Update modeling_qwen.py
Browse files- modeling_qwen.py +116 -83
modeling_qwen.py
CHANGED
|
@@ -56,9 +56,9 @@ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
|
| 56 |
|
| 57 |
_ERROR_BAD_CHAT_FORMAT = """\
|
| 58 |
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
|
| 59 |
-
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-
|
| 60 |
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
|
| 61 |
-
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-
|
| 62 |
"""
|
| 63 |
|
| 64 |
_SENTINEL = object()
|
|
@@ -108,14 +108,6 @@ class QWenAttention(nn.Module):
|
|
| 108 |
def __init__(self, config):
|
| 109 |
super().__init__()
|
| 110 |
|
| 111 |
-
max_positions = config.max_position_embeddings
|
| 112 |
-
self.register_buffer(
|
| 113 |
-
"bias",
|
| 114 |
-
torch.tril(
|
| 115 |
-
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
| 116 |
-
).view(1, 1, max_positions, max_positions),
|
| 117 |
-
persistent=False,
|
| 118 |
-
)
|
| 119 |
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
| 120 |
self.seq_length = config.seq_length
|
| 121 |
|
|
@@ -142,20 +134,6 @@ class QWenAttention(nn.Module):
|
|
| 142 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
| 143 |
self.bf16 = config.bf16
|
| 144 |
|
| 145 |
-
if config.rotary_pct == 1.0:
|
| 146 |
-
self.rotary_ndims = None
|
| 147 |
-
else:
|
| 148 |
-
assert config.rotary_pct < 1
|
| 149 |
-
self.rotary_ndims = int(
|
| 150 |
-
self.hidden_size_per_attention_head * config.rotary_pct
|
| 151 |
-
)
|
| 152 |
-
dim = (
|
| 153 |
-
self.rotary_ndims
|
| 154 |
-
if self.rotary_ndims is not None
|
| 155 |
-
else self.hidden_size_per_attention_head
|
| 156 |
-
)
|
| 157 |
-
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
| 158 |
-
|
| 159 |
self.use_dynamic_ntk = config.use_dynamic_ntk
|
| 160 |
self.use_logn_attn = config.use_logn_attn
|
| 161 |
|
|
@@ -164,11 +142,10 @@ class QWenAttention(nn.Module):
|
|
| 164 |
for i in range(1, 32768)
|
| 165 |
]
|
| 166 |
self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
| 167 |
-
self._ntk_cached = 1.0
|
| 168 |
|
| 169 |
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
| 170 |
|
| 171 |
-
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 172 |
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 173 |
|
| 174 |
if self.scale_attn_weights:
|
|
@@ -206,7 +183,7 @@ class QWenAttention(nn.Module):
|
|
| 206 |
return attn_output, attn_weights
|
| 207 |
|
| 208 |
def _upcast_and_reordered_attn(
|
| 209 |
-
self, query, key, value, attention_mask=None, head_mask=None
|
| 210 |
):
|
| 211 |
bsz, num_heads, q_seq_len, dk = query.size()
|
| 212 |
_, _, k_seq_len, _ = key.size()
|
|
@@ -233,7 +210,7 @@ class QWenAttention(nn.Module):
|
|
| 233 |
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 234 |
|
| 235 |
query_length, key_length = query.size(-2), key.size(-2)
|
| 236 |
-
causal_mask =
|
| 237 |
:, :, key_length - query_length : key_length, :key_length
|
| 238 |
]
|
| 239 |
mask_value = torch.finfo(attn_weights.dtype).min
|
|
@@ -274,6 +251,8 @@ class QWenAttention(nn.Module):
|
|
| 274 |
def forward(
|
| 275 |
self,
|
| 276 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
|
|
|
| 277 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 278 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 279 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
@@ -284,43 +263,19 @@ class QWenAttention(nn.Module):
|
|
| 284 |
):
|
| 285 |
|
| 286 |
mixed_x_layer = self.c_attn(hidden_states)
|
|
|
|
| 287 |
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
| 288 |
|
| 289 |
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 290 |
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 291 |
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 292 |
|
| 293 |
-
kv_seq_len = hidden_states.size()[1]
|
| 294 |
-
