 |
position_ids = compute_position_ids_input_ids(input_ids)
|
| 1904 |
|
| 1905 |
# Compute MRoPE position embeddings if we have custom rotary_emb
|
| 1906 |
+
cos, sin = self.rotary_emb(
|
| 1907 |
+
position_ids,
|
| 1908 |
+
modality_tensor,
|
| 1909 |
+
hidden_states=inputs_embeds,
|
| 1910 |
+
)
|
| 1911 |
cos = cos.to(inputs_embeds.dtype)
|
| 1912 |
sin = sin.to(inputs_embeds.dtype)
|
| 1913 |
|
|
|
|
| 1920 |
# Initialize hidden states
|
| 1921 |
hidden_states = inputs_embeds
|
| 1922 |
|
| 1923 |
+
for decoder_layer in self.text_model.layers:
|
| 1924 |
layer_outputs = decoder_layer(
|
| 1925 |
hidden_states,
|
| 1926 |
attention_mask=attention_mask,
|
|
|
|
| 1935 |
hidden_states = layer_outputs[0] if isinstance(layer_outputs, tuple) else layer_outputs
|
| 1936 |
|
| 1937 |
# Final layer norm
|
| 1938 |
+
hidden_states = self.text_model.norm(hidden_states)
|
| 1939 |
|
| 1940 |
return BaseModelOutputWithPast(
|
| 1941 |
last_hidden_state=hidden_states,
|
|
|
|
| 2099 |
config_class = IsaacConfig
|
| 2100 |
|
| 2101 |
def __init__(self, config: IsaacConfig):
|
| 2102 |
+
super().__init__(config)
|
| 2103 |
self.model = IsaacModel(config) # Use our custom model
|
| 2104 |
self.vocab_size = config.vocab_size
|
| 2105 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 2106 |
# Tracks rotary position offsets computed during a full forward pass so decode steps can reuse them.
|
| 2107 |
self.rope_deltas = None
|
| 2108 |
|
|
|
|
|
|
|
| 2109 |
def get_rope_index(
|
| 2110 |
self,
|
| 2111 |
input_ids: torch.Tensor | None,
|
|
|
|
| 2261 |
return True
|
| 2262 |
|
| 2263 |
|
| 2264 |
+
AutoImageProcessor.register(
|
| 2265 |
+
IsaacConfig,
|
| 2266 |
+
fast_image_processor_class=IsaacImageProcessorFast,
|
| 2267 |
+
exist_ok=True,
|
| 2268 |
+
)
|
| 2269 |
+
|
| 2270 |
+
|
| 2271 |
__all__ = [
|
| 2272 |
"IsaacConfig",
|
| 2273 |
"IsaacModel",
|
| 2274 |
"IsaacForConditionalGeneration",
|
| 2275 |
+
"IsaacImageProcessorFast",
|
| 2276 |
"IsaacProcessor",
|
| 2277 |
]
|
| 2278 |
+
|
| 2279 |
+
|
| 2280 |
+
def _compute_residual_p_frames(frames: torch.Tensor, is_p_frame: list[bool]) -> torch.Tensor:
|
| 2281 |
+
"""Compute residuals for P-frames to stay in sync with the training pipeline."""
|
| 2282 |
+
if not any(is_p_frame):
|
| 2283 |
+
return frames
|
| 2284 |
+
|
| 2285 |
+
frame_indices = torch.arange(len(is_p_frame), device=frames.device)
|
| 2286 |
+
i_frame_mask = torch.tensor([not flag for flag in is_p_frame], device=frames.device)
|
| 2287 |
+
last_i_indices = torch.cummax((i_frame_mask * (1 + frame_indices)), dim=0).values.long() - 1
|
| 2288 |
+
p_indices = frame_indices[torch.tensor(is_p_frame, device=frames.device)]
|
| 2289 |
+
frames[p_indices] = frames[p_indices] - frames[last_i_indices[p_indices]]
|
| 2290 |
+
return frames
|
processor_config.json
CHANGED
|
@@ -2,208 +2,46 @@
|
|
| 2 |
"auto_map": {
|
| 3 |
"AutoProcessor": "modular_isaac.IsaacProcessor"
|
| 4 |
},
|
| 5 |
-
"config":
|
| 6 |
-
|
| 7 |
-
"
|
| 8 |
-
"architectures": [
|
| 9 |
-
"IsaacForConditionalGeneration"
|
| 10 |
-
],
|
| 11 |
-
"attention_bias": false,
|
| 12 |
-
"attention_dropout": 0.0,
|
| 13 |
"auto_map": {
|
| 14 |
-
"
|
| 15 |
-
},
|
| 16 |
-
"bad_words_ids": null,
|
| 17 |
-
"begin_suppress_tokens": null,
|
| 18 |
-
"bos_token_id": 151643,
|
| 19 |
-
"chunk_size_feed_forward": 0,
|
| 20 |
-
"cross_attention_hidden_size": null,
|
| 21 |
-
"decoder_start_token_id": null,
|
| 22 |
-
"diversity_penalty": 0.0,
|
| 23 |
-
"do_sample": false,
|
| 24 |
-
"dtype": "float32",
|
| 25 |
-
"early_stopping": false,
|
| 26 |
-
"encoder_no_repeat_ngram_size": 0,
|
| 27 |
-
"eos_token_id": 151645,
|
| 28 |
-
"exponential_decay_length_penalty": null,
|
| 29 |
-
"finetuning_task": null,
|
| 30 |
-
"forced_bos_token_id": null,
|
| 31 |
-
"forced_eos_token_id": null,
|
| 32 |
-
"head_dim": 128,
|
| 33 |
-
"hidden_act": "silu",
|
| 34 |
-
"hidden_size": 2048,
|
| 35 |
-
"id2label": {
|
| 36 |
-
"0": "LABEL_0",
|
| 37 |
-
"1": "LABEL_1"
|
| 38 |
-
},
|
| 39 |
-
"initializer_range": 0.02,
|
| 40 |
-
"intermediate_size": 6144,
|
| 41 |
-
"is_decoder": false,
|
| 42 |
-
"is_encoder_decoder": false,
|
| 43 |
-
"label2id": {
|
| 44 |
-
"LABEL_0": 0,
|
| 45 |
-
"LABEL_1": 1
|
| 46 |
},
|
| 47 |
-
"
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
"full_attention",
|
| 63 |
-
"full_attention",
|
| 64 |
-
"full_attention",
|
| 65 |
-
"full_attention",
|
| 66 |
-
"full_attention",
|
| 67 |
-
"full_attention",
|
| 68 |
-
"full_attention",
|
| 69 |
-
"full_attention",
|
| 70 |
-
"full_attention",
|
| 71 |
-
"full_attention",
|
| 72 |
-
"full_attention",
|
| 73 |
-
"full_attention",
|
| 74 |
-
"full_attention",
|
| 75 |
-
"full_attention"
|
| 76 |
],
|
| 77 |
-
"
|
| 78 |
-
"
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
"
|
| 84 |
-
"
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
"num_hidden_layers": 28,
|
| 89 |
-
"num_key_value_heads": 8,
|
| 90 |
-
"num_return_sequences": 1,
|
| 91 |
-
"output_attentions": false,
|
| 92 |
-
"output_hidden_states": false,
|
| 93 |
-
"output_scores": false,
|
| 94 |
-
"pad_token_id": null,
|
| 95 |
"pixel_shuffle_scale": 2,
|
| 96 |
-
"
|
| 97 |
-
"
|
| 98 |
-
"
|
| 99 |
-
"
|
| 100 |
-
"repetition_penalty": 1.0,
|
| 101 |
-
"return_dict": true,
|
| 102 |
-
"return_dict_in_generate": false,
|
| 103 |
-
"rms_norm_eps": 1e-06,
|
| 104 |
-
"rope_scaling": {
|
| 105 |
-
"mrope_interleaved": true,
|
| 106 |
-
"mrope_section": null,
|
| 107 |
-
"rope_type": "default"
|
| 108 |
-
},
|
| 109 |
-
"rope_theta": 1000000.0,
|
| 110 |
-
"sep_token_id": null,
|
| 111 |
-
"sliding_window": null,
|
| 112 |
-
"suppress_tokens": null,
|
| 113 |
-
"task_specific_params": null,
|
| 114 |
-
"temperature": 1.0,
|
| 115 |
-
"tf_legacy_loss": false,
|
| 116 |
-
"tie_encoder_decoder": false,
|
| 117 |
-
"tie_word_embeddings": false,
|
| 118 |
-
"tokenizer_class": null,
|
| 119 |
-
"top_k": 50,
|
| 120 |
-
"top_p": 1.0,
|
| 121 |
-
"torchscript": false,
|
| 122 |
-
"transformers_version": "4.56.1",
|
| 123 |
-
"typical_p": 1.0,
|
| 124 |
-
"use_bfloat16": false,
|
| 125 |
-
"use_cache": true,
|
| 126 |
-
"use_sliding_window": false,
|
| 127 |
-
"video_patch_size": 16,
|
| 128 |
-
"vision_config": {
|
| 129 |
-
"_name_or_path": "",
|
| 130 |
-
"add_cross_attention": false,
|
| 131 |
-
"architectures": null,
|
| 132 |
-
"attention_dropout": 0.0,
|
| 133 |
-
"bad_words_ids": null,
|
| 134 |
-
"begin_suppress_tokens": null,
|
| 135 |
-
"bos_token_id": null,
|
| 136 |
-
"chunk_size_feed_forward": 0,
|
| 137 |
-
"cross_attention_hidden_size": null,
|
| 138 |
-
"decoder_start_token_id": null,
|
