Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,1425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
|
| 4 |
+
license: llama3.2
|
| 5 |
+
language:
|
| 6 |
+
- zh
|
| 7 |
+
- en
|
| 8 |
+
- it
|
| 9 |
+
- de
|
| 10 |
+
- fr
|
| 11 |
+
- ja
|
| 12 |
+
- ko
|
| 13 |
+
base_model:
|
| 14 |
+
- meta-llama/Llama-3.2-3B
|
| 15 |
+
- lianghsun/Llama-3.2-Taiwan-3B
|
| 16 |
+
datasets:
|
| 17 |
+
- lianghsun/tw-emergency-medicine-bench
|
| 18 |
+
- lianghsun/tw-legal-nlp
|
| 19 |
+
- lianghsun/tw-legal-synthetic-qa
|
| 20 |
+
- lianghsun/tw-law-article-qa
|
| 21 |
+
- lianghsun/tw-judgment-qa
|
| 22 |
+
- lianghsun/tw-judgment-gist-chat
|
| 23 |
+
- lianghsun/tw-bar-examination-2020-chat
|
| 24 |
+
- lianghsun/tw-structured-law-article
|
| 25 |
+
- lianghsun/tw-judgment-gist-chat
|
| 26 |
+
- lianghsun/tw-contract-review-chat
|
| 27 |
+
- lianghsun/reasoning-base-20k-chat
|
| 28 |
+
- lianghsun/vulnerability-mitigation-qa-zh_tw
|
| 29 |
+
- lianghsun/tw-instruct
|
| 30 |
+
- rombodawg/Everything_Instruct_Multilingual
|
| 31 |
+
- xzuyn/manythings-translations-alpaca
|
| 32 |
+
- neural-bridge/rag-dataset-12000
|
| 33 |
+
- minyichen/glaive_toolcall_zh_tw
|
| 34 |
+
pipeline_tag: text-generation
|
| 35 |
+
library_name: transformers
|
| 36 |
+
tags:
|
| 37 |
+
- Taiwan
|
| 38 |
+
- ROC
|
| 39 |
+
- zh-tw
|
| 40 |
+
- instruct
|
| 41 |
+
- chat
|
| 42 |
+
- llama3.2
|
| 43 |
+
- SLM
|
| 44 |
+
model-index:
|
| 45 |
+
- name: Llama-3.2-Taiwan-3B-Instruct
|
| 46 |
+
results:
|
| 47 |
+
- task:
|
| 48 |
+
type: text-generation
|
| 49 |
+
name: Single Choice Question
|
| 50 |
+
dataset:
|
| 51 |
+
type: lianghsun/tw-legal-benchmark-v1
|
| 52 |
+
name: tw-legal-benchmark-v1
|
| 53 |
+
metrics:
|
| 54 |
+
- name: single choice
|
| 55 |
+
type: accuracy
|
| 56 |
+
value: 31.1
|
| 57 |
+
- task:
|
| 58 |
+
type: text-generation
|
| 59 |
+
name: Single Choice Question
|
| 60 |
+
dataset:
|
| 61 |
+
type: lianghsun/Formosa-bench
|
| 62 |
+
name: (Society) Formosa Taiwan Knowledge Bench
|
| 63 |
+
config: society
|
| 64 |
+
split: test
|
| 65 |
+
revision: v2024.11.27
|
| 66 |
+
metrics:
|
| 67 |
+
- name: single choice
|
| 68 |
+
type: accuracy
|
| 69 |
+
value: 60.42
|
| 70 |
+
- task:
|
| 71 |
+
type: text-generation
|
| 72 |
+
name: Single Choice Question
|
| 73 |
+
dataset:
|
| 74 |
+
type: lianghsun/Formosa-bench
|
| 75 |
+
name: (Governmnt) Formosa Taiwan Knowledge Bench
|
| 76 |
+
config: governmnt
|
| 77 |
+
split: test
|
| 78 |
+
revision: v2024.11.27
|
| 79 |
+
metrics:
|
| 80 |
+
- name: single choice
|
| 81 |
+
type: accuracy
|
| 82 |
+
value: 44.25
|
| 83 |
+
- task:
|
| 84 |
+
type: text-generation
|
| 85 |
+
name: Single Choice Question
|
| 86 |
+
dataset:
|
| 87 |
+
type: lianghsun/Formosa-bench
|
| 88 |
+
name: (Geography) Formosa Taiwan Knowledge Bench
|
| 89 |
+
config: geography
|
| 90 |
+
split: test
|
| 91 |
+
revision: v2024.11.27
|
| 92 |
+
metrics:
|
| 93 |
+
- name: single choice
|
| 94 |
+
type: accuracy
|
| 95 |
+
value: 47.54
|
| 96 |
+
- task:
|
| 97 |
+
type: text-generation
|
| 98 |
+
name: Single Choice Question
|
| 99 |
+
dataset:
|
| 100 |
+
type: lianghsun/Formosa-bench
|
| 101 |
+
name: (History) Formosa Taiwan Knowledge Bench
|
| 102 |
+
config: history
|
| 103 |
+
split: test
|
| 104 |
+
revision: v2024.11.27
|
| 105 |
+
metrics:
|
| 106 |
+
- name: single choice
|
| 107 |
+
type: accuracy
|
| 108 |
+
value: 60
|
| 109 |
+
- task:
|
| 110 |
+
type: question-answering
|
| 111 |
+
name: Single Choice Question
|
| 112 |
+
dataset:
|
| 113 |
+
type: ikala/tmmluplus
|
| 114 |
+
name: (geography_of_taiwan) tmmlu++
|
| 115 |
+
config: geography_of_taiwan
|
| 116 |
+
split: test
|
| 117 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 118 |
+
metrics:
|
| 119 |
+
- name: single choice
|
| 120 |
+
type: accuracy
|
| 121 |
+
value: 36.2
|
| 122 |
+
- task:
|
| 123 |
+
type: question-answering
|
| 124 |
+
name: Single Choice Question
|
| 125 |
+
dataset:
|
| 126 |
+
type: ikala/tmmluplus
|
| 127 |
+
name: (dentistry) tmmlu++
|
| 128 |
+
config: dentistry
|
| 129 |
+
split: test
|
| 130 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 131 |
+
metrics:
|
| 132 |
+
- name: single choice
|
| 133 |
+
type: accuracy
|
| 134 |
+
value: 33.83
|
| 135 |
+
- task:
|
| 136 |
+
type: question-answering
|
| 137 |
+
name: Single Choice Question
|
| 138 |
+
dataset:
|
| 139 |
+
type: ikala/tmmluplus
|
| 140 |
+
name: (technical) tmmlu++
|
| 141 |
+
config: technical
|
| 142 |
+
split: test
|
| 143 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 144 |
+
metrics:
|
| 145 |
+
- name: single choice
|
| 146 |
+
type: accuracy
|
| 147 |
+
value: 35.07
|
| 148 |
+
- task:
|
| 149 |
+
type: question-answering
|
| 150 |
+
name: Single Choice Question
|
| 151 |
+
dataset:
|
| 152 |
+
type: ikala/tmmluplus
|
| 153 |
+
name: (statistics_and_machine_learning) tmmlu++
|
| 154 |
+
config: statistics_and_machine_learning
|
| 155 |
+
split: test
|
| 156 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 157 |
+
metrics:
|
| 158 |
+
- name: single choice
|
| 159 |
+
type: accuracy
|
| 160 |
+
value: 28.57
|
| 161 |
+
- task:
|
| 162 |
+
type: question-answering
|
| 163 |
+
name: Single Choice Question
|
| 164 |
+
dataset:
|
| 165 |
+
type: ikala/tmmluplus
|
| 166 |
+
name: (clinical_psychology) tmmlu++
|
| 167 |
+
config: clinical_psychology
|
| 168 |
+
split: test
|
| 169 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 170 |
+
metrics:
|
| 171 |
+
- name: single choice
|
| 172 |
+
type: accuracy
|
| 173 |
+
value: 29.6
|
| 174 |
+
- task:
|
| 175 |
+
type: question-answering
|
| 176 |
+
name: Single Choice Question
|
| 177 |
+
dataset:
|
| 178 |
+
type: ikala/tmmluplus
|
| 179 |
+
name: (tve_design) tmmlu++
|
| 180 |
+
config: tve_design
|
| 181 |
+
split: test
|
| 182 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 183 |
+
metrics:
|
| 184 |
+
- name: single choice
|
| 185 |
+
type: accuracy
|
| 186 |
+
value: 38.54
|
| 187 |
+
- task:
|
| 188 |
+
type: question-answering
|
| 189 |
+
name: Single Choice Question
|
| 190 |
+
dataset:
|
| 191 |
+
type: ikala/tmmluplus
|
| 192 |
+
name: (three_principles_of_people) tmmlu++
|
| 193 |
+
config: three_principles_of_people
|
| 194 |
+
split: test
|
| 195 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 196 |
+
metrics:
|
| 197 |
+
- name: single choice
|
| 198 |
+
type: accuracy
|
| 199 |
+
value: 48.2
|
| 200 |
+
- task:
|
| 201 |
+
type: question-answering
|
| 202 |
+
name: Single Choice Question
|
| 203 |
+
dataset:
|
| 204 |
+
type: ikala/tmmluplus
|
| 205 |
+
name: (introduction_to_law) tmmlu++
|
| 206 |
+
config: introduction_to_law
|
| 207 |
+
split: test
|
| 208 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 209 |
+
metrics:
|
| 210 |
+
- name: single choice
|
| 211 |
+
type: accuracy
|
| 212 |
+
value: 29.96
|
| 213 |
+
- task:
|
| 214 |
+
type: question-answering
|
| 215 |
+
name: Single Choice Question
|
| 216 |
+
dataset:
|
| 217 |
+
type: ikala/tmmluplus
|
| 218 |
+
name: (linear_algebra) tmmlu++
|
| 219 |
+