if layer_past:
|
| 295 |
-
# layer past[0] shape: bs * seq_len * head_num * dim
|
| 296 |
-
kv_seq_len += layer_past[0].shape[1]
|
| 297 |
-
if (
|
| 298 |
-
self.use_dynamic_ntk
|
| 299 |
-
and kv_seq_len == hidden_states.size()[1]
|
| 300 |
-
and not self.training
|
| 301 |
-
):
|
| 302 |
-
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
| 303 |
-
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
| 304 |
-
ntk_alpha = max(ntk_alpha, 1)
|
| 305 |
-
self._ntk_cached = ntk_alpha
|
| 306 |
-
else:
|
| 307 |
-
ntk_alpha = self._ntk_cached
|
| 308 |
-
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
|
| 309 |
-
hidden_states.device
|
| 310 |
-
)
|
| 311 |
-
|
| 312 |
-
if rotary_pos_emb is not None:
|
| 313 |
-
if isinstance(rotary_pos_emb, tuple):
|
| 314 |
-
rotary_pos_emb = rotary_pos_emb
|
| 315 |
-
else:
|
| 316 |
-
rotary_pos_emb = (rotary_pos_emb,) * 2
|
| 317 |
-
|
| 318 |
if rotary_pos_emb is not None:
|
|
|
|
|
|
|
|
|
|
| 319 |
q_pos_emb, k_pos_emb = rotary_pos_emb
|
| 320 |
# Slice the pos emb for current inference
|
| 321 |
-
cur_len = query.shape[1]
|
| 322 |
-
q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
|
| 323 |
-
k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
|
| 324 |
query = apply_rotary_pos_emb(query, q_pos_emb)
|
| 325 |
key = apply_rotary_pos_emb(key, k_pos_emb)
|
| 326 |
|
|
@@ -346,13 +301,14 @@ class QWenAttention(nn.Module):
|
|
| 346 |
key = key.permute(0, 2, 1, 3)
|
| 347 |
value = value.permute(0, 2, 1, 3)
|
| 348 |
attn_output, attn_weight = self._attn(
|
| 349 |
-
query, key, value, attention_mask, head_mask
|
| 350 |
)
|
| 351 |
context_layer = self._merge_heads(
|
| 352 |
attn_output, self.num_heads, self.head_dim
|
| 353 |
)
|
| 354 |
|
| 355 |
attn_output = self.c_proj(context_layer)
|
|
|
|
| 356 |
outputs = (attn_output, present)
|
| 357 |
if output_attentions:
|
| 358 |
outputs += (attn_weight,)
|
|
@@ -379,7 +335,6 @@ class QWenMLP(nn.Module):
|
|
| 379 |
output = self.c_proj(intermediate_parallel)
|
| 380 |
return output
|
| 381 |
|
| 382 |
-
|
| 383 |
class QWenBlock(nn.Module):
|
| 384 |
def __init__(self, config):
|
| 385 |
super().__init__()
|
|
@@ -401,6 +356,8 @@ class QWenBlock(nn.Module):
|
|
| 401 |
def forward(
|
| 402 |
self,
|
| 403 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
|
|
|
| 404 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 405 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 406 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
@@ -413,6 +370,8 @@ class QWenBlock(nn.Module):
|
|
| 413 |
|
| 414 |
attn_outputs = self.attn(
|
| 415 |
layernorm_output,
|
|
|
|
|
|
|
| 416 |
layer_past=layer_past,
|
| 417 |
attention_mask=attention_mask,
|
| 418 |
head_mask=head_mask,
|
|
@@ -488,14 +447,50 @@ class QWenModel(QWenPreTrainedModel):
|
|
| 488 |
self.embed_dim = config.hidden_size
|
| 489 |
|
| 490 |
self.gradient_checkpointing = False
|
|
|
|
|
|
|
| 491 |
|
| 492 |
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
| 493 |
|
| 494 |
self.drop = nn.Dropout(config.emb_dropout_prob)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
self.h = nn.ModuleList(
|
| 496 |
[
|
| 497 |
QWenBlock(
|
| 498 |
-
config
|
| 499 |
)
|
| 500 |
for i in range(config.num_hidden_layers)
|
| 501 |
]
|
|
@@ -637,6 +632,25 @@ class QWenModel(QWenPreTrainedModel):
|
|
| 637 |
|
| 638 |
hidden_states = inputs_embeds
|
| 639 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
hidden_states = self.drop(hidden_states)
|
| 641 |
if images is not None:
|
| 642 |
for idx, (i, a, b) in enumerate(img_pos):
|
|
@@ -670,6 +684,8 @@ class QWenModel(QWenPreTrainedModel):
|
|
| 670 |
outputs = torch.utils.checkpoint.checkpoint(
|
| 671 |
create_custom_forward(block),
|
| 672 |
hidden_states,
|
|
|
|
|
|
|
| 673 |
None,
|
| 674 |
attention_mask,
|
| 675 |