| 139 |
-
"diversity_penalty": 0.0,
|
| 140 |
-
"do_sample": false,
|
| 141 |
-
"dtype": null,
|
| 142 |
-
"early_stopping": false,
|
| 143 |
-
"encoder_no_repeat_ngram_size": 0,
|
| 144 |
-
"eos_token_id": null,
|
| 145 |
-
"exponential_decay_length_penalty": null,
|
| 146 |
-
"finetuning_task": null,
|
| 147 |
-
"forced_bos_token_id": null,
|
| 148 |
-
"forced_eos_token_id": null,
|
| 149 |
-
"hidden_act": "gelu_pytorch_tanh",
|
| 150 |
-
"hidden_size": 1152,
|
| 151 |
-
"id2label": {
|
| 152 |
-
"0": "LABEL_0",
|
| 153 |
-
"1": "LABEL_1"
|
| 154 |
-
},
|
| 155 |
-
"image_size": 256,
|
| 156 |
-
"intermediate_size": 4304,
|
| 157 |
-
"is_decoder": false,
|
| 158 |
-
"is_encoder_decoder": false,
|
| 159 |
-
"label2id": {
|
| 160 |
-
"LABEL_0": 0,
|
| 161 |
-
"LABEL_1": 1
|
| 162 |
-
},
|
| 163 |
-
"layer_norm_eps": 1e-06,
|
| 164 |
-
"length_penalty": 1.0,
|
| 165 |
-
"max_length": 20,
|
| 166 |
-
"min_length": 0,
|
| 167 |
-
"model_type": "pixel_shuffle_siglip2",
|
| 168 |
-
"no_repeat_ngram_size": 0,
|
| 169 |
-
"num_attention_heads": 16,
|
| 170 |
-
"num_beam_groups": 1,
|
| 171 |
-
"num_beams": 1,
|
| 172 |
-
"num_channels": 3,
|
| 173 |
-
"num_hidden_layers": 27,
|
| 174 |
-
"num_patches": 256,
|
| 175 |
-
"num_return_sequences": 1,
|
| 176 |
-
"output_attentions": false,
|
| 177 |
-
"output_hidden_states": false,
|
| 178 |
-
"output_scores": false,
|
| 179 |
-
"pad_token_id": null,
|
| 180 |
-
"patch_size": 16,
|
| 181 |
-
"pixel_shuffle_scale_factor": 2,
|
| 182 |
-
"prefix": null,
|
| 183 |
-
"problem_type": null,
|
| 184 |
-
"pruned_heads": {},
|
| 185 |
-
"remove_invalid_values": false,
|
| 186 |
-
"repetition_penalty": 1.0,
|
| 187 |
-
"return_dict": true,
|
| 188 |
-
"return_dict_in_generate": false,
|
| 189 |
-
"sep_token_id": null,
|
| 190 |
-
"suppress_tokens": null,
|
| 191 |
-
"task_specific_params": null,
|
| 192 |
-
"temperature": 1.0,
|
| 193 |
-
"tf_legacy_loss": false,
|
| 194 |
-
"tie_encoder_decoder": false,
|
| 195 |
-
"tie_word_embeddings": true,
|
| 196 |
-
"tokenizer_class": null,
|
| 197 |
-
"top_k": 50,
|
| 198 |
-
"top_p": 1.0,
|
| 199 |
-
"torchscript": false,
|
| 200 |
-
"typical_p": 1.0,
|
| 201 |
-
"use_bfloat16": false
|
| 202 |
-
},
|
| 203 |
-
"vision_max_num_patches": 6144,
|
| 204 |
-
"vision_min_num_patches": 256,
|
| 205 |
-
"vision_token": "<image>",
|
| 206 |
-
"vocab_size": 151936
|
| 207 |
},
|
| 208 |
-
"
|
|
|
|
|
|
|
| 209 |
}
|
|
|
|
| 2 |
"auto_map": {
|
| 3 |
"AutoProcessor": "modular_isaac.IsaacProcessor"
|
| 4 |
},
|
| 5 |
+
"config": null,
|
| 6 |
+
"image_processor": {
|
| 7 |
+
"_processor_class": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"auto_map": {
|
| 9 |
+
"AutoProcessor": "modular_isaac.IsaacProcessor"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
},
|
| 11 |
+
"crop_size": null,
|
| 12 |
+
"data_format": "channels_first",
|
| 13 |
+
"default_to_square": null,
|
| 14 |
+
"device": null,
|
| 15 |
+
"disable_grouping": false,
|
| 16 |
+
"do_center_crop": false,
|
| 17 |
+
"do_convert_rgb": true,
|
| 18 |
+
"do_normalize": true,
|
| 19 |
+
"do_pad": false,
|
| 20 |
+
"do_rescale": true,
|
| 21 |
+
"do_resize": true,
|
| 22 |
+
"image_mean": [
|
| 23 |
+
0.5,
|
| 24 |
+
0.5,
|
| 25 |
+
0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
],
|
| 27 |
+
"image_processor_type": "IsaacImageProcessorFast",
|
| 28 |
+
"image_std": [
|
| 29 |
+
0.5,
|
| 30 |
+
0.5,
|
| 31 |
+
0.5
|
| 32 |
+
],
|
| 33 |
+
"input_data_format": null,
|
| 34 |
+
"max_num_patches": 6144,
|
| 35 |
+
"min_num_patches": 256,
|
| 36 |
+
"pad_size": null,
|
| 37 |
+
"patch_size": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
"pixel_shuffle_scale": 2,
|
| 39 |
+
"resample": 2,
|
| 40 |
+
"rescale_factor": 0.00392156862745098,
|
| 41 |
+
"return_tensors": null,
|
| 42 |
+
"size": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
},
|
| 44 |
+
"max_sequence_length": 16384,
|
| 45 |
+
"processor_class": "IsaacProcessor",
|
| 46 |
+
"vision_token": "<image>"
|
| 47 |
}
|
tokenizer.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c670a45d54b226b4213f50c920332be152acff8fafaabdafd5586e772c3d500
|
| 3 |
+
size 11473541
|
tokenizer_config.json
CHANGED
|
@@ -209,6 +209,2142 @@
|
|
| 209 |
"rstrip": false,
|
| 210 |
"single_word": false,
|
| 211 |
"special": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
}
|
| 213 |
},
|
| 214 |
"additional_special_tokens": [
|
|
|
|
| 209 |
"rstrip": false,
|
| 210 |
"single_word": false,
|
| 211 |
"special": false
|
| 212 |
+
},
|
| 213 |
+
"151669": {
|
| 214 |
+
"content": "<reserved_0>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
},
|
| 221 |
+
"151670": {
|
| 222 |
+
"content": "<reserved_1>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": true
|
| 228 |
+
},
|
| 229 |
+
"151671": {
|
| 230 |
+
"content": "<reserved_2>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": true
|
| 236 |
+
},
|
| 237 |
+
"151672": {
|
| 238 |
+
"content": "<reserved_3>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": true
|
| 244 |
+
},
|
| 245 |
+
"151673": {
|
| 246 |
+
"content": "<reserved_4>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": true
|
| 252 |
+
},
|
| 253 |
+
"151674": {
|
| 254 |
+
"content": "<reserved_5>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": true
|
| 260 |
+
},
|
| 261 |
+
"151675": {
|
| 262 |
+
"content": "<reserved_6>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": true
|
| 268 |
+
},
|
| 269 |
+
"151676": {
|
| 270 |
+
"content": "<reserved_7>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": true
|
| 276 |
+
},
|
| 277 |
+
"151677": {
|
| 278 |
+
"content": "<reserved_8>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": true
|
| 284 |
+
},
|
| 285 |
+
"151678": {
|
| 286 |
+
"content": "<reserved_9>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": true
|
| 292 |
+
},
|
| 293 |
+
"151679": {
|
| 294 |
+
"content": "<reserved_10>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": true
|
| 300 |
+
},
|
| 301 |
+
"151680": {
|
| 302 |
+
"content": "<reserved_11>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": true
|
| 308 |
+
},
|
| 309 |
+
"151681": {
|
| 310 |
+
"content": "<reserved_12>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": true
|
| 316 |
+
},
|
| 317 |
+
"151682": {
|
| 318 |
+
"content": "<reserved_13>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": true
|
| 324 |
+
},
|
| 325 |
+
"151683": {
|
| 326 |
+
"content": "<reserved_14>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": true
|
| 332 |
+
},
|
| 333 |
+
"151684": {
|
| 334 |
+
"content": "<reserved_15>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": true