config: linear_algebra
|
| 220 |
+
split: test
|
| 221 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 222 |
+
metrics:
|
| 223 |
+
- name: single choice
|
| 224 |
+
type: accuracy
|
| 225 |
+
value: 21.43
|
| 226 |
+
- task:
|
| 227 |
+
type: question-answering
|
| 228 |
+
name: Single Choice Question
|
| 229 |
+
dataset:
|
| 230 |
+
type: ikala/tmmluplus
|
| 231 |
+
name: (agriculture) tmmlu++
|
| 232 |
+
config: agriculture
|
| 233 |
+
split: test
|
| 234 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 235 |
+
metrics:
|
| 236 |
+
- name: single choice
|
| 237 |
+
type: accuracy
|
| 238 |
+
value: 24.5
|
| 239 |
+
- task:
|
| 240 |
+
type: question-answering
|
| 241 |
+
name: Single Choice Question
|
| 242 |
+
dataset:
|
| 243 |
+
type: ikala/tmmluplus
|
| 244 |
+
name: (jce_humanities) tmmlu++
|
| 245 |
+
config: jce_humanities
|
| 246 |
+
split: test
|
| 247 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 248 |
+
metrics:
|
| 249 |
+
- name: single choice
|
| 250 |
+
type: accuracy
|
| 251 |
+
value: 38.89
|
| 252 |
+
- task:
|
| 253 |
+
type: question-answering
|
| 254 |
+
name: Single Choice Question
|
| 255 |
+
dataset:
|
| 256 |
+
type: ikala/tmmluplus
|
| 257 |
+
name: (music) tmmlu++
|
| 258 |
+
config: music
|
| 259 |
+
split: test
|
| 260 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 261 |
+
metrics:
|
| 262 |
+
- name: single choice
|
| 263 |
+
type: accuracy
|
| 264 |
+
value: 25.9
|
| 265 |
+
- task:
|
| 266 |
+
type: question-answering
|
| 267 |
+
name: Single Choice Question
|
| 268 |
+
dataset:
|
| 269 |
+
type: ikala/tmmluplus
|
| 270 |
+
name: (secondary_physics) tmmlu++
|
| 271 |
+
config: secondary_physics
|
| 272 |
+
split: test
|
| 273 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 274 |
+
metrics:
|
| 275 |
+
- name: single choice
|
| 276 |
+
type: accuracy
|
| 277 |
+
value: 33.04
|
| 278 |
+
- task:
|
| 279 |
+
type: question-answering
|
| 280 |
+
name: Single Choice Question
|
| 281 |
+
dataset:
|
| 282 |
+
type: ikala/tmmluplus
|
| 283 |
+
name: (physics) tmmlu++
|
| 284 |
+
config: physics
|
| 285 |
+
split: test
|
| 286 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 287 |
+
metrics:
|
| 288 |
+
- name: single choice
|
| 289 |
+
type: accuracy
|
| 290 |
+
value: 27.84
|
| 291 |
+
- task:
|
| 292 |
+
type: question-answering
|
| 293 |
+
name: Single Choice Question
|
| 294 |
+
dataset:
|
| 295 |
+
type: ikala/tmmluplus
|
| 296 |
+
name: (advance_chemistry) tmmlu++
|
| 297 |
+
config: advance_chemistry
|
| 298 |
+
split: test
|
| 299 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 300 |
+
metrics:
|
| 301 |
+
- name: single choice
|
| 302 |
+
type: accuracy
|
| 303 |
+
value: 27.64
|
| 304 |
+
- task:
|
| 305 |
+
type: question-answering
|
| 306 |
+
name: Single Choice Question
|
| 307 |
+
dataset:
|
| 308 |
+
type: ikala/tmmluplus
|
| 309 |
+
name: (junior_science_exam) tmmlu++
|
| 310 |
+
config: junior_science_exam
|
| 311 |
+
split: test
|
| 312 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 313 |
+
metrics:
|
| 314 |
+
- name: single choice
|
| 315 |
+
type: accuracy
|
| 316 |
+
value: 30.05
|
| 317 |
+
- task:
|
| 318 |
+
type: question-answering
|
| 319 |
+
name: Single Choice Question
|
| 320 |
+
dataset:
|
| 321 |
+
type: ikala/tmmluplus
|
| 322 |
+
name: (veterinary_pathology) tmmlu++
|
| 323 |
+
config: veterinary_pathology
|
| 324 |
+
split: test
|
| 325 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 326 |
+
metrics:
|
| 327 |
+
- name: single choice
|
| 328 |
+
type: accuracy
|
| 329 |
+
value: 25.09
|
| 330 |
+
- task:
|
| 331 |
+
type: question-answering
|
| 332 |
+
name: Single Choice Question
|
| 333 |
+
dataset:
|
| 334 |
+
type: ikala/tmmluplus
|
| 335 |
+
name: (financial_analysis) tmmlu++
|
| 336 |
+
config: financial_analysis
|
| 337 |
+
split: test
|
| 338 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 339 |
+
metrics:
|
| 340 |
+
- name: single choice
|
| 341 |
+
type: accuracy
|
| 342 |
+
value: 25.13
|
| 343 |
+
- task:
|
| 344 |
+
type: question-answering
|
| 345 |
+
name: Single Choice Question
|
| 346 |
+
dataset:
|
| 347 |
+
type: ikala/tmmluplus
|
| 348 |
+
name: (national_protection) tmmlu++
|
| 349 |
+
config: national_protection
|
| 350 |
+
split: test
|
| 351 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 352 |
+
metrics:
|
| 353 |
+
- name: single choice
|
| 354 |
+
type: accuracy
|
| 355 |
+
value: 42.65
|
| 356 |
+
- task:
|
| 357 |
+
type: question-answering
|
| 358 |
+
name: Single Choice Question
|
| 359 |
+
dataset:
|
| 360 |
+
type: ikala/tmmluplus
|
| 361 |
+
name: (macroeconomics) tmmlu++
|
| 362 |
+
config: macroeconomics
|
| 363 |
+
split: test
|
| 364 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 365 |
+
metrics:
|
| 366 |
+
- name: single choice
|
| 367 |
+
type: accuracy
|
| 368 |
+
value: 26.76
|
| 369 |
+
- task:
|
| 370 |
+
type: question-answering
|
| 371 |
+
name: Single Choice Question
|
| 372 |
+
dataset:
|
| 373 |
+
type: ikala/tmmluplus
|
| 374 |
+
name: (politic_science) tmmlu++
|
| 375 |
+
config: politic_science
|
| 376 |
+
split: test
|
| 377 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 378 |
+
metrics:
|
| 379 |
+
- name: single choice
|
| 380 |
+
type: accuracy
|
| 381 |
+
value: 27.44
|
| 382 |
+
- task:
|
| 383 |
+
type: question-answering
|
| 384 |
+
name: Single Choice Question
|
| 385 |
+
dataset:
|
| 386 |
+
type: ikala/tmmluplus
|
| 387 |
+
name: (ttqav2) tmmlu++
|
| 388 |
+
config: ttqav2
|
| 389 |
+
split: test
|
| 390 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 391 |
+
metrics:
|
| 392 |
+
- name: single choice
|
| 393 |
+
type: accuracy
|
| 394 |
+
value: 61.06
|
| 395 |
+
- task:
|
| 396 |
+
type: question-answering
|
| 397 |
+
name: Single Choice Question
|
| 398 |
+
dataset:
|
| 399 |
+
type: ikala/tmmluplus
|
| 400 |
+
name: (junior_chinese_exam) tmmlu++
|
| 401 |
+
config: junior_chinese_exam
|
| 402 |
+
split: test
|
| 403 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 404 |
+
metrics:
|
| 405 |
+
- name: single choice
|
| 406 |
+
type: accuracy
|
| 407 |
+
value: 30.86
|
| 408 |
+
- task:
|
| 409 |
+
type: question-answering
|
| 410 |
+
name: Single Choice Question
|
| 411 |
+
dataset:
|
| 412 |
+
type: ikala/tmmluplus
|
| 413 |
+
name: (traditional_chinese_medicine_clinical_medicine) tmmlu++
|
| 414 |
+
config: traditional_chinese_medicine_clinical_medicine
|
| 415 |
+
split: test
|
| 416 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 417 |
+
metrics:
|
| 418 |
+
- name: single choice
|
| 419 |
+
type: accuracy
|
| 420 |
+
value: 25.9
|
| 421 |
+
- task:
|
| 422 |
+
type: question-answering
|
| 423 |
+
name: Single Choice Question
|
| 424 |
+
dataset:
|
| 425 |
+
type: ikala/tmmluplus
|
| 426 |
+
name: (junior_math_exam) tmmlu++
|
| 427 |
+
config: junior_math_exam
|
| 428 |
+
split: test
|
| 429 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 430 |
+
metrics:
|
| 431 |
+
- name: single choice
|
| 432 |
+
type: accuracy
|
| 433 |
+
value: 21.71
|
| 434 |
+
- task:
|
| 435 |
