--- library_name: transformers pipeline_tag: text-generation tags: - glm4_moe - GPTQ - Int4-Int8Mix - 量化修复 - vLLM base_model: - zai-org/GLM-4.5 base_model_relation: quantized --- # GLM-4.5-GPTQ-Int4-Int8Mix Base model [zai-org/GLM-4.5](https://huggingface.co/zai-org/GLM-4.5) ### 【VLLM Launch Command for 8-GPU Single Node】 Note: When launching this model on 8 GPUs, you must include --enable-expert-parallel, otherwise expert tensor partitioning will fail due to mismatch. This flag is not required for 4-GPU setups. ``` CONTEXT_LENGTH=32768 vllm serve \ QuantTrio/GLM-4.5-GPTQ-Int4-Int8Mix \ --served-model-name GLM-4.5-GPTQ-Int4-Int8Mix \ --enable-expert-parallel \ --swap-space 16 \ --max-num-seqs 512 \ --max-model-len $CONTEXT_LENGTH \ --max-seq-len-to-capture $CONTEXT_LENGTH \ --gpu-memory-utilization 0.9 \ --tensor-parallel-size 8 \ --trust-remote-code \ --disable-log-requests \ --host 0.0.0.0 \ --port 8000 ``` ### 【Dependencies】 ``` vllm==0.10.0 ``` ### 【Model Update】 ``` 2025-07-30 1. fast commit ``` ### 【Model Files】 | File Size | Last Updated | |---------|--------------| | `192GB` | `2025-07-30` | ### 【Model Download】 ```python from huggingface_hub import snapshot_download snapshot_download('QuantTrio/GLM-4.5-GPTQ-Int4-Int8Mix', cache_dir="your_local_path") ``` ### 【Overview】 # GLM-4.5

👋 Join our Discord community.
📖 Check out the GLM-4.5 technical blog.
📍 Use GLM-4.5 API services on Z.ai API Platform (Global) or
Zhipu AI Open Platform (Mainland China).
👉 One click to GLM-4.5.

## Model Introduction The **GLM-4.5** series models are foundation models designed for intelligent agents. GLM-4.5 has **355** billion total parameters with **32** billion active parameters, while GLM-4.5-Air adopts a more compact design with **106** billion total parameters and **12** billion active parameters. GLM-4.5 models unify reasoning, coding, and intelligent agent capabilities to meet the complex demands of intelligent agent applications. Both GLM-4.5 and GLM-4.5-Air are hybrid reasoning models that provide two modes: thinking mode for complex reasoning and tool usage, and non-thinking mode for immediate responses. We have open-sourced the base models, hybrid reasoning models, and FP8 versions of the hybrid reasoning models for both GLM-4.5 and GLM-4.5-Air. They are released under the MIT open-source license and can be used commercially and for secondary development. As demonstrated in our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieves exceptional performance with a score of **63.2**, in the **3rd** place among all the proprietary and open-source models. Notably, GLM-4.5-Air delivers competitive results at **59.8** while maintaining superior efficiency. ![bench](https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/bench.png) For more eval results, show cases, and technical details, please visit our [technical blog](https://z.ai/blog/glm-4.5). The technical report will be released soon. The model code, tool parser and reasoning parser can be found in the implementation of [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe), [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py) and [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py). ## Quick Start Please refer our [github page](https://github.com/zai-org/GLM-4.5) for more detail.