|
| 340 |
+
},
|
| 341 |
+
"151685": {
|
| 342 |
+
"content": "<reserved_16>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": true
|
| 348 |
+
},
|
| 349 |
+
"151686": {
|
| 350 |
+
"content": "<reserved_17>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": true
|
| 356 |
+
},
|
| 357 |
+
"151687": {
|
| 358 |
+
"content": "<reserved_18>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": true
|
| 364 |
+
},
|
| 365 |
+
"151688": {
|
| 366 |
+
"content": "<reserved_19>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": true
|
| 372 |
+
},
|
| 373 |
+
"151689": {
|
| 374 |
+
"content": "<reserved_20>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": true
|
| 380 |
+
},
|
| 381 |
+
"151690": {
|
| 382 |
+
"content": "<reserved_21>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": true
|
| 388 |
+
},
|
| 389 |
+
"151691": {
|
| 390 |
+
"content": "<reserved_22>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": true
|
| 396 |
+
},
|
| 397 |
+
"151692": {
|
| 398 |
+
"content": "<reserved_23>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": true
|
| 404 |
+
},
|
| 405 |
+
"151693": {
|
| 406 |
+
"content": "<reserved_24>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": true
|
| 412 |
+
},
|
| 413 |
+
"151694": {
|
| 414 |
+
"content": "<reserved_25>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": true
|
| 420 |
+
},
|
| 421 |
+
"151695": {
|
| 422 |
+
"content": "<reserved_26>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": true
|
| 428 |
+
},
|
| 429 |
+
"151696": {
|
| 430 |
+
"content": "<reserved_27>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": true
|
| 436 |
+
},
|
| 437 |
+
"151697": {
|
| 438 |
+
"content": "<reserved_28>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": true
|
| 444 |
+
},
|
| 445 |
+
"151698": {
|
| 446 |
+
"content": "<reserved_29>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": true
|
| 452 |
+
},
|
| 453 |
+
"151699": {
|
| 454 |
+
"content": "<reserved_30>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": true
|
| 460 |
+
},
|
| 461 |
+
"151700": {
|
| 462 |
+
"content": "<reserved_31>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": true
|
| 468 |
+
},
|
| 469 |
+
"151701": {
|
| 470 |
+
"content": "<reserved_32>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": true
|
| 476 |
+
},
|
| 477 |
+
"151702": {
|
| 478 |
+
"content": "<reserved_33>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": true
|
| 484 |
+
},
|
| 485 |
+
"151703": {
|
| 486 |
+
"content": "<reserved_34>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": true
|
| 492 |
+
},
|
| 493 |
+
"151704": {
|
| 494 |
+
"content": "<reserved_35>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": true
|
| 500 |
+
},
|
| 501 |
+
"151705": {
|
| 502 |
+
"content": "<reserved_36>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": true
|
| 508 |
+
},
|
| 509 |
+
"151706": {
|
| 510 |
+
"content": "<reserved_37>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": true
|
| 516 |
+
},
|
| 517 |
+
"151707": {
|
| 518 |
+
"content": "<reserved_38>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": true
|
| 524 |
+
},
|
| 525 |
+
"151708": {
|
| 526 |
+
"content": "<reserved_39>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": true
|
| 532 |
+
},
|
| 533 |
+
"151709": {
|
| 534 |
+
"content": "<reserved_40>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": true
|
| 540 |
+
},
|
| 541 |
+
"151710": {
|
| 542 |
+
"content": "<reserved_41>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": true
|
| 548 |
+
},
|
| 549 |
+
"151711": {
|
| 550 |
+
"content": "<reserved_42>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": true
|
| 556 |
+
},
|
| 557 |
+
"151712": {
|
| 558 |
+
"content": "<reserved_43>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": true
|
| 564 |
+
},
|
| 565 |
+
"151713": {
|
| 566 |
+
"content": "<reserved_44>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": true
|
| 572 |
+
},
|
| 573 |
+
"151714": {
|
| 574 |
+
"content": "<reserved_45>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": true
|
| 580 |
+
},
|
| 581 |
+
"151715": {
|
| 582 |
+
"content": "<reserved_46>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": true
|
| 588 |
+
},
|
| 589 |
+
"151716": {
|
| 590 |
+
"content": "<reserved_47>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": true
|
| 596 |
+
},
|
| 597 |
+
"151717": {
|
| 598 |
+
"content": "<reserved_48>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": true
|
| 604 |
+
},
|
| 605 |
+
"151718": {
|
| 606 |
+
"content": "<reserved_49>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": true
|
| 612 |
+
},
|
| 613 |
+
"151719": {
|
| 614 |
+
"content": "<reserved_50>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": true
|
| 620 |
+
},
|
| 621 |
+
"151720": {
|
| 622 |
+
"content": "<reserved_51>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": true
|
| 628 |
+
},
|
| 629 |
+
"151721": {
|
| 630 |
+
"content": "<reserved_52>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": true
|
| 636 |
+
},
|
| 637 |
+
"151722": {
|
| 638 |
+
"content": "<reserved_53>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": true
|
| 644 |
+
},
|
| 645 |
+
"151723": {
|
| 646 |
+
"content": "<reserved_54>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": true
|
| 652 |
+
},
|
| 653 |
+
"151724": {
|
| 654 |
+
"content": "<reserved_55>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": true
|
| 660 |
+
},
|
| 661 |
+
"151725": {
|
| 662 |
+
"content": "<reserved_56>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": true
|
| 668 |
+
},
|
| 669 |
+
"151726": {
|
| 670 |
+
"content": "<reserved_57>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": true
|
| 676 |
+
},
|
| 677 |
+
"151727": {
|
| 678 |
+
"content": "<reserved_58>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": true
|
| 684 |
+
},
|
| 685 |
+
"151728": {
|
| 686 |
+
"content": "<reserved_59>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": true
|
| 692 |
+
},
|
| 693 |
+
"151729": {
|
| 694 |
+
"content": "<reserved_60>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": true
|
| 700 |
+
},
|
| 701 |
+
"151730": {
|
| 702 |
+
"content": "<reserved_61>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": true
|
| 708 |
+
},
|
| 709 |
+
"151731": {
|
| 710 |
+
"content": "<reserved_62>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": true
|
| 716 |
+
},
|
| 717 |
+
"151732": {
|
| 718 |
+
"content": "<reserved_63>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": true
|