head_mask[i],
|
|
@@ -680,6 +696,8 @@ class QWenModel(QWenPreTrainedModel):
|
|
| 680 |
outputs = block(
|
| 681 |
hidden_states,
|
| 682 |
layer_past=layer_past,
|
|
|
|
|
|
|
| 683 |
attention_mask=attention_mask,
|
| 684 |
head_mask=head_mask[i],
|
| 685 |
encoder_hidden_states=encoder_hidden_states,
|
|
@@ -690,10 +708,10 @@ class QWenModel(QWenPreTrainedModel):
|
|
| 690 |
|
| 691 |
hidden_states = outputs[0]
|
| 692 |
if use_cache is True:
|
| 693 |
-
presents = presents + (outputs[
|
| 694 |
|
| 695 |
if output_attentions:
|
| 696 |
-
all_self_attentions = all_self_attentions + (outputs[1],)
|
| 697 |
|
| 698 |
hidden_states = self.ln_f(hidden_states)
|
| 699 |
hidden_states = hidden_states.view(output_shape)
|
|
@@ -890,10 +908,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 890 |
append_history: bool = True,
|
| 891 |
stream: Optional[bool] = _SENTINEL,
|
| 892 |
stop_words_ids: Optional[List[List[int]]] = None,
|
|
|
|
| 893 |
**kwargs,
|
| 894 |
) -> Tuple[str, HistoryType]:
|
|
|
|
|
|
|
| 895 |
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
| 896 |
-
assert
|
| 897 |
if history is None:
|
| 898 |
history = []
|
| 899 |
if stop_words_ids is None:
|
|
@@ -901,24 +922,25 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 901 |
|
| 902 |
max_window_size = kwargs.get('max_window_size', None)
|
| 903 |
if max_window_size is None:
|
| 904 |
-
max_window_size =
|
| 905 |
raw_text, context_tokens = make_context(
|
| 906 |
tokenizer,
|
| 907 |
query,
|
| 908 |
history=history,
|
| 909 |
system=system,
|
| 910 |
max_window_size=max_window_size,
|
| 911 |
-
chat_format=
|
| 912 |
)
|
| 913 |
|
| 914 |
stop_words_ids.extend(get_stop_words_ids(
|
| 915 |
-
|
| 916 |
))
|
| 917 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
| 918 |
outputs = self.generate(
|
| 919 |
input_ids,
|
| 920 |
-
stop_words_ids
|
| 921 |
-
return_dict_in_generate
|
|
|
|
| 922 |
**kwargs,
|
| 923 |
)
|
| 924 |
|
|
@@ -927,7 +949,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 927 |
tokenizer,
|
| 928 |
raw_text_len=len(raw_text),
|
| 929 |
context_length=len(context_tokens),
|
| 930 |
-
chat_format=
|
| 931 |
verbose=False,
|
| 932 |
errors='replace'
|
| 933 |
)
|
|
@@ -945,9 +967,11 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 945 |
system: str = "You are a helpful assistant.",
|
| 946 |
stop_words_ids: Optional[List[List[int]]] = None,
|
| 947 |
logits_processor: Optional[LogitsProcessorList] = None,
|
|
|
|
| 948 |
**kwargs,
|
| 949 |
) -> Generator[str, Any, None]:
|
| 950 |
-
|
|
|
|
| 951 |
if history is None:
|
| 952 |
history = []
|
| 953 |
if stop_words_ids is None:
|
|
@@ -955,23 +979,23 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 955 |
|
| 956 |
max_window_size = kwargs.get('max_window_size', None)
|
| 957 |
if max_window_size is None:
|
| 958 |
-
max_window_size =
|
| 959 |
raw_text, context_tokens = make_context(
|
| 960 |
tokenizer,
|
| 961 |
query,
|
| 962 |
history=history,
|
| 963 |
system=system,
|
| 964 |
max_window_size=max_window_size,
|
| 965 |
-
chat_format=
|
| 966 |
)
|
| 967 |
|
| 968 |
stop_words_ids.extend(get_stop_words_ids(
|
| 969 |
-
|
| 970 |
))
|
| 971 |
if stop_words_ids is not None:
|
| 972 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 973 |
stop_words_ids=stop_words_ids,
|
| 974 |
-
eos_token_id=
|
| 975 |
)
|
| 976 |
if logits_processor is None:
|
| 977 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
@@ -982,7 +1006,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 982 |
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
| 983 |
self.__class__.generate_stream = NewGenerationMixin.generate
|
| 984 |
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
| 985 |
-
stream_config = StreamGenerationConfig(**
|
|
|
|
| 986 |
def stream_generator():
|
| 987 |
outputs = []