+
type: question-answering
|
| 436 |
+
name: Single Choice Question
|
| 437 |
+
dataset:
|
| 438 |
+
type: ikala/tmmluplus
|
| 439 |
+
name: (auditing) tmmlu++
|
| 440 |
+
config: auditing
|
| 441 |
+
split: test
|
| 442 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 443 |
+
metrics:
|
| 444 |
+
- name: single choice
|
| 445 |
+
type: accuracy
|
| 446 |
+
value: 21.82
|
| 447 |
+
- task:
|
| 448 |
+
type: question-answering
|
| 449 |
+
name: Single Choice Question
|
| 450 |
+
dataset:
|
| 451 |
+
type: ikala/tmmluplus
|
| 452 |
+
name: (anti_money_laundering) tmmlu++
|
| 453 |
+
config: anti_money_laundering
|
| 454 |
+
split: test
|
| 455 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 456 |
+
metrics:
|
| 457 |
+
- name: single choice
|
| 458 |
+
type: accuracy
|
| 459 |
+
value: 37.31
|
| 460 |
+
- task:
|
| 461 |
+
type: question-answering
|
| 462 |
+
name: Single Choice Question
|
| 463 |
+
dataset:
|
| 464 |
+
type: ikala/tmmluplus
|
| 465 |
+
name: (pharmacology) tmmlu++
|
| 466 |
+
config: pharmacology
|
| 467 |
+
split: test
|
| 468 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 469 |
+
metrics:
|
| 470 |
+
- name: single choice
|
| 471 |
+
type: accuracy
|
| 472 |
+
value: 30.68
|
| 473 |
+
- task:
|
| 474 |
+
type: question-answering
|
| 475 |
+
name: Single Choice Question
|
| 476 |
+
dataset:
|
| 477 |
+
type: ikala/tmmluplus
|
| 478 |
+
name: (trust_practice) tmmlu++
|
| 479 |
+
config: trust_practice
|
| 480 |
+
split: test
|
| 481 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 482 |
+
metrics:
|
| 483 |
+
- name: single choice
|
| 484 |
+
type: accuracy
|
| 485 |
+
value: 28.18
|
| 486 |
+
- task:
|
| 487 |
+
type: question-answering
|
| 488 |
+
name: Single Choice Question
|
| 489 |
+
dataset:
|
| 490 |
+
type: ikala/tmmluplus
|
| 491 |
+
name: (tve_mathematics) tmmlu++
|
| 492 |
+
config: tve_mathematics
|
| 493 |
+
split: test
|
| 494 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 495 |
+
metrics:
|
| 496 |
+
- name: single choice
|
| 497 |
+
type: accuracy
|
| 498 |
+
value: 18.67
|
| 499 |
+
- task:
|
| 500 |
+
type: question-answering
|
| 501 |
+
name: Single Choice Question
|
| 502 |
+
dataset:
|
| 503 |
+
type: ikala/tmmluplus
|
| 504 |
+
name: (human_behavior) tmmlu++
|
| 505 |
+
config: human_behavior
|
| 506 |
+
split: test
|
| 507 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 508 |
+
metrics:
|
| 509 |
+
- name: single choice
|
| 510 |
+
type: accuracy
|
| 511 |
+
value: 32.04
|
| 512 |
+
- task:
|
| 513 |
+
type: question-answering
|
| 514 |
+
name: Single Choice Question
|
| 515 |
+
dataset:
|
| 516 |
+
type: ikala/tmmluplus
|
| 517 |
+
name: (pharmacy) tmmlu++
|
| 518 |
+
config: pharmacy
|
| 519 |
+
split: test
|
| 520 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 521 |
+
metrics:
|
| 522 |
+
- name: single choice
|
| 523 |
+
type: accuracy
|
| 524 |
+
value: 22.76
|
| 525 |
+
- task:
|
| 526 |
+
type: question-answering
|
| 527 |
+
name: Single Choice Question
|
| 528 |
+
dataset:
|
| 529 |
+
type: ikala/tmmluplus
|
| 530 |
+
name: (tve_chinese_language) tmmlu++
|
| 531 |
+
config: tve_chinese_language
|
| 532 |
+
split: test
|
| 533 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 534 |
+
metrics:
|
| 535 |
+
- name: single choice
|
| 536 |
+
type: accuracy
|
| 537 |
+
value: 36.65
|
| 538 |
+
- task:
|
| 539 |
+
type: question-answering
|
| 540 |
+
name: Single Choice Question
|
| 541 |
+
dataset:
|
| 542 |
+
type: ikala/tmmluplus
|
| 543 |
+
name: (optometry) tmmlu++
|
| 544 |
+
config: optometry
|
| 545 |
+
split: test
|
| 546 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 547 |
+
metrics:
|
| 548 |
+
- name: single choice
|
| 549 |
+
type: accuracy
|
| 550 |
+
value: 25.11
|
| 551 |
+
- task:
|
| 552 |
+
type: question-answering
|
| 553 |
+
name: Single Choice Question
|
| 554 |
+
dataset:
|
| 555 |
+
type: ikala/tmmluplus
|
| 556 |
+
name: (physical_education) tmmlu++
|
| 557 |
+
config: physical_education
|
| 558 |
+
split: test
|
| 559 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 560 |
+
metrics:
|
| 561 |
+
- name: single choice
|
| 562 |
+
type: accuracy
|
| 563 |
+
value: 30.73
|
| 564 |
+
- task:
|
| 565 |
+
type: question-answering
|
| 566 |
+
name: Single Choice Question
|
| 567 |
+
dataset:
|
| 568 |
+
type: ikala/tmmluplus
|
| 569 |
+
name: (organic_chemistry) tmmlu++
|
| 570 |
+
config: organic_chemistry
|
| 571 |
+
split: test
|
| 572 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 573 |
+
metrics:
|
| 574 |
+
- name: single choice
|
| 575 |
+
type: accuracy
|
| 576 |
+
value: 35.78
|
| 577 |
+
- task:
|
| 578 |
+
type: question-answering
|
| 579 |
+
name: Single Choice Question
|
| 580 |
+
dataset:
|
| 581 |
+
type: ikala/tmmluplus
|
| 582 |
+
name: (tve_natural_sciences) tmmlu++
|
| 583 |
+
config: tve_natural_sciences
|
| 584 |
+
split: test
|
| 585 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 586 |
+
metrics:
|
| 587 |
+
- name: single choice
|
| 588 |
+
type: accuracy
|
| 589 |
+
value: 33.73
|
| 590 |
+
- task:
|
| 591 |
+
type: question-answering
|
| 592 |
+
name: Single Choice Question
|
| 593 |
+
dataset:
|
| 594 |
+
type: ikala/tmmluplus
|
| 595 |
+
name: (education) tmmlu++
|
| 596 |
+
config: education
|
| 597 |
+
split: test
|
| 598 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 599 |
+
metrics:
|
| 600 |
+
- name: single choice
|
| 601 |
+
type: accuracy
|
| 602 |
+
value: 37.9
|
| 603 |
+
- task:
|
| 604 |
+
type: question-answering
|
| 605 |
+
name: Single Choice Question
|
| 606 |
+
dataset:
|
| 607 |
+
type: ikala/tmmluplus
|
| 608 |
+
name: (mechanical) tmmlu++
|
| 609 |
+
config: mechanical
|
| 610 |
+
split: test
|
| 611 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 612 |
+
metrics:
|
| 613 |
+
- name: single choice
|
| 614 |
+
type: accuracy
|
| 615 |
+
value: 42.37
|
| 616 |
+
- task:
|
| 617 |
+
type: question-answering
|
| 618 |
+
name: Single Choice Question
|
| 619 |
+
dataset:
|
| 620 |
+
type: ikala/tmmluplus
|
| 621 |
+
name: (taiwanese_hokkien) tmmlu++
|
| 622 |
+
config: taiwanese_hokkien
|
| 623 |
+
split: test
|
| 624 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 625 |
+
metrics:
|
| 626 |
+
- name: single choice
|
| 627 |
+
type: accuracy
|
| 628 |
+
value: 14.73
|
| 629 |
+
- task:
|
| 630 |
+
type: question-answering
|
| 631 |
+
name: Single Choice Question
|
| 632 |
+
dataset:
|
| 633 |
+
type: ikala/tmmluplus
|
| 634 |
+
name: (nautical_science) tmmlu++
|
| 635 |
+
config: nautical_science
|
| 636 |
+
split: test
|
| 637 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 638 |
+
metrics:
|
| 639 |
+
- name: single choice
|
| 640 |
+
type: accuracy
|
| 641 |
+
value: 30.49
|
| 642 |
+
- task:
|
| 643 |
+
type: question-answering
|
| 644 |
+
name: Single Choice Question
|
| 645 |
+
dataset:
|
| 646 |
+
type: ikala/tmmluplus
|
| 647 |
+
name: (business_management) tmmlu++
|
| 648 |
+
config: business_management
|
| 649 |
+
split: test
|
| 650 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 651 |
+
