File size: 4,433 Bytes
e0520d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from pathlib import Path
from transformers import AutoModelForCausalLM, AutoTokenizer
import tempfile
import traceback
import whisper
import librosa
import numpy as np
import torch
import outetts
import uvicorn
import base64
import io
import soundfile as sf

try:
    INTERFACE = outetts.Interface(
        config=outetts.ModelConfig(
            model_path="models/v10",
            tokenizer_path="models/v10",
            audio_codec_path="models/dsp/weights_24khz_1.5kbps_v1.0.pth",
            device="cuda",
            dtype=torch.bfloat16,
        )
    )
except Exception as e:
    raise RuntimeError(f"{e}")

asr_model = whisper.load_model("models/wpt/wpt.pt")
model_name = "models/lm"
tok = AutoTokenizer.from_pretrained(model_name)
lm = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="cuda",
).eval()
SPEAKER_WAV_PATH = Path(__file__).with_name("spk_001.wav")


def gt(audio: np.ndarray, sr: int):
    ss = audio.squeeze().astype(np.float32)
    if sr != 16_000:
        ss = librosa.resample(audio, orig_sr=sr, target_sr=16_000)

    result = asr_model.transcribe(ss, fp16=False, language=None)
    return result["text"].strip()


def sample(rr: str) -> str:
    if rr.strip() == "":
        rr = "Hello "

    inputs = tok(rr, return_tensors="pt").to(lm.device)

    with torch.inference_mode():
        out_ids = lm.generate(
            **inputs,
            max_new_tokens=45,
            do_sample=True,
            temperature=0.2,
            repetition_penalty=1.1,
            top_k=100,
            top_p=0.95,
        )

    return tok.decode(
        out_ids[0][inputs.input_ids.shape[-1] :], skip_special_tokens=True
    )


INITIALIZATION_STATUS = {"model_loaded": True, "error": None}


class GenerateRequest(BaseModel):
    audio_data: str = Field(
        ...,
        description="",
    )
    sample_rate: int = Field(..., description="")


class GenerateResponse(BaseModel):
    audio_data: str = Field(..., description="")


app = FastAPI(title="V1", version="0.1")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


def b64(b64: str) -> np.ndarray:
    raw = base64.b64decode(b64)
    return np.load(io.BytesIO(raw), allow_pickle=False)


def ab64(arr: np.ndarray, sr: int) -> str:
    buf = io.BytesIO()
    resampled = librosa.resample(arr, orig_sr=44100, target_sr=sr)
    np.save(buf, resampled.astype(np.float32))
    return base64.b64encode(buf.getvalue()).decode()


def gs(
    audio: np.ndarray,
    sr: int,
    interface: outetts.Interface,
):
    if audio.ndim == 2:
        audio = audio.squeeze()
    audio = audio.astype("float32")
    max_samples = int(15.0 * sr)
    if audio.shape[-1] > max_samples:
        audio = audio[-max_samples:]

    with tempfile.NamedTemporaryFile(suffix=".wav", dir="/tmp", delete=False) as f:
        sf.write(f.name, audio, sr)
        speaker = interface.create_speaker(
            f.name,
            whisper_model="models/wpt/wpt.pt",
        )

    return speaker


@app.get("/api/v1/health")
def health_check():
    """Health check endpoint"""
    status = {
        "status": "healthy",
        "model_loaded": INITIALIZATION_STATUS["model_loaded"],
        "error": INITIALIZATION_STATUS["error"],
    }
    return status


@app.post("/api/v1/inference", response_model=GenerateResponse)
def generate_audio(req: GenerateRequest):
    audio_np = b64(req.audio_data)
    if audio_np.ndim == 1:
        audio_np = audio_np.reshape(1, -1)

    try:
        text = gt(audio_np, req.sample_rate)
        out = INTERFACE.generate(
            config=outetts.GenerationConfig(
                text=sample(text),
                generation_type=outetts.GenerationType.CHUNKED,
                speaker=gs(audio_np, req.sample_rate, INTERFACE),
                sampler_config=outetts.SamplerConfig(),
            )
        )
        audio_out = out.audio.squeeze().cpu().numpy()
    except Exception as e:
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"{e}")

    return GenerateResponse(audio_data=ab64(audio_out, req.sample_rate))


if __name__ == "__main__":
    uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=False)