Update README.md
Browse files
README.md
CHANGED
|
@@ -1 +1,30 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- deepseek-ai/DeepSeek-V3-0324
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
+
library_name: transformers
|
| 10 |
+
---
|
| 11 |
+
# DeepSeek V3 0324 AWQ
|
| 12 |
+
AWQ of DeepSeek V3 0324.
|
| 13 |
+
|
| 14 |
+
Quantized by [Eric Hartford](https://huggingface.co/ehartford) and [v2ray](https://huggingface.co/v2ray)
|
| 15 |
+
|
| 16 |
+
This quant modified some of the model code to fix an overflow issue when using float16.
|
| 17 |
+
|
| 18 |
+
To serve using vLLM with 8x 80GB GPUs, use the following command:
|
| 19 |
+
```sh
|
| 20 |
+
VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-num-batched-tokens 65536 --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.97 --dtype float16 --served-model-name deepseek-chat --model cognitivecomputations/DeepSeek-V3-0324-AWQ
|
| 21 |
+
```
|
| 22 |
+
You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.3.dev187%2Bg0ff1a4df.d20220101.cu126-cp312-cp312-linux_x86_64.whl).
|
| 23 |
+
|
| 24 |
+
Inference speed with batch size 1 and short prompt:
|
| 25 |
+
- 8x H100: 48 TPS
|
| 26 |
+
- 8x A100: 38 TPS
|
| 27 |
+
|
| 28 |
+
Note:
|
| 29 |
+
- Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization.
|
| 30 |
+
- vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs.
|