metrics:
|
| 652 |
+
- name: single choice
|
| 653 |
+
type: accuracy
|
| 654 |
+
value: 39.57
|
| 655 |
+
- task:
|
| 656 |
+
type: question-answering
|
| 657 |
+
name: Single Choice Question
|
| 658 |
+
dataset:
|
| 659 |
+
type: ikala/tmmluplus
|
| 660 |
+
name: (logic_reasoning) tmmlu++
|
| 661 |
+
config: logic_reasoning
|
| 662 |
+
split: test
|
| 663 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 664 |
+
metrics:
|
| 665 |
+
- name: single choice
|
| 666 |
+
type: accuracy
|
| 667 |
+
value: 27.34
|
| 668 |
+
- task:
|
| 669 |
+
type: question-answering
|
| 670 |
+
name: Single Choice Question
|
| 671 |
+
dataset:
|
| 672 |
+
type: ikala/tmmluplus
|
| 673 |
+
name: (marketing_management) tmmlu++
|
| 674 |
+
config: marketing_management
|
| 675 |
+
split: test
|
| 676 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 677 |
+
metrics:
|
| 678 |
+
- name: single choice
|
| 679 |
+
type: accuracy
|
| 680 |
+
value: 39.78
|
| 681 |
+
- task:
|
| 682 |
+
type: question-answering
|
| 683 |
+
name: Single Choice Question
|
| 684 |
+
dataset:
|
| 685 |
+
type: ikala/tmmluplus
|
| 686 |
+
name: (economics) tmmlu++
|
| 687 |
+
config: economics
|
| 688 |
+
split: test
|
| 689 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 690 |
+
metrics:
|
| 691 |
+
- name: single choice
|
| 692 |
+
type: accuracy
|
| 693 |
+
value: 25.95
|
| 694 |
+
- task:
|
| 695 |
+
type: question-answering
|
| 696 |
+
name: Single Choice Question
|
| 697 |
+
dataset:
|
| 698 |
+
type: ikala/tmmluplus
|
| 699 |
+
name: (basic_medical_science) tmmlu++
|
| 700 |
+
config: basic_medical_science
|
| 701 |
+
split: test
|
| 702 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 703 |
+
metrics:
|
| 704 |
+
- name: single choice
|
| 705 |
+
type: accuracy
|
| 706 |
+
value: 28.41
|
| 707 |
+
- task:
|
| 708 |
+
type: question-answering
|
| 709 |
+
name: Single Choice Question
|
| 710 |
+
dataset:
|
| 711 |
+
type: ikala/tmmluplus
|
| 712 |
+
name: (occupational_therapy_for_psychological_disorders) tmmlu++
|
| 713 |
+
config: occupational_therapy_for_psychological_disorders
|
| 714 |
+
split: test
|
| 715 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 716 |
+
metrics:
|
| 717 |
+
- name: single choice
|
| 718 |
+
type: accuracy
|
| 719 |
+
value: 35.73
|
| 720 |
+
- task:
|
| 721 |
+
type: question-answering
|
| 722 |
+
name: Single Choice Question
|
| 723 |
+
dataset:
|
| 724 |
+
type: ikala/tmmluplus
|
| 725 |
+
name: (general_principles_of_law) tmmlu++
|
| 726 |
+
config: general_principles_of_law
|
| 727 |
+
split: test
|
| 728 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 729 |
+
metrics:
|
| 730 |
+
- name: single choice
|
| 731 |
+
type: accuracy
|
| 732 |
+
value: 31.13
|
| 733 |
+
- task:
|
| 734 |
+
type: question-answering
|
| 735 |
+
name: Single Choice Question
|
| 736 |
+
dataset:
|
| 737 |
+
type: ikala/tmmluplus
|
| 738 |
+
name: (junior_chemistry) tmmlu++
|
| 739 |
+
config: junior_chemistry
|
| 740 |
+
split: test
|
| 741 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 742 |
+
metrics:
|
| 743 |
+
- name: single choice
|
| 744 |
+
type: accuracy
|
| 745 |
+
value: 24.88
|
| 746 |
+
- task:
|
| 747 |
+
type: question-answering
|
| 748 |
+
name: Single Choice Question
|
| 749 |
+
dataset:
|
| 750 |
+
type: ikala/tmmluplus
|
| 751 |
+
name: (veterinary_pharmacology) tmmlu++
|
| 752 |
+
config: veterinary_pharmacology
|
| 753 |
+
split: test
|
| 754 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 755 |
+
metrics:
|
| 756 |
+
- name: single choice
|
| 757 |
+
type: accuracy
|
| 758 |
+
value: 36.3
|
| 759 |
+
- task:
|
| 760 |
+
type: question-answering
|
| 761 |
+
name: Single Choice Question
|
| 762 |
+
dataset:
|
| 763 |
+
type: ikala/tmmluplus
|
| 764 |
+
name: (educational_psychology) tmmlu++
|
| 765 |
+
config: educational_psychology
|
| 766 |
+
split: test
|
| 767 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 768 |
+
metrics:
|
| 769 |
+
- name: single choice
|
| 770 |
+
type: accuracy
|
| 771 |
+
value: 33.52
|
| 772 |
+
- task:
|
| 773 |
+
type: question-answering
|
| 774 |
+
name: Single Choice Question
|
| 775 |
+
dataset:
|
| 776 |
+
type: ikala/tmmluplus
|
| 777 |
+
name: (finance_banking) tmmlu++
|
| 778 |
+
config: finance_banking
|
| 779 |
+
split: test
|
| 780 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 781 |
+
metrics:
|
| 782 |
+
- name: single choice
|
| 783 |
+
type: accuracy
|
| 784 |
+
value: 32.59
|
| 785 |
+
- task:
|
| 786 |
+
type: question-answering
|
| 787 |
+
name: Single Choice Question
|
| 788 |
+
dataset:
|
| 789 |
+
type: ikala/tmmluplus
|
| 790 |
+
name: (official_document_management) tmmlu++
|
| 791 |
+
config: official_document_management
|
| 792 |
+
split: test
|
| 793 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 794 |
+
metrics:
|
| 795 |
+
- name: single choice
|
| 796 |
+
type: accuracy
|
| 797 |
+
value: 32.43
|
| 798 |
+
- task:
|
| 799 |
+
type: question-answering
|
| 800 |
+
name: Single Choice Question
|
| 801 |
+
dataset:
|
| 802 |
+
type: ikala/tmmluplus
|
| 803 |
+
name: (fire_science) tmmlu++
|
| 804 |
+
config: fire_science
|
| 805 |
+
split: test
|
| 806 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 807 |
+
metrics:
|
| 808 |
+
- name: single choice
|
| 809 |
+
type: accuracy
|
| 810 |
+
value: 30.65
|
| 811 |
+
- task:
|
| 812 |
+
type: question-answering
|
| 813 |
+
name: Single Choice Question
|
| 814 |
+
dataset:
|
| 815 |
+
type: ikala/tmmluplus
|
| 816 |
+
name: (junior_social_studies) tmmlu++
|
| 817 |
+
config: junior_social_studies
|
| 818 |
+
split: test
|
| 819 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 820 |
+
metrics:
|
| 821 |
+
- name: single choice
|
| 822 |
+
type: accuracy
|
| 823 |
+
value: 47.62
|
| 824 |
+
- task:
|
| 825 |
+
type: question-answering
|
| 826 |
+
name: Single Choice Question
|
| 827 |
+
dataset:
|
| 828 |
+
type: ikala/tmmluplus
|
| 829 |
+
name: (accounting) tmmlu++
|
| 830 |
+
config: accounting
|
| 831 |
+
split: test
|
| 832 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 833 |
+
metrics:
|
| 834 |
+
- name: single choice
|
| 835 |
+
type: accuracy
|
| 836 |
+
value: 20.94
|
| 837 |
+
- task:
|
| 838 |
+
type: question-answering
|
| 839 |
+
name: Single Choice Question
|
| 840 |
+
dataset:
|
| 841 |
+
type: ikala/tmmluplus
|
| 842 |
+
name: (engineering_math) tmmlu++
|
| 843 |
+
config: engineering_math
|
| 844 |
+
split: test
|
| 845 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 846 |
+
metrics:
|
| 847 |
+
- name: single choice
|
| 848 |
+
type: accuracy
|
| 849 |
+
value: 27.18
|
| 850 |
+
- task:
|
| 851 |
+
type: question-answering
|
| 852 |
+
name: Single Choice Question
|
| 853 |
+
dataset:
|
| 854 |
+
type: ikala/tmmluplus
|
| 855 |
+
name: (education_(profession_level)) tmmlu++
|
| 856 |
+
config: education_(profession_level)
|
| 857 |
+
split: test
|
| 858 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 859 |
+
metrics:
|
| 860 |
+
- name: single choice
|
| 861 |
+
type: accuracy
|
| 862 |
+
value: 24.07
|
| 863 |