| 724 |
+
},
|
| 725 |
+
"151733": {
|
| 726 |
+
"content": "<reserved_64>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": true
|
| 732 |
+
},
|
| 733 |
+
"151734": {
|
| 734 |
+
"content": "<reserved_65>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": true
|
| 740 |
+
},
|
| 741 |
+
"151735": {
|
| 742 |
+
"content": "<reserved_66>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": true
|
| 748 |
+
},
|
| 749 |
+
"151736": {
|
| 750 |
+
"content": "<reserved_67>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": true
|
| 756 |
+
},
|
| 757 |
+
"151737": {
|
| 758 |
+
"content": "<reserved_68>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": true
|
| 764 |
+
},
|
| 765 |
+
"151738": {
|
| 766 |
+
"content": "<reserved_69>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": true
|
| 772 |
+
},
|
| 773 |
+
"151739": {
|
| 774 |
+
"content": "<reserved_70>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": true
|
| 780 |
+
},
|
| 781 |
+
"151740": {
|
| 782 |
+
"content": "<reserved_71>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": true
|
| 788 |
+
},
|
| 789 |
+
"151741": {
|
| 790 |
+
"content": "<reserved_72>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": true
|
| 796 |
+
},
|
| 797 |
+
"151742": {
|
| 798 |
+
"content": "<reserved_73>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": true
|
| 804 |
+
},
|
| 805 |
+
"151743": {
|
| 806 |
+
"content": "<reserved_74>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": true
|
| 812 |
+
},
|
| 813 |
+
"151744": {
|
| 814 |
+
"content": "<reserved_75>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": true
|
| 820 |
+
},
|
| 821 |
+
"151745": {
|
| 822 |
+
"content": "<reserved_76>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": true
|
| 828 |
+
},
|
| 829 |
+
"151746": {
|
| 830 |
+
"content": "<reserved_77>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": true
|
| 836 |
+
},
|
| 837 |
+
"151747": {
|
| 838 |
+
"content": "<reserved_78>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": true
|
| 844 |
+
},
|
| 845 |
+
"151748": {
|
| 846 |
+
"content": "<reserved_79>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": true
|
| 852 |
+
},
|
| 853 |
+
"151749": {
|
| 854 |
+
"content": "<reserved_80>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"151750": {
|
| 862 |
+
"content": "<reserved_81>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"151751": {
|
| 870 |
+
"content": "<reserved_82>",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": true
|
| 876 |
+
},
|
| 877 |
+
"151752": {
|
| 878 |
+
"content": "<reserved_83>",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": true
|
| 884 |
+
},
|
| 885 |
+
"151753": {
|
| 886 |
+
"content": "<reserved_84>",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": true
|
| 892 |
+
},
|
| 893 |
+
"151754": {
|
| 894 |
+
"content": "<reserved_85>",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": true
|
| 900 |
+
},
|
| 901 |
+
"151755": {
|
| 902 |
+
"content": "<reserved_86>",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": true
|
| 908 |
+
},
|
| 909 |
+
"151756": {
|
| 910 |
+
"content": "<reserved_87>",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": true
|
| 916 |
+
},
|
| 917 |
+
"151757": {
|
| 918 |
+
"content": "<reserved_88>",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": true
|
| 924 |
+
},
|
| 925 |
+
"151758": {
|
| 926 |
+
"content": "<reserved_89>",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": true
|
| 932 |
+
},
|
| 933 |
+
"151759": {
|
| 934 |
+
"content": "<reserved_90>",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": true
|
| 940 |
+
},
|
| 941 |
+
"151760": {
|
| 942 |
+
"content": "<reserved_91>",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": true
|
| 948 |
+
},
|
| 949 |
+
"151761": {
|
| 950 |
+
"content": "<reserved_92>",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": true
|
| 956 |
+
},
|
| 957 |
+
"151762": {
|
| 958 |
+
"content": "<reserved_93>",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": true
|
| 964 |
+
},
|
| 965 |
+
"151763": {
|
| 966 |
+
"content": "<reserved_94>",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": true
|
| 972 |
+
},
|
| 973 |
+
"151764": {
|
| 974 |
+
"content": "<reserved_95>",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": true
|
| 980 |
+
},
|
| 981 |
+
"151765": {
|
| 982 |
+
"content": "<reserved_96>",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": true
|
| 988 |
+
},
|
| 989 |
+
"151766": {
|
| 990 |
+
"content": "<reserved_97>",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": true
|
| 996 |
+
},
|
| 997 |
+
"151767": {
|
| 998 |
+
"content": "<reserved_98>",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": true
|
| 1004 |
+
},
|
| 1005 |
+
"151768": {
|
| 1006 |
+
"content": "<reserved_99>",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": true
|
| 1012 |
+
},
|
| 1013 |
+
"151769": {
|
| 1014 |
+
"content": "<reserved_100>",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": true
|
| 1020 |
+
},
|
| 1021 |
+
"151770": {
|
| 1022 |
+
"content": "<reserved_101>",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": true
|
| 1028 |
+
},
|
| 1029 |
+
"151771": {
|
| 1030 |
+
"content": "<reserved_102>",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": true
|
| 1036 |
+
},
|
| 1037 |
+
"151772": {
|
| 1038 |
+
"content": "<reserved_103>",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": true
|
| 1044 |
+
},
|
| 1045 |
+
"151773": {
|
| 1046 |
+
"content": "<reserved_104>",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": true
|
| 1052 |
+
},
|
| 1053 |
+
"151774": {
|
| 1054 |
+
"content": "<reserved_105>",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": true
|
| 1060 |
+
},
|
| 1061 |
+
"151775": {
|
| 1062 |
+
"content": "<reserved_106>",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": true
|
| 1068 |
+
},
|
| 1069 |
+
"151776": {
|
| 1070 |
+
"content": "<reserved_107>",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": true
|
| 1076 |
+
},
|
| 1077 |
+
"151777": {
|
| 1078 |
+
"content": "<reserved_108>",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": true
|
| 1084 |
+
},
|
| 1085 |
+
"151778": {
|
| 1086 |
+
"content": "<reserved_109>",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": true
|
| 1092 |
+
},
|
| 1093 |
+
"151779": {
|
| 1094 |
+
"content": "<reserved_110>",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": true
|
| 1100 |
+
},
|
| 1101 |
+
"151780": {
|
| 1102 |
+
"content": "<reserved_111>",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": true
