File size: 4,433 Bytes
e0520d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from pathlib import Path
from transformers import AutoModelForCausalLM, AutoTokenizer
import tempfile
import traceback
import whisper
import librosa
import numpy as np
import torch
import outetts
import uvicorn
import base64
import io
import soundfile as sf
try:
INTERFACE = outetts.Interface(
config=outetts.ModelConfig(
model_path="models/v10",
tokenizer_path="models/v10",
audio_codec_path="models/dsp/weights_24khz_1.5kbps_v1.0.pth",
device="cuda",
dtype=torch.bfloat16,
)
)
except Exception as e:
raise RuntimeError(f"{e}")
asr_model = whisper.load_model("models/wpt/wpt.pt")
model_name = "models/lm"
tok = AutoTokenizer.from_pretrained(model_name)
lm = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="cuda",
).eval()
SPEAKER_WAV_PATH = Path(__file__).with_name("spk_001.wav")
def gt(audio: np.ndarray, sr: int):
ss = audio.squeeze().astype(np.float32)
if sr != 16_000:
ss = librosa.resample(audio, orig_sr=sr, target_sr=16_000)
result = asr_model.transcribe(ss, fp16=False, language=None)
return result["text"].strip()
def sample(rr: str) -> str:
if rr.strip() == "":
rr = "Hello "
inputs = tok(rr, return_tensors="pt").to(lm.device)
with torch.inference_mode():
out_ids = lm.generate(
**inputs,
max_new_tokens=45,
do_sample=True,
temperature=0.2,
repetition_penalty=1.1,
top_k=100,
top_p=0.95,
)
return tok.decode(
out_ids[0][inputs.input_ids.shape[-1] :], skip_special_tokens=True
)
INITIALIZATION_STATUS = {"model_loaded": True, "error": None}
class GenerateRequest(BaseModel):
audio_data: str = Field(
...,
description="",
)
sample_rate: int = Field(..., description="")
class GenerateResponse(BaseModel):
audio_data: str = Field(..., description="")
app = FastAPI(title="V1", version="0.1")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def b64(b64: str) -> np.ndarray:
raw = base64.b64decode(b64)
return np.load(io.BytesIO(raw), allow_pickle=False)
def ab64(arr: np.ndarray, sr: int) -> str:
buf = io.BytesIO()
resampled = librosa.resample(arr, orig_sr=44100, target_sr=sr)
np.save(buf, resampled.astype(np.float32))
return base64.b64encode(buf.getvalue()).decode()
def gs(
audio: np.ndarray,
sr: int,
interface: outetts.Interface,
):
if audio.ndim == 2:
audio = audio.squeeze()
audio = audio.astype("float32")
max_samples = int(15.0 * sr)
if audio.shape[-1] > max_samples:
audio = audio[-max_samples:]
with tempfile.NamedTemporaryFile(suffix=".wav", dir="/tmp", delete=False) as f:
sf.write(f.name, audio, sr)
speaker = interface.create_speaker(
f.name,
whisper_model="models/wpt/wpt.pt",
)
return speaker
@app.get("/api/v1/health")
def health_check():
"""Health check endpoint"""
status = {
"status": "healthy",
"model_loaded": INITIALIZATION_STATUS["model_loaded"],
"error": INITIALIZATION_STATUS["error"],
}
return status
@app.post("/api/v1/inference", response_model=GenerateResponse)
def generate_audio(req: GenerateRequest):
audio_np = b64(req.audio_data)
if audio_np.ndim == 1:
audio_np = audio_np.reshape(1, -1)
try:
text = gt(audio_np, req.sample_rate)
out = INTERFACE.generate(
config=outetts.GenerationConfig(
text=sample(text),
generation_type=outetts.GenerationType.CHUNKED,
speaker=gs(audio_np, req.sample_rate, INTERFACE),
sampler_config=outetts.SamplerConfig(),
)
)
audio_out = out.audio.squeeze().cpu().numpy()
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"{e}")
return GenerateResponse(audio_data=ab64(audio_out, req.sample_rate))
if __name__ == "__main__":
uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=False)
|