+
- task:
|
| 864 |
+
type: question-answering
|
| 865 |
+
name: Single Choice Question
|
| 866 |
+
dataset:
|
| 867 |
+
type: ikala/tmmluplus
|
| 868 |
+
name: (chinese_language_and_literature) tmmlu++
|
| 869 |
+
config: chinese_language_and_literature
|
| 870 |
+
split: test
|
| 871 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 872 |
+
metrics:
|
| 873 |
+
- name: single choice
|
| 874 |
+
type: accuracy
|
| 875 |
+
value: 27.64
|
| 876 |
+
- task:
|
| 877 |
+
type: question-answering
|
| 878 |
+
name: Single Choice Question
|
| 879 |
+
dataset:
|
| 880 |
+
type: ikala/tmmluplus
|
| 881 |
+
name: (management_accounting) tmmlu++
|
| 882 |
+
config: management_accounting
|
| 883 |
+
split: test
|
| 884 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 885 |
+
metrics:
|
| 886 |
+
- name: single choice
|
| 887 |
+
type: accuracy
|
| 888 |
+
value: 24.19
|
| 889 |
+
- task:
|
| 890 |
+
type: question-answering
|
| 891 |
+
name: Single Choice Question
|
| 892 |
+
dataset:
|
| 893 |
+
type: ikala/tmmluplus
|
| 894 |
+
name: (culinary_skills) tmmlu++
|
| 895 |
+
config: culinary_skills
|
| 896 |
+
split: test
|
| 897 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 898 |
+
metrics:
|
| 899 |
+
- name: single choice
|
| 900 |
+
type: accuracy
|
| 901 |
+
value: 39.38
|
| 902 |
+
- task:
|
| 903 |
+
type: question-answering
|
| 904 |
+
name: Single Choice Question
|
| 905 |
+
dataset:
|
| 906 |
+
type: ikala/tmmluplus
|
| 907 |
+
name: (administrative_law) tmmlu++
|
| 908 |
+
config: administrative_law
|
| 909 |
+
split: test
|
| 910 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 911 |
+
metrics:
|
| 912 |
+
- name: single choice
|
| 913 |
+
type: accuracy
|
| 914 |
+
value: 25.71
|
| 915 |
+
- task:
|
| 916 |
+
type: question-answering
|
| 917 |
+
name: Single Choice Question
|
| 918 |
+
dataset:
|
| 919 |
+
type: ikala/tmmluplus
|
| 920 |
+
name: (insurance_studies) tmmlu++
|
| 921 |
+
config: insurance_studies
|
| 922 |
+
split: test
|
| 923 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 924 |
+
metrics:
|
| 925 |
+
- name: single choice
|
| 926 |
+
type: accuracy
|
| 927 |
+
value: 33.42
|
| 928 |
+
- task:
|
| 929 |
+
type: question-answering
|
| 930 |
+
name: Single Choice Question
|
| 931 |
+
dataset:
|
| 932 |
+
type: ikala/tmmluplus
|
| 933 |
+
name: (real_estate) tmmlu++
|
| 934 |
+
config: real_estate
|
| 935 |
+
split: test
|
| 936 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 937 |
+
metrics:
|
| 938 |
+
- name: single choice
|
| 939 |
+
type: accuracy
|
| 940 |
+
value: 22.83
|
| 941 |
+
- task:
|
| 942 |
+
type: question-answering
|
| 943 |
+
name: Single Choice Question
|
| 944 |
+
dataset:
|
| 945 |
+
type: ikala/tmmluplus
|
| 946 |
+
name: (computer_science) tmmlu++
|
| 947 |
+
config: computer_science
|
| 948 |
+
split: test
|
| 949 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 950 |
+
metrics:
|
| 951 |
+
- name: single choice
|
| 952 |
+
type: accuracy
|
| 953 |
+
value: 31.61
|
| 954 |
+
- task:
|
| 955 |
+
type: question-answering
|
| 956 |
+
name: Single Choice Question
|
| 957 |
+
dataset:
|
| 958 |
+
type: ikala/tmmluplus
|
| 959 |
+
name: (taxation) tmmlu++
|
| 960 |
+
config: taxation
|
| 961 |
+
split: test
|
| 962 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 963 |
+
metrics:
|
| 964 |
+
- name: single choice
|
| 965 |
+
type: accuracy
|
| 966 |
+
value: 27.47
|
| 967 |
+
- task:
|
| 968 |
+
type: question-answering
|
| 969 |
+
name: Single Choice Question
|
| 970 |
+
dataset:
|
| 971 |
+
type: ikala/tmmluplus
|
| 972 |
+
name: (trade) tmmlu++
|
| 973 |
+
config: trade
|
| 974 |
+
split: test
|
| 975 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 976 |
+
metrics:
|
| 977 |
+
- name: single choice
|
| 978 |
+
type: accuracy
|
| 979 |
+
value: 20.32
|
| 980 |
+
widget:
|
| 981 |
+
- text: 中華民國憲法第一條
|
| 982 |
+
metrics:
|
| 983 |
+
- accuracy
|
| 984 |
+
|
| 985 |
+
---
|
| 986 |
+
|
| 987 |
+
[](https://hf.co/QuantFactory)
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
# QuantFactory/Llama-3.2-Taiwan-3B-Instruct-GGUF
|
| 991 |
+
This is quantized version of [lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct) created using llama.cpp
|
| 992 |
+
|
| 993 |
+
# Original Model Card
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
# Model Card for lianghsun/Llama-3.2-Taiwan-3B-Instruct
|
| 997 |
+
|
| 998 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 999 |
+
<a href="https://discord.gg/fj6WbHMvfs" target="_blank">[Discord]</a>
|
| 1000 |
+
|
| 1001 |
+

|
| 1002 |
+
*圖像生成來自 [OpenArt](https://openart.ai/home):An anime-style 🦙 standing proudly atop the summit of Taiwan’s [Yushan (Jade Mountain)](https://zh.wikipedia.org/wiki/%E7%8E%89%E5%B1%B1), gazing forward.*
|
| 1003 |
+
|
| 1004 |
+
採用 [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) 為[基礎模型(foundation model)](https://en.wikipedia.org/wiki/Foundation_model),使用大量[中華民國台灣](https://zh.wikipedia.org/zh-tw/%E8%87%BA%E7%81%A3)的繁體中文對話集和多國語言對話集進行模型[指令微調(instruction fine-tuning)](https://www.ibm.com/topics/instruction-tuning)和多輪迭代[直接偏好優化(direct preference optimization, DPO)](https://arxiv.org/abs/2305.18290),旨在訓練出具有中華民國台灣知識及風格的[小語言模型(small langugae model, SLM)](https://www.ibm.com/think/topics/small-language-models)之對話模型。
|
| 1005 |
+
|
| 1006 |
+
<details>
|
| 1007 |
+
<summary><b>Model Change Log</b></summary>
|
| 1008 |
+
|
| 1009 |
+
| Update Date | Model Version | Key Changes |
|
| 1010 |
+
|--------------|-----------------------|-------------------------------------|
|
| 1011 |
+
| 2025/01/01 | v2025.01.01 | Fine-tuning is based on the [foundation model](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) version v2024.12.28, and it uses self-prepared instruction datasets for this round of fine-tuning. |
|
| 1012 |
+
| 2024/12/13 | v2024.12.13 | Completed 1st round DPO training (10/10 epochs). Preparing for next round DPO training. |
|
| 1013 |
+
| 2024/11/27 | v2024.11.27 | Completed SFT training (5/5 epochs). Preparing for multi-round DPO training. |
|
| 1014 |
+
| 2024/11/25 | v2024.11.25 | Updated model version to v2024.11.25, training progressed to (3/5) epochs. Still in SFT stage, DPO training remains pending. |
|
| 1015 |
+
| 2024/11/22 | v2024.11.22 | Initial upload: Model version v2024.11.22, training completed up to (1/5) epochs. Currently trained only on SFT, DPO training not yet performed. |
|
| 1016 |
+
|
| 1017 |
+
</details>
|
| 1018 |
+
|
| 1019 |
+
## Model Details
|
| 1020 |
+
|
| 1021 |
+
### Model Description
|
| 1022 |
+
|
| 1023 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 1024 |
+
- **Developed by:** [Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
|
| 1025 |
+
- **Model type:** LlamaForCausalLM
|
| 1026 |
+
- **Language(s) (NLP):** Tranditional Chinese (zh-tw), English
|
| 1027 |
+
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)
|
| 1028 |
+
- **Fine-tuned from model:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B)
|
| 1029 |
+
|
| 1030 |
+
### Model Sources
|
| 1031 |
+
|
| 1032 |
+