|
| 1108 |
+
},
|
| 1109 |
+
"151781": {
|
| 1110 |
+
"content": "<reserved_112>",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": true
|
| 1116 |
+
},
|
| 1117 |
+
"151782": {
|
| 1118 |
+
"content": "<reserved_113>",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": true
|
| 1124 |
+
},
|
| 1125 |
+
"151783": {
|
| 1126 |
+
"content": "<reserved_114>",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": true
|
| 1132 |
+
},
|
| 1133 |
+
"151784": {
|
| 1134 |
+
"content": "<reserved_115>",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": true
|
| 1140 |
+
},
|
| 1141 |
+
"151785": {
|
| 1142 |
+
"content": "<reserved_116>",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": true
|
| 1148 |
+
},
|
| 1149 |
+
"151786": {
|
| 1150 |
+
"content": "<reserved_117>",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": true
|
| 1156 |
+
},
|
| 1157 |
+
"151787": {
|
| 1158 |
+
"content": "<reserved_118>",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": true
|
| 1164 |
+
},
|
| 1165 |
+
"151788": {
|
| 1166 |
+
"content": "<reserved_119>",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": true
|
| 1172 |
+
},
|
| 1173 |
+
"151789": {
|
| 1174 |
+
"content": "<reserved_120>",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": true
|
| 1180 |
+
},
|
| 1181 |
+
"151790": {
|
| 1182 |
+
"content": "<reserved_121>",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": true
|
| 1188 |
+
},
|
| 1189 |
+
"151791": {
|
| 1190 |
+
"content": "<reserved_122>",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": true
|
| 1196 |
+
},
|
| 1197 |
+
"151792": {
|
| 1198 |
+
"content": "<reserved_123>",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": true
|
| 1204 |
+
},
|
| 1205 |
+
"151793": {
|
| 1206 |
+
"content": "<reserved_124>",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": true
|
| 1212 |
+
},
|
| 1213 |
+
"151794": {
|
| 1214 |
+
"content": "<reserved_125>",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": true
|
| 1220 |
+
},
|
| 1221 |
+
"151795": {
|
| 1222 |
+
"content": "<reserved_126>",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": true
|
| 1228 |
+
},
|
| 1229 |
+
"151796": {
|
| 1230 |
+
"content": "<reserved_127>",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": true
|
| 1236 |
+
},
|
| 1237 |
+
"151797": {
|
| 1238 |
+
"content": "<reserved_128>",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": true
|
| 1244 |
+
},
|
| 1245 |
+
"151798": {
|
| 1246 |
+
"content": "<reserved_129>",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": true
|
| 1252 |
+
},
|
| 1253 |
+
"151799": {
|
| 1254 |
+
"content": "<reserved_130>",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": true
|
| 1260 |
+
},
|
| 1261 |
+
"151800": {
|
| 1262 |
+
"content": "<reserved_131>",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": true
|
| 1268 |
+
},
|
| 1269 |
+
"151801": {
|
| 1270 |
+
"content": "<reserved_132>",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": true
|
| 1276 |
+
},
|
| 1277 |
+
"151802": {
|
| 1278 |
+
"content": "<reserved_133>",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": true
|
| 1284 |
+
},
|
| 1285 |
+
"151803": {
|
| 1286 |
+
"content": "<reserved_134>",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": true
|
| 1292 |
+
},
|
| 1293 |
+
"151804": {
|
| 1294 |
+
"content": "<reserved_135>",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": true
|
| 1300 |
+
},
|
| 1301 |
+
"151805": {
|
| 1302 |
+
"content": "<reserved_136>",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": true
|
| 1308 |
+
},
|
| 1309 |
+
"151806": {
|
| 1310 |
+
"content": "<reserved_137>",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": true
|
| 1316 |
+
},
|
| 1317 |
+
"151807": {
|
| 1318 |
+
"content": "<reserved_138>",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": true
|
| 1324 |
+
},
|
| 1325 |
+
"151808": {
|
| 1326 |
+
"content": "<reserved_139>",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": true
|
| 1332 |
+
},
|
| 1333 |
+
"151809": {
|
| 1334 |
+
"content": "<reserved_140>",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": true
|
| 1340 |
+
},
|
| 1341 |
+
"151810": {
|
| 1342 |
+
"content": "<reserved_141>",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": true
|
| 1348 |
+
},
|
| 1349 |
+
"151811": {
|
| 1350 |
+
"content": "<reserved_142>",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": true
|
| 1356 |
+
},
|
| 1357 |
+
"151812": {
|
| 1358 |
+
"content": "<reserved_143>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": true
|
| 1364 |
+
},
|
| 1365 |
+
"151813": {
|
| 1366 |
+
"content": "<reserved_144>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": true
|
| 1372 |
+
},
|
| 1373 |
+
"151814": {
|
| 1374 |
+
"content": "<reserved_145>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": true
|
| 1380 |
+
},
|
| 1381 |
+
"151815": {
|
| 1382 |
+
"content": "<reserved_146>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": true
|
| 1388 |
+
},
|
| 1389 |
+
"151816": {
|
| 1390 |
+
"content": "<reserved_147>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": true
|
| 1396 |
+
},
|
| 1397 |
+
"151817": {
|
| 1398 |
+
"content": "<reserved_148>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": true
|
| 1404 |
+
},
|
| 1405 |
+
"151818": {
|
| 1406 |
+
"content": "<reserved_149>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": true
|
| 1412 |
+
},
|
| 1413 |
+
"151819": {
|
| 1414 |
+
"content": "<reserved_150>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": true
|
| 1420 |
+
},
|
| 1421 |
+
"151820": {
|
| 1422 |
+
"content": "<reserved_151>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": true
|
| 1428 |
+
},
|
| 1429 |
+
"151821": {
|
| 1430 |
+
"content": "<reserved_152>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": true
|
| 1436 |
+
},
|
| 1437 |
+
"151822": {
|
| 1438 |
+
"content": "<reserved_153>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": true
|
| 1444 |
+
},
|
| 1445 |
+
"151823": {
|
| 1446 |
+
"content": "<reserved_154>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": true
|
| 1452 |
+
},
|
| 1453 |
+
"151824": {
|
| 1454 |
+
"content": "<reserved_155>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": true
|
| 1460 |
+
},
|
| 1461 |
+
"151825": {
|
| 1462 |
+
"content": "<reserved_156>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": true
|
| 1468 |
+
},
|
| 1469 |
+
"151826": {
|
| 1470 |
+
"content": "<reserved_157>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": true
|
| 1476 |
+
},
|
| 1477 |
+
"151827": {
|
| 1478 |
+