<!-- Provide the basic links for the model. -->
|
| 1033 |
+
- **Repository:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B)
|
| 1034 |
+
- **Paper:** (WIP, show me the time)
|
| 1035 |
+
- **Playground:** [🦉 Tawian SmolLM Chat](https://huggingface.co/spaces/lianghsun/tw-smol-chat) 👈🏼 來玩看看 😻
|
| 1036 |
+
- **Demo:**
|
| 1037 |
+
```yaml
|
| 1038 |
+
user: 請介紹台灣
|
| 1039 |
+
assistant: 台灣,位於亞洲東部,地處太平洋與菲律賓海之間,面積約36,000平方公里,人口約2,300萬,是民主自由的國家,經濟實力強勁,擁有世界第10大經濟體。台灣以美食、文化、自然美景著稱,還有豐富的歷史與傳統,吸引全球遊客。台灣語為官方語言,但中文也廣為使用,英語也常用於國際交流。台灣政治多元,執政黨為民進黨,��灣是全球科技產業的重鎮,擁有先進的製造業與服務業。台灣氣候溫暖潮濕,四季分明,夏季炎熱,冬季涼爽,雨季則在5月至10月。台灣的美食以小吃為主,如滷肉飯、珍珠
|
| 1040 |
+
```
|
| 1041 |
+
|
| 1042 |
+
## Uses
|
| 1043 |
+
|
| 1044 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 1045 |
+
|
| 1046 |
+
### Direct Use
|
| 1047 |
+
|
| 1048 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 1049 |
+
本模型已經具備有繁體中文對話能力,使用者可以直接部署推論端點使用。
|
| 1050 |
+
|
| 1051 |
+
### Downstream Use
|
| 1052 |
+
|
| 1053 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 1054 |
+
若需強化模型在特定領域的知識,可透過微調進一步提升其性能與專業能力。
|
| 1055 |
+
|
| 1056 |
+
### Out-of-Scope Use
|
| 1057 |
+
|
| 1058 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 1059 |
+
本模型旨在提供資訊,不參與任何政治或法律問題的評斷或立場表達。
|
| 1060 |
+
|
| 1061 |
+
## Bias, Risks, and Limitations
|
| 1062 |
+
|
| 1063 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 1064 |
+
語言模型的生成內容可能因訓練集的多樣性而帶有偏見、特定立場,或包含與事實不符的言論,請使用者務必在使用過程中仔細確認內容的準確性與中立性。
|
| 1065 |
+
|
| 1066 |
+
### Recommendations
|
| 1067 |
+
|
| 1068 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 1069 |
+
|
| 1070 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 1071 |
+
|
| 1072 |
+
## How to Get Started with the Model
|
| 1073 |
+
|
| 1074 |
+
要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
|
| 1075 |
+
```bash
|
| 1076 |
+
docker run --runtime nvidia --gpus all \
|
| 1077 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
| 1078 |
+
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
|
| 1079 |
+
-p 8000:8000 \
|
| 1080 |
+
--ipc=host \
|
| 1081 |
+
vllm/vllm-openai:latest \
|
| 1082 |
+
--model lianghsun/Llama-3.2-Taiwan-3B-Instruct
|
| 1083 |
+
```
|
| 1084 |
+
|
| 1085 |
+
請注意,如果想要使用不同版本的 checkpoint,請加上 `--revision <tag_name>`
|
| 1086 |
+
```bash
|
| 1087 |
+
docker run --runtime nvidia --gpus all \
|
| 1088 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
| 1089 |
+
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
|
| 1090 |
+
-p 8000:8000 \
|
| 1091 |
+
--ipc=host \
|
| 1092 |
+
vllm/vllm-openai:latest \
|
| 1093 |
+
--model lianghsun/Llama-3.2-Taiwan-3B-Instruct --revision <tag_name>
|
| 1094 |
+
```
|
| 1095 |
+
|
| 1096 |
+
## Training Details
|
| 1097 |
+
|
| 1098 |
+
### Training Data
|
| 1099 |
+
|
| 1100 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 1101 |
+
|
| 1102 |
+
<details>
|
| 1103 |
+
<summary><b>繁體中文對話資料集</b></summary>
|
| 1104 |
+
|
| 1105 |
+
- [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
|
| 1106 |
+
- [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
|
| 1107 |
+
- [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
|
| 1108 |
+
- [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
|
| 1109 |
+
- [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
|
| 1110 |
+
- [lianghsun/tw-structured-law-article](https://huggingface.co/datasets/lianghsun/tw-structured-law-article)
|
| 1111 |
+
- [lianghsun/tw-judgment-gist-chat](https://huggingface.co/datasets/lianghsun/tw-judgment-gist-chat)
|
| 1112 |
+
- [lianghsun/vulnerability-mitigation-qa-zh_tw](https://huggingface.co/datasets/lianghsun/vulnerability-mitigation-qa-zh_tw)
|
| 1113 |
+
- [lianghsun/tw-legal-qa-chat](https://huggingface.co/datasets/lianghsun/tw-legal-qa-chat)
|
| 1114 |
+
- [lianghsun/reasoning-base-20k-chat](https://huggingface.co/datasets/lianghsun/reasoning-base-20k-chat)
|
| 1115 |
+
- [lianghsun/tw-contract-review-chat](https://huggingface.co/datasets/lianghsun/tw-contract-review-chat)
|
| 1116 |
+
- [lianghsun/tw-legal-methodology-chat](https://huggingface.co/datasets/lianghsun/tw-legal-methodology-chat)
|
| 1117 |
+
- [minyichen/glaive_toolcall_zh_tw](https://huggingface.co/datasets/minyichen/glaive_toolcall_zh_tw)
|
| 1118 |
+
|
| 1119 |
+
</details>
|
| 1120 |
+
|
| 1121 |
+
<details>
|
| 1122 |
+
<summary><b>多國語系對話資料集</b></summary>
|
| 1123 |
+
|
| 1124 |
+
- [rombodawg/Everything_Instruct_Multilingual](https://huggingface.co/datasets/rombodawg/Everything_Instruct_Multilingual)
|
| 1125 |
+
- [xzuyn/manythings-translations-alpaca](https://huggingface.co/datasets/xzuyn/manythings-translations-alpaca)
|
| 1126 |
+
- [neural-bridge/rag-dataset-12000](https://huggingface.co/datasets/neural-bridge/rag-dataset-12000)
|
| 1127 |
+
|
| 1128 |
+
</details>
|
| 1129 |
+
|
| 1130 |
+
### Training Procedure
|
| 1131 |
+
|
| 1132 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 1133 |
+
|
| 1134 |
+
#### Preprocessing
|
| 1135 |
+
|
| 1136 |
+
(WIP)
|
| 1137 |
+
|
| 1138 |
+
#### Training Hyperparameters
|
| 1139 |
+
|
| 1140 |
+
<details>
|
| 1141 |
+
<summary><b>SFT stage for v2024.11.27</b></summary>
|
| 1142 |
+
|
| 1143 |
+
**Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的���參數設定
|
| 1144 |
+
- **learning_rate:** 5e-05
|
| 1145 |
+
- **min_learning_rate:** 5e-07
|
| 1146 |
+
- **train_batch_size:** 105
|
| 1147 |
+
- **seed:** 42
|
| 1148 |
+
- **distributed_type:** multi-GPU
|
| 1149 |
+
- **num_devices:** 4
|
| 1150 |
+
- **gradient_accumulation_steps:** 50
|
| 1151 |
+
- **total_train_batch_size:** 21,000
|
| 1152 |
+
- **optimizer:** Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 1153 |
+
- **lr_scheduler_type:** cosine
|
| 1154 |
+
- **lr_scheduler_warmup_ratio:** 0.01
|
| 1155 |
+
- **num_epochs:** 5.0
|
| 1156 |
+
- **global_step:** 590
|
| 1157 |
+
</details>
|
| 1158 |
+
|
| 1159 |
+
#### Speeds, Sizes, Times
|
| 1160 |
+
|
| 1161 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 1162 |
+
<details>
|
| 1163 |
+
<summary><b>SFT stage for v2024.11.27</b></summary>
|
| 1164 |
+
|
| 1165 |
+
**Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的超參數設定
|
| 1166 |
+
- **Duration**: 5 days, 16:15:11.17
|
| 1167 |
+
- **Train runtime**: 490,511.1789
|
| 1168 |
+
- **Train samples per second**: 25.37
|
| 1169 |
+
- **Train steps per second**: 0.001
|
| 1170 |
+
- **Total training FLOPs**: 26,658,386,120,540,160
|
| 1171 |
+
- **Train loss**: 0.8533
|
| 1172 |
+
</details>
|
| 1173 |
+
|
| 1174 |
+
## Evaluation
|
| 1175 |
+
|
| 1176 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 1177 |
+
|
| 1178 |
+
### Testing Data, Factors & Metrics
|
| 1179 |
+
|
| 1180 |
+
<details>
|
| 1181 |
+
<summary><b>Formosa Taiwan Knowledge Bench</b></summary>
|
| 1182 |
+
|
| 1183 |
+
#### Testing Data
|
| 1184 |
+
|
| 1185 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 1186 |
+
|
| 1187 |
+
[lianghsun/Formosa-bench](https://huggingface.co/datasets/lianghsun/Formosa-bench)
|
| 1188 |
+
|
| 1189 |
+
#### Factors
|
| 1190 |
+
|
| 1191 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 1192 |
+
|
| 1193 |
+
[More Information Needed]
|
| 1194 |
+
|
| 1195 |
+
#### Metrics
|
| 1196 |
+
|
| 1197 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 1198 |
+
|
| 1199 |
+
[More Information Needed]
|
| 1200 |
+
|
| 1201 |
+
### Results
|
| 1202 |
+
|
| 1203 |
+
[More Information Needed]
|
| 1204 |
+
|
| 1205 |
+
#### Summary
|
| 1206 |
+
|
| 1207 |
+
</details>
|
| 1208 |
+
|
| 1209 |
+
<details>
|
| 1210 |
+
<summary><b>lianghsun/tw-legal-benchmark-v1</b></summary>
|
| 1211 |
+
|
| 1212 |
+
#### Testing Data
|
| 1213 |
+
|
| 1214 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 1215 |
+
|
| 1216 |
+
- **Dataset:** [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1)
|
| 1217 |
+
- **Revision:** 66c3a5f3ff2298f6a1cf23201070b5317bdd1893
|
| 1218 |
+
|
| 1219 |
+
#### Factors
|
| 1220 |
+
|
| 1221 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 1222 |
+
|
| 1223 |
+
[More Information Needed]
|
| 1224 |
+
|
| 1225 |
+
#### Metrics
|
| 1226 |
+
|
| 1227 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 1228 |
+
Accuracy
|
| 1229 |
+
|
| 1230 |
+
### Results
|
| 1231 |
+
|
| 1232 |
+
- **Model Revision:** v2024.11.27
|
| 1233 |
+
|
| 1234 |
+
| **Subset** | **Split** | **Score** |
|
| 1235 |
+
|--------------|-------|-------|
|
| 1236 |
+
| [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1/blob/main/benchmark.csv) | train | 31.1 |
|
| 1237 |
+
|
| 1238 |
+
#### Summary
|
| 1239 |
+
|
| 1240 |
+
</details>
|
| 1241 |
+
|
| 1242 |
+
<details>
|
| 1243 |
+
<summary><b>tmmlu++</b></summary>
|
| 1244 |
+
|
| 1245 |
+
#### Testing Data
|
| 1246 |
+
|
| 1247 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 1248 |
+
- **Dataset:** [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus)
|
| 1249 |
+
- **Revision:** c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 1250 |
+
|
| 1251 |
+
#### Factors
|
| 1252 |
+
|
| 1253 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 1254 |
+
[More Information Needed]
|
| 1255 |
+
|
| 1256 |
+
#### Metrics
|
| 1257 |
+
|
| 1258 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 1259 |
+
Accuracy
|
| 1260 |
+
|
| 1261 |
+
### Results
|
| 1262 |
+
|
| 1263 |
+
- **Model Revision:** v2024.11.27
|
| 1264 |
+
|
| 1265 |
+
| **Subset** | **Split** | **Score** |
|
| 1266 |
+
|--------------|-------|-------|
|
| 1267 |
+
| [geography_of_taiwan](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/geography_of_taiwan_test.csv) | test | 36.2 |
|
| 1268 |
+
| [dentistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/dentistry_test.csv) | test | 33.83 |
|
| 1269 |
+
| [technical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/technical_test.csv) | test | 35.07 |
|
| 1270 |
+
| [statistics_and_machine_learning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/statistics_and_machine_learning_test.csv) | test | 28.57 |
|
| 1271 |
+
| [clinical_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/clinical_psychology_test.csv) | test | 29.6 |
|
| 1272 |
+
| [tve_design](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_design_test.csv) | test | 38.54 |
|
| 1273 |
+
| [three_principles_of_people](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/three_principles_of_people_test.csv) | test | 48.2 |
|
| 1274 |
+
| [introduction_to_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/introduction_to_law_test.csv) | test | 29.96 |
|
| 1275 |
+
| [linear_algebra](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/linear_algebra_test.csv) | test | 21.43 |
|
| 1276 |
+
| [agriculture](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/agriculture_test.csv) | test | 24.5 |
|
| 1277 |
+
| [jce_humanities](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/jce_humanities_test.csv) | test | 38.89 |
|
| 1278 |
+
| [music](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/music_test.csv) | test | 25.9 |
|
| 1279 |
+
| [secondary_physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/secondary_physics_test.csv) | test | 33.04 |
|
| 1280 |
+
| [physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physics_test.csv) | test | 27.84 |
|
| 1281 |
+
| [advance_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/advance_chemistry_test.csv) | test | 27.64 |
|
| 1282 |
+
| [junior_science_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_science_exam_test.csv) | test | 30.05 |
|
| 1283 |
+
| [veterinary_pathology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pathology_test.csv) | test | 25.09 |
|
| 1284 |
+
| [financial_analysis](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/financial_analysis_test.csv) | test | 25.13 |
|
| 1285 |
+
| [national_protection](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/national_protection_test.csv) | test | 42.65 |
|
| 1286 |
+
| [macroeconomics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/macroeconomics_test.csv) | test | 26.76 |
|
| 1287 |
+
| [politic_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/politic_science_test.csv) | test | 27.44 |
|
| 1288 |
+
| [ttqav2](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/ttqav2_test.csv) | test | 61.06 |
|
| 1289 |
+
| [junior_chinese_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chinese_exam_test.csv) | test | 30.86 |
|
| 1290 |
+
| [traditional_chinese_medicine_clinical_medicine](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/traditional_chinese_medicine_clinical_medicine_test.csv) | test | 25.9 |
|
| 1291 |
+
| [junior_math_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_math_exam_test.csv) | test | 21.71 |
|
| 1292 |
+
| [auditing](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/auditing_test.csv) | test | 21.82 |
|
| 1293 |
+
| [anti_money_laundering](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/anti_money_laundering_test.csv) | test | 37.31 |
|
| 1294 |
+
| [pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacology_test.csv) | test | 30.68 |
|
| 1295 |
+
| [trust_practice](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trust_practice_test.csv) | test | 28.18 |
|
| 1296 |
+
| [tve_mathematics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_mathematics_test.csv) | test | 18.67 |
|
| 1297 |
+
| [human_behavior](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/human_behavior_test.csv) | test | 32.04 |
|
| 1298 |
+
| [pharmacy](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacy_test.csv) | test | 22.76 |
|
| 1299 |
+
| [tve_chinese_language](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_chinese_language_test.csv) | test | 36.65 |
|
| 1300 |
+
| [optometry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/optometry_test.csv) | test | 25.11 |
|
| 1301 |
+
| [physical_education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physical_education_test.csv) | test | 30.73 |
|
| 1302 |
+
| [organic_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/organic_chemistry_test.csv) | test | 35.78 |
|
| 1303 |
+
| [tve_natural_sciences](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_natural_sciences_test.csv) | test | 33.73 |
|