"content": "<reserved_158>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": true
|
| 1484 |
+
},
|
| 1485 |
+
"151828": {
|
| 1486 |
+
"content": "<reserved_159>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": true
|
| 1492 |
+
},
|
| 1493 |
+
"151829": {
|
| 1494 |
+
"content": "<reserved_160>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": true
|
| 1500 |
+
},
|
| 1501 |
+
"151830": {
|
| 1502 |
+
"content": "<reserved_161>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": true
|
| 1508 |
+
},
|
| 1509 |
+
"151831": {
|
| 1510 |
+
"content": "<reserved_162>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": true
|
| 1516 |
+
},
|
| 1517 |
+
"151832": {
|
| 1518 |
+
"content": "<reserved_163>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": true
|
| 1524 |
+
},
|
| 1525 |
+
"151833": {
|
| 1526 |
+
"content": "<reserved_164>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": true
|
| 1532 |
+
},
|
| 1533 |
+
"151834": {
|
| 1534 |
+
"content": "<reserved_165>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": true
|
| 1540 |
+
},
|
| 1541 |
+
"151835": {
|
| 1542 |
+
"content": "<reserved_166>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": true
|
| 1548 |
+
},
|
| 1549 |
+
"151836": {
|
| 1550 |
+
"content": "<reserved_167>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": true
|
| 1556 |
+
},
|
| 1557 |
+
"151837": {
|
| 1558 |
+
"content": "<reserved_168>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": true
|
| 1564 |
+
},
|
| 1565 |
+
"151838": {
|
| 1566 |
+
"content": "<reserved_169>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": true
|
| 1572 |
+
},
|
| 1573 |
+
"151839": {
|
| 1574 |
+
"content": "<reserved_170>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": true
|
| 1580 |
+
},
|
| 1581 |
+
"151840": {
|
| 1582 |
+
"content": "<reserved_171>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": true
|
| 1588 |
+
},
|
| 1589 |
+
"151841": {
|
| 1590 |
+
"content": "<reserved_172>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": true
|
| 1596 |
+
},
|
| 1597 |
+
"151842": {
|
| 1598 |
+
"content": "<reserved_173>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": true
|
| 1604 |
+
},
|
| 1605 |
+
"151843": {
|
| 1606 |
+
"content": "<reserved_174>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": true
|
| 1612 |
+
},
|
| 1613 |
+
"151844": {
|
| 1614 |
+
"content": "<reserved_175>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": true
|
| 1620 |
+
},
|
| 1621 |
+
"151845": {
|
| 1622 |
+
"content": "<reserved_176>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": true
|
| 1628 |
+
},
|
| 1629 |
+
"151846": {
|
| 1630 |
+
"content": "<reserved_177>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": true
|
| 1636 |
+
},
|
| 1637 |
+
"151847": {
|
| 1638 |
+
"content": "<reserved_178>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": true
|
| 1644 |
+
},
|
| 1645 |
+
"151848": {
|
| 1646 |
+
"content": "<reserved_179>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": true
|
| 1652 |
+
},
|
| 1653 |
+
"151849": {
|
| 1654 |
+
"content": "<reserved_180>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": true
|
| 1660 |
+
},
|
| 1661 |
+
"151850": {
|
| 1662 |
+
"content": "<reserved_181>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": true
|
| 1668 |
+
},
|
| 1669 |
+
"151851": {
|
| 1670 |
+
"content": "<reserved_182>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": true
|
| 1676 |
+
},
|
| 1677 |
+
"151852": {
|
| 1678 |
+
"content": "<reserved_183>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": true
|
| 1684 |
+
},
|
| 1685 |
+
"151853": {
|
| 1686 |
+
"content": "<reserved_184>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": true
|
| 1692 |
+
},
|
| 1693 |
+
"151854": {
|
| 1694 |
+
"content": "<reserved_185>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": true
|
| 1700 |
+
},
|
| 1701 |
+
"151855": {
|
| 1702 |
+
"content": "<reserved_186>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": true
|
| 1708 |
+
},
|
| 1709 |
+
"151856": {
|
| 1710 |
+
"content": "<reserved_187>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": true
|
| 1716 |
+
},
|
| 1717 |
+
"151857": {
|
| 1718 |
+
"content": "<reserved_188>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": true
|
| 1724 |
+
},
|
| 1725 |
+
"151858": {
|
| 1726 |
+
"content": "<reserved_189>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": true
|
| 1732 |
+
},
|
| 1733 |
+
"151859": {
|
| 1734 |
+
"content": "<reserved_190>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": true
|
| 1740 |
+
},
|
| 1741 |
+
"151860": {
|
| 1742 |
+
"content": "<reserved_191>",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": true
|
| 1748 |
+
},
|
| 1749 |
+
"151861": {
|
| 1750 |
+
"content": "<reserved_192>",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": true
|
| 1756 |
+
},
|
| 1757 |
+
"151862": {
|
| 1758 |
+
"content": "<reserved_193>",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": true
|
| 1764 |
+
},
|
| 1765 |
+
"151863": {
|
| 1766 |
+
"content": "<reserved_194>",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": true
|
| 1772 |
+
},
|
| 1773 |
+
"151864": {
|
| 1774 |
+
"content": "<reserved_195>",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": true
|
| 1780 |
+
},
|
| 1781 |
+
"151865": {
|
| 1782 |
+
"content": "<reserved_196>",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": true
|
| 1788 |
+
},
|
| 1789 |
+
"151866": {
|
| 1790 |
+
"content": "<reserved_197>",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": true
|
| 1796 |
+
},
|
| 1797 |
+
"151867": {
|
| 1798 |
+
"content": "<reserved_198>",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": true
|
| 1804 |
+
},
|
| 1805 |
+
"151868": {
|
| 1806 |
+
"content": "<reserved_199>",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": true
|
| 1812 |
+
},
|
| 1813 |
+
"151869": {
|
| 1814 |
+
"content": "<reserved_200>",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": true
|
| 1820 |
+
},
|
| 1821 |
+
"151870": {
|
| 1822 |
+
"content": "<reserved_201>",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": true
|
| 1828 |
+
},
|
| 1829 |
+
"151871": {
|
| 1830 |
+
"content": "<reserved_202>",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": true
|
| 1836 |
+
},
|
| 1837 |
+
"151872": {
|
| 1838 |
+
"content": "<reserved_203>",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": true
|
| 1844 |
+
},
|
| 1845 |
+
"151873": {
|
| 1846 |
+
"content": "<reserved_204>",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": true
|
| 1852 |
+
},
|
| 1853 |
+
"151874": {
|
| 1854 |
+
"content": "<reserved_205>",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": true
|
| 1860 |
+
},
|
| 1861 |
+
"151875": {
|
| 1862 |
+
"content": "<reserved_206>",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": true
|
| 1868 |
+
},
|
| 1869 |
+
"151876": {
|
| 1870 |
+
"content": "<reserved_207>",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": true
|
| 1876 |
+
},
|
| 1877 |
+
"151877": {
|
| 1878 |
+
"content": "<reserved_208>",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": true
|
| 1884 |
+
},
|
| 1885 |
+
"151878": {
|
| 1886 |
+
"content": "<reserved_209>",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": true
|
| 1892 |
+
},
|
| 1893 |
+
"151879": {
|
| 1894 |
+
"content": "<reserved_210>",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": true
|
| 1900 |
+
},
|
| 1901 |
+
"151880": {
|
| 1902 |
+
"content": "<reserved_211>",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": true
|
| 1908 |
+
},
|
| 1909 |
+
"151881": {
|
| 1910 |
+
"content": "<reserved_212>",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": true
|
| 1916 |
+
},
|
| 1917 |
+
"151882": {
|
| 1918 |
+
"content": "<reserved_213>",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": true
|
| 1924 |
+
},
|
| 1925 |
+
"151883": {
|
| 1926 |
+
"content": "<reserved_214>",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": true
|
| 1932 |
+
},
|
| 1933 |
+
"151884": {
|
| 1934 |
+
"content": "<reserved_215>",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": true
|
| 1940 |
+
},
|
| 1941 |
+
"151885": {
|
| 1942 |
+
"content": "<reserved_216>",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": true
|
| 1948 |
+
},
|
| 1949 |
+
"151886": {
|
| 1950 |
+
"content": "<reserved_217>",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": true
|
| 1956 |
+
},
|
| 1957 |
+
"151887": {
|
| 1958 |
+
"content": "<reserved_218>",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": true
|
| 1964 |
+
},
|
| 1965 |
+
"151888": {
|
| 1966 |
+
"content": "<reserved_219>",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": true
|
| 1972 |
+
},
|
| 1973 |
+
"151889": {
|
| 1974 |
+
"content": "<reserved_220>",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": true
|
| 1980 |
+
},
|
| 1981 |
+
"151890": {
|
| 1982 |
+
"content": "<reserved_221>",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": true
|
| 1988 |
+
},
|
| 1989 |
+
"151891": {
|
| 1990 |
+
"content": "<reserved_222>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": true
|
| 1996 |
+
},
|
| 1997 |
+
"151892": {
|
| 1998 |
+
"content": "<reserved_223>",
|
| 1999 |
+
"lstrip": false,
|
| 2000 |
+
"normalized": false,
|
| 2001 |
+
"rstrip": false,
|
| 2002 |
+
"single_word": false,
|
| 2003 |
+
"special": true
|
| 2004 |
+
},
|
| 2005 |
+
"151893": {
|
| 2006 |
+
"content": "<reserved_224>",
|
| 2007 |
+
"lstrip": false,
|
| 2008 |
+
"normalized": false,
|
| 2009 |
+
"rstrip": false,
|
| 2010 |
+
"single_word": false,
|
| 2011 |
+
"special": true
|
| 2012 |
+
},
|
| 2013 |
+
"151894": {
|
| 2014 |
+
"content": "<reserved_225>",
|
| 2015 |
+
"lstrip": false,
|
| 2016 |
+
"normalized": false,
|
| 2017 |
+
"rstrip": false,
|
| 2018 |
+
"single_word": false,
|
| 2019 |
+
"special": true
|
| 2020 |
+
},
|
| 2021 |
+
"151895": {
|
| 2022 |
+
"content": "<reserved_226>",
|
| 2023 |
+
"lstrip": false,
|
| 2024 |
+
"normalized": false,
|
| 2025 |
+
"rstrip": false,
|
| 2026 |
+
"single_word": false,
|
| 2027 |
+
"special": true
|
| 2028 |
+
},
|
| 2029 |
+
"151896": {
|
| 2030 |
+
"content": "<reserved_227>",
|
| 2031 |
+
"lstrip": false,
|
| 2032 |
+
"normalized": false,
|
| 2033 |
+
"rstrip": false,
|
| 2034 |
+
"single_word": false,
|
| 2035 |
+
"special": true
|
| 2036 |
+
},
|
| 2037 |
+
"151897": {
|
| 2038 |
+
"content": "<reserved_228>",
|
| 2039 |
+
"lstrip": false,
|
| 2040 |
+
"normalized": false,
|
| 2041 |
+
"rstrip": false,
|
| 2042 |
+
"single_word": false,
|
| 2043 |
+
"special": true
|
| 2044 |
+
},
|
| 2045 |
+
"151898": {
|
| 2046 |
+
"content": "<reserved_229>",
|
| 2047 |
+
"lstrip": false,
|
| 2048 |
+
"normalized": false,
|
| 2049 |
+
"rstrip": false,
|
| 2050 |
+
"single_word": false,
|
| 2051 |
+
"special": true
|
| 2052 |
+
},
|
| 2053 |
+
"151899": {
|
| 2054 |
+
"content": "<reserved_230>",
|
| 2055 |
+
"lstrip": false,
|
| 2056 |
+
"normalized": false,
|
| 2057 |
+
"rstrip": false,
|
| 2058 |
+
"single_word": false,
|
| 2059 |
+
"special": true
|
| 2060 |
+
},
|
| 2061 |
+
"151900": {
|
| 2062 |
+
"content": "<reserved_231>",
|
| 2063 |
+
"lstrip": false,
|
| 2064 |
+
"normalized": false,
|
| 2065 |
+
"rstrip": false,
|
| 2066 |
+
"single_word": false,
|
| 2067 |
+
"special": true
|
| 2068 |
+
},
|
| 2069 |
+
"151901": {
|
| 2070 |
+
"content": "<reserved_232>",
|
| 2071 |
+
"lstrip": false,
|
| 2072 |
+
"normalized": false,
|
| 2073 |
+
"rstrip": false,
|
| 2074 |
+
"single_word": false,
|
| 2075 |
+
"special": true
|
| 2076 |
+
},
|
| 2077 |
+
"151902": {
|
| 2078 |
+
"content": "<reserved_233>",
|
| 2079 |
+
"lstrip": false,
|
| 2080 |
+
"normalized": false,
|
| 2081 |
+
"rstrip": false,
|
| 2082 |
+
"single_word": false,
|
| 2083 |
+
"special": true
|
| 2084 |
+
},
|
| 2085 |
+
"151903": {
|
| 2086 |
+
"content": "<reserved_234>",
|
| 2087 |
+
"lstrip": false,
|
| 2088 |
+
"normalized": false,
|
| 2089 |
+
"rstrip": false,
|
| 2090 |
+
"single_word": false,
|
| 2091 |
+
"special": true
|
| 2092 |
+
},
|
| 2093 |
+
"151904": {
|
| 2094 |
+
"content": "<reserved_235>",
|
| 2095 |
+
"lstrip": false,
|
| 2096 |
+
"normalized": false,
|
| 2097 |
+
"rstrip": false,
|
| 2098 |
+
"single_word": false,
|
| 2099 |
+
"special": true
|
| 2100 |
+
},
|
| 2101 |
+
"151905": {
|
| 2102 |
+
"content": "<reserved_236>",
|
| 2103 |
+
"lstrip": false,
|
| 2104 |
+
"normalized": false,
|
| 2105 |
+
"rstrip": false,
|
| 2106 |
+
"single_word": false,
|
| 2107 |
+
"special": true
|
| 2108 |
+
},
|
| 2109 |
+
"151906": {
|
| 2110 |
+
"content": "<reserved_237>",
|
| 2111 |
+
"lstrip": false,
|
| 2112 |
+
"normalized": false,
|
| 2113 |
+
"rstrip": false,
|
| 2114 |
+
"single_word": false,
|
| 2115 |
+
"special": true
|
| 2116 |
+
},
|
| 2117 |
+
"151907": {
|
| 2118 |
+
"content": "<reserved_238>",
|
| 2119 |
+
"lstrip": false,
|
| 2120 |
+
"normalized": false,
|
| 2121 |
+
"rstrip": false,
|
| 2122 |
+
"single_word": false,
|
| 2123 |
+
"special": true
|
| 2124 |
+
},
|
| 2125 |
+
"151908": {
|
| 2126 |
+
"content": "<reserved_239>",
|
| 2127 |
+
"lstrip": false,
|
| 2128 |
+
"normalized": false,
|
| 2129 |
+
"rstrip": false,
|
| 2130 |
+
"single_word": false,