| 1304 |
+
| [education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_test.csv) | test | 37.9 |
|
| 1305 |
+
| [mechanical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/mechanical_test.csv) | test | 42.37 |
|
| 1306 |
+
| [taiwanese_hokkien](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taiwanese_hokkien_test.csv) | test | 14.73 |
|
| 1307 |
+
| [nautical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/nautical_science_test.csv) | test | 30.49 |
|
| 1308 |
+
| [business_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/business_management_test.csv) | test | 39.57 |
|
| 1309 |
+
| [logic_reasoning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/logic_reasoning_test.csv) | test | 27.34 |
|
| 1310 |
+
| [marketing_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/marketing_management_test.csv) | test | 39.78 |
|
| 1311 |
+
| [economics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/economics_test.csv) | test | 25.95 |
|
| 1312 |
+
| [basic_medical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/basic_medical_science_test.csv) | test | 28.41 |
|
| 1313 |
+
| [occupational_therapy_for_psychological_disorders](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/occupational_therapy_for_psychological_disorders_test.csv) | test | 35.73 |
|
| 1314 |
+
| [general_principles_of_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/general_principles_of_law_test.csv) | test | 31.13 |
|
| 1315 |
+
| [junior_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chemistry_test.csv) | test | 24.88 |
|
| 1316 |
+
| [veterinary_pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pharmacology_test.csv) | test | 36.3 |
|
| 1317 |
+
| [educational_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/educational_psychology_test.csv) | test | 33.52 |
|
| 1318 |
+
| [finance_banking](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/finance_banking_test.csv) | test | 32.59 |
|
| 1319 |
+
| [official_document_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/official_document_management_test.csv) | test | 32.43 |
|
| 1320 |
+
| [fire_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/fire_science_test.csv) | test | 30.65 |
|
| 1321 |
+
| [junior_social_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_social_studies_test.csv) | test | 47.62 |
|
| 1322 |
+
| [accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/accounting_test.csv) | test | 20.94 |
|
| 1323 |
+
| [engineering_math](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/engineering_math_test.csv) | test | 27.18 |
|
| 1324 |
+
| [education_(profession_level)](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_(profession_level)_test.csv) | test | 24.07 |
|
| 1325 |
+
| [chinese_language_and_literature](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/chinese_language_and_literature_test.csv) | test | 27.64 |
|
| 1326 |
+
| [management_accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/management_accounting_test.csv) | test | 24.19 |
|
| 1327 |
+
| [culinary_skills](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/culinary_skills_test.csv) | test | 39.38 |
|
| 1328 |
+
| [administrative_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/administrative_law_test.csv) | test | 25.71 |
|
| 1329 |
+
| [insurance_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/insurance_studies_test.csv) | test | 33.42 |
|
| 1330 |
+
| [real_estate](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/real_estate_test.csv) | test | 22.83 |
|
| 1331 |
+
| [computer_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/computer_science_test.csv) | test | 31.61 |
|
| 1332 |
+
| [taxation](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taxation_test.csv) | test | 27.47 |
|
| 1333 |
+
| [trade](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trade_test.csv) | test | 20.32 |
|
| 1334 |
+
|
| 1335 |
+
|
| 1336 |
+
#### Summary
|
| 1337 |
+
模型版號 `v2024.11.27`,無論是基礎模型([lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B))還是指令微調模型([lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct)),均未接受過 tmmlu++ 資料集的訓練,以確保測試的公平性。經測試,目前該模型在 tmmlu++ 上表現普遍不佳,未達及格分數,可能需要加入專業領域的資料集來強化基礎模型能力。
|
| 1338 |
+
|
| 1339 |
+
</details>
|
| 1340 |
+
|
| 1341 |
+
## Model Examination [optional]
|
| 1342 |
+
|
| 1343 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 1344 |
+
|
| 1345 |
+
[More Information Needed]
|
| 1346 |
+
|
| 1347 |
+
## Environmental Impact
|
| 1348 |
+
|
| 1349 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 1350 |
+
- **Hardware Type:** 🚀
|
| 1351 |
+
- **Hours used:** ⏳⏳⌛
|
| 1352 |
+
- **Cloud Provider:** [鴻鵠國際股份有限公司](https://www.honghutech.com/)
|
| 1353 |
+
- **Compute Region:** 🇹🇼
|
| 1354 |
+
- **Carbon Emitted:** ♻️
|
| 1355 |
+
|
| 1356 |
+
## Technical Specifications
|
| 1357 |
+
|
| 1358 |
+
### Model Architecture and Objective
|
| 1359 |
+
|
| 1360 |
+
[More Information Needed]
|
| 1361 |
+
|
| 1362 |
+
### Compute Infrastructure
|
| 1363 |
+
|
| 1364 |
+
[More Information Needed]
|
| 1365 |
+
|
| 1366 |
+
#### Hardware
|
| 1367 |
+
|
| 1368 |
+
- **CPU count:** 32
|
| 1369 |
+
- **Logical CPU count:** 64
|
| 1370 |
+
- **GPU count:** 4
|
| 1371 |
+
- **GPU type:** NVIDIA H100 NVL
|
| 1372 |
+
|
| 1373 |
+
#### Software
|
| 1374 |
+
|
| 1375 |
+
- **OS version:** Linux-5.15.0-124-generic-x86_64-with-glibc2.35
|
| 1376 |
+
- **Python version:** 3.12.7
|
| 1377 |
+
|
| 1378 |
+
## Citation
|
| 1379 |
+
|
| 1380 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 1381 |
+
```bibtex
|
| 1382 |
+
@misc{lianghsun2024llama32taiwan3binstruct,
|
| 1383 |
+
author = {Huang, Liang Hsun},
|
| 1384 |
+
title = {Llama-3.2-Taiwan-3B-Instruct},
|
| 1385 |
+
year = {2024},
|
| 1386 |
+
publisher = {Hugging Face},
|
| 1387 |
+
howpublished = {\url{https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct}},
|
| 1388 |
+
note = {Accessed: 2024-11-25}
|
| 1389 |
+
}
|
| 1390 |
+
```
|
| 1391 |
+
|
| 1392 |
+
## Glossary [optional]
|
| 1393 |
+
|
| 1394 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 1395 |
+
N/A
|
| 1396 |
+
|
| 1397 |
+
## More Information
|
| 1398 |
+
|
| 1399 |
+
### Acknowledge
|
| 1400 |
+

|
| 1401 |
+
在此致謝[鴻鵠國際股份有限公司](https://www.honghutech.com/)蔡長明先生無償地贊助算力,以及曾經幫忙過:廖振翔、chweng、Ben、kevin、Maxxchu、Lam 和陳林彥…等朋友們,才能讓這個模型得以訓練完成,提供算力者乃人生父母。
|
| 1402 |
+
|
| 1403 |
+
### Usage
|
| 1404 |
+
如果你基於此指令模型進行微調,希望能不吝嗇在 **模型卡片(model card)** 裡標註 **基礎模型** 為:
|
| 1405 |
+
```yaml
|
| 1406 |
+
base_model: lianghsun/Llama-3.2-Taiwan-3B-Instruct
|
| 1407 |
+
```
|
| 1408 |
+
|
| 1409 |
+
標註和 ❤️ 是給予我們最大的鼓勵,謝謝。😀
|
| 1410 |
+
|
| 1411 |
+
## Model Card Authors
|
| 1412 |
+
|
| 1413 |
+
[Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
|
| 1414 |
+
|
| 1415 |
+
## Model Card Contact
|
| 1416 |
+
|
| 1417 |
+
[Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
|
| 1418 |
+
|
| 1419 |
+
### Framework versions
|
| 1420 |
+
|
| 1421 |
+
- Transformers 4.45.2
|
| 1422 |
+
- Pytorch 2.4.1+cu121
|
| 1423 |
+
- Datasets 2.21.0
|
| 1424 |
+
- Tokenizers 0.20.0
|
| 1425 |
+
|