|
| 2131 |
+
"special": true
|
| 2132 |
+
},
|
| 2133 |
+
"151909": {
|
| 2134 |
+
"content": "<reserved_240>",
|
| 2135 |
+
"lstrip": false,
|
| 2136 |
+
"normalized": false,
|
| 2137 |
+
"rstrip": false,
|
| 2138 |
+
"single_word": false,
|
| 2139 |
+
"special": true
|
| 2140 |
+
},
|
| 2141 |
+
"151910": {
|
| 2142 |
+
"content": "<reserved_241>",
|
| 2143 |
+
"lstrip": false,
|
| 2144 |
+
"normalized": false,
|
| 2145 |
+
"rstrip": false,
|
| 2146 |
+
"single_word": false,
|
| 2147 |
+
"special": true
|
| 2148 |
+
},
|
| 2149 |
+
"151911": {
|
| 2150 |
+
"content": "<reserved_242>",
|
| 2151 |
+
"lstrip": false,
|
| 2152 |
+
"normalized": false,
|
| 2153 |
+
"rstrip": false,
|
| 2154 |
+
"single_word": false,
|
| 2155 |
+
"special": true
|
| 2156 |
+
},
|
| 2157 |
+
"151912": {
|
| 2158 |
+
"content": "<reserved_243>",
|
| 2159 |
+
"lstrip": false,
|
| 2160 |
+
"normalized": false,
|
| 2161 |
+
"rstrip": false,
|
| 2162 |
+
"single_word": false,
|
| 2163 |
+
"special": true
|
| 2164 |
+
},
|
| 2165 |
+
"151913": {
|
| 2166 |
+
"content": "<reserved_244>",
|
| 2167 |
+
"lstrip": false,
|
| 2168 |
+
"normalized": false,
|
| 2169 |
+
"rstrip": false,
|
| 2170 |
+
"single_word": false,
|
| 2171 |
+
"special": true
|
| 2172 |
+
},
|
| 2173 |
+
"151914": {
|
| 2174 |
+
"content": "<reserved_245>",
|
| 2175 |
+
"lstrip": false,
|
| 2176 |
+
"normalized": false,
|
| 2177 |
+
"rstrip": false,
|
| 2178 |
+
"single_word": false,
|
| 2179 |
+
"special": true
|
| 2180 |
+
},
|
| 2181 |
+
"151915": {
|
| 2182 |
+
"content": "<reserved_246>",
|
| 2183 |
+
"lstrip": false,
|
| 2184 |
+
"normalized": false,
|
| 2185 |
+
"rstrip": false,
|
| 2186 |
+
"single_word": false,
|
| 2187 |
+
"special": true
|
| 2188 |
+
},
|
| 2189 |
+
"151916": {
|
| 2190 |
+
"content": "<reserved_247>",
|
| 2191 |
+
"lstrip": false,
|
| 2192 |
+
"normalized": false,
|
| 2193 |
+
"rstrip": false,
|
| 2194 |
+
"single_word": false,
|
| 2195 |
+
"special": true
|
| 2196 |
+
},
|
| 2197 |
+
"151917": {
|
| 2198 |
+
"content": "<reserved_248>",
|
| 2199 |
+
"lstrip": false,
|
| 2200 |
+
"normalized": false,
|
| 2201 |
+
"rstrip": false,
|
| 2202 |
+
"single_word": false,
|
| 2203 |
+
"special": true
|
| 2204 |
+
},
|
| 2205 |
+
"151918": {
|
| 2206 |
+
"content": "<reserved_249>",
|
| 2207 |
+
"lstrip": false,
|
| 2208 |
+
"normalized": false,
|
| 2209 |
+
"rstrip": false,
|
| 2210 |
+
"single_word": false,
|
| 2211 |
+
"special": true
|
| 2212 |
+
},
|
| 2213 |
+
"151919": {
|
| 2214 |
+
"content": "<reserved_250>",
|
| 2215 |
+
"lstrip": false,
|
| 2216 |
+
"normalized": false,
|
| 2217 |
+
"rstrip": false,
|
| 2218 |
+
"single_word": false,
|
| 2219 |
+
"special": true
|
| 2220 |
+
},
|
| 2221 |
+
"151920": {
|
| 2222 |
+
"content": "<reserved_251>",
|
| 2223 |
+
"lstrip": false,
|
| 2224 |
+
"normalized": false,
|
| 2225 |
+
"rstrip": false,
|
| 2226 |
+
"single_word": false,
|
| 2227 |
+
"special": true
|
| 2228 |
+
},
|
| 2229 |
+
"151921": {
|
| 2230 |
+
"content": "<reserved_252>",
|
| 2231 |
+
"lstrip": false,
|
| 2232 |
+
"normalized": false,
|
| 2233 |
+
"rstrip": false,
|
| 2234 |
+
"single_word": false,
|
| 2235 |
+
"special": true
|
| 2236 |
+
},
|
| 2237 |
+
"151922": {
|
| 2238 |
+
"content": "<reserved_253>",
|
| 2239 |
+
"lstrip": false,
|
| 2240 |
+
"normalized": false,
|
| 2241 |
+
"rstrip": false,
|
| 2242 |
+
"single_word": false,
|
| 2243 |
+
"special": true
|
| 2244 |
+
},
|
| 2245 |
+
"151923": {
|
| 2246 |
+
"content": "<reserved_254>",
|
| 2247 |
+
"lstrip": false,
|
| 2248 |
+
"normalized": false,
|
| 2249 |
+
"rstrip": false,
|
| 2250 |
+
"single_word": false,
|
| 2251 |
+
"special": true
|
| 2252 |
+
},
|
| 2253 |
+
"151924": {
|
| 2254 |
+
"content": "<reserved_255>",
|
| 2255 |
+
"lstrip": false,
|
| 2256 |
+
"normalized": false,
|
| 2257 |
+
"rstrip": false,
|
| 2258 |
+
"single_word": false,
|
| 2259 |
+
"special": true
|
| 2260 |
+
},
|
| 2261 |
+
"151925": {
|
| 2262 |
+
"content": "<reserved_256>",
|
| 2263 |
+
"lstrip": false,
|
| 2264 |
+
"normalized": false,
|
| 2265 |
+
"rstrip": false,
|
| 2266 |
+
"single_word": false,
|
| 2267 |
+
"special": true
|
| 2268 |
+
},
|
| 2269 |
+
"151926": {
|
| 2270 |
+
"content": "<reserved_257>",
|
| 2271 |
+
"lstrip": false,
|
| 2272 |
+
"normalized": false,
|
| 2273 |
+
"rstrip": false,
|
| 2274 |
+
"single_word": false,
|
| 2275 |
+
"special": true
|
| 2276 |
+
},
|
| 2277 |
+
"151927": {
|
| 2278 |
+
"content": "<reserved_258>",
|
| 2279 |
+
"lstrip": false,
|
| 2280 |
+
"normalized": false,
|
| 2281 |
+
"rstrip": false,
|
| 2282 |
+
"single_word": false,
|
| 2283 |
+
"special": true
|
| 2284 |
+
},
|
| 2285 |
+
"151928": {
|
| 2286 |
+
"content": "<reserved_259>",
|
| 2287 |
+
"lstrip": false,
|
| 2288 |
+
"normalized": false,
|
| 2289 |
+
"rstrip": false,
|
| 2290 |
+
"single_word": false,
|
| 2291 |
+
"special": true
|
| 2292 |
+
},
|
| 2293 |
+
"151929": {
|
| 2294 |
+
"content": "<reserved_260>",
|
| 2295 |
+
"lstrip": false,
|
| 2296 |
+
"normalized": false,
|
| 2297 |
+
"rstrip": false,
|
| 2298 |
+
"single_word": false,
|
| 2299 |
+
"special": true
|
| 2300 |
+
},
|
| 2301 |
+
"151930": {
|
| 2302 |
+
"content": "<reserved_261>",
|
| 2303 |
+
"lstrip": false,
|
| 2304 |
+
"normalized": false,
|
| 2305 |
+
"rstrip": false,
|
| 2306 |
+
"single_word": false,
|
| 2307 |
+
"special": true
|
| 2308 |
+
},
|
| 2309 |
+
"151931": {
|
| 2310 |
+
"content": "<reserved_262>",
|
| 2311 |
+
"lstrip": false,
|
| 2312 |
+
"normalized": false,
|
| 2313 |
+
"rstrip": false,
|
| 2314 |
+
"single_word": false,
|
| 2315 |
+
"special": true
|
| 2316 |
+
},
|
| 2317 |
+
"151932": {
|
| 2318 |
+
"content": "<reserved_263>",
|
| 2319 |
+
"lstrip": false,
|
| 2320 |
+
"normalized": false,
|
| 2321 |
+
"rstrip": false,
|
| 2322 |
+
"single_word": false,
|
| 2323 |
+
"special": true
|
| 2324 |
+
},
|
| 2325 |
+
"151933": {
|
| 2326 |
+
"content": "<reserved_264>",
|
| 2327 |
+
"lstrip": false,
|
| 2328 |
+
"normalized": false,
|
| 2329 |
+
"rstrip": false,
|
| 2330 |
+
"single_word": false,
|
| 2331 |
+
"special": true
|
| 2332 |
+
},
|
| 2333 |
+
"151934": {
|
| 2334 |
+
"content": "<reserved_265>",
|
| 2335 |
+
"lstrip": false,
|
| 2336 |
+
"normalized": false,
|
| 2337 |
+
"rstrip": false,
|
| 2338 |
+
"single_word": false,
|
| 2339 |
+
"special": true
|
| 2340 |
+
},
|
| 2341 |
+
"151935": {
|
| 2342 |
+
"content": "<reserved_266>",
|
| 2343 |
+
"lstrip": false,
|
| 2344 |
+
"normalized": false,
|
| 2345 |
+
"rstrip": false,
|
| 2346 |
+
"single_word": false,
|
| 2347 |
+
"special": true
|
| 2348 |
}
|
| 2349 |
},
|
| 2350 |
"additional_special_tokens": [
|