|
| 988 |
for token in self.generate_stream(
|
|
@@ -1011,17 +1036,19 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
| 1011 |
streamer: Optional["BaseStreamer"] = None,
|
| 1012 |
**kwargs,
|
| 1013 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
|
|
|
|
|
| 1014 |
# Process stop_words_ids.
|
| 1015 |
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
| 1016 |
if stop_words_ids is None and generation_config is not None:
|
| 1017 |
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
| 1018 |
if stop_words_ids is None:
|
| 1019 |
-
stop_words_ids = getattr(
|
| 1020 |
|
| 1021 |
if stop_words_ids is not None:
|
| 1022 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 1023 |
stop_words_ids=stop_words_ids,
|
| 1024 |
-
eos_token_id=
|
| 1025 |
)
|
| 1026 |
if logits_processor is None:
|
| 1027 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
@@ -1069,14 +1096,19 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 1069 |
self._ntk_alpha_cached = ntk_alpha
|
| 1070 |
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
| 1071 |
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
|
|
|
| 1072 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 1073 |
from einops import rearrange
|
| 1074 |
|
| 1075 |
-
|
|
|
|
|
|
|
|
|
|
| 1076 |
|
| 1077 |
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
| 1078 |
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
| 1079 |
-
|
|
|
|
| 1080 |
|
| 1081 |
|
| 1082 |
def _rotate_half(x):
|
|
@@ -1088,19 +1120,20 @@ def _rotate_half(x):
|
|
| 1088 |
|
| 1089 |
|
| 1090 |
def apply_rotary_pos_emb(t, freqs):
|
|
|
|
| 1091 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
| 1092 |
t_ = t.float()
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
sin = freqs[:, : freqs.shape[-1] // 2].sin()
|
| 1096 |
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
| 1097 |
return output
|
| 1098 |
else:
|
| 1099 |
-
rot_dim = freqs.shape[-1]
|
|
|
|
| 1100 |
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
| 1101 |
t_ = t_.float()
|
| 1102 |
t_pass_ = t_pass_.float()
|
| 1103 |
-
t_ = (t_ *
|
| 1104 |
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
| 1105 |
|
| 1106 |
|
|
|
|
| 56 |
|
| 57 |
_ERROR_BAD_CHAT_FORMAT = """\
|
| 58 |
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
|
| 59 |
+
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
|
| 60 |
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
|
| 61 |
+
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
|
| 62 |
"""
|
| 63 |
|
| 64 |
_SENTINEL = object()
|
|
|
|
| 108 |
def __init__(self, config):
|
| 109 |
super().__init__()
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
| 112 |
self.seq_length = config.seq_length
|
| 113 |
|
|
|
|
| 134 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
| 135 |
self.bf16 = config.bf16
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
self.use_dynamic_ntk = config.use_dynamic_ntk
|
| 138 |
self.use_logn_attn = config.use_logn_attn
|
| 139 |
|
|
|
|
| 142 |
for i in range(1, 32768)
|
| 143 |
]
|
| 144 |
self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
|
|
|
| 145 |
|
| 146 |
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
| 147 |
|
| 148 |
+
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
|
| 149 |
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 150 |
|
| 151 |
if self.scale_attn_weights:
|
|
|
|
| 183 |
return attn_output, attn_weights
|
| 184 |
|
| 185 |
def _upcast_and_reordered_attn(
|
| 186 |
+
self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
|
| 187 |
):
|
| 188 |
bsz, num_heads, q_seq_len, dk = query.size()
|
| 189 |
_, _, k_seq_len, _ = key.size()
|
|
|
|
| 210 |
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 211 |
|
| 212 |
query_length, key_length = query.size(-2), key.size(-2)
|
| 213 |
+
causal_mask = registered_causal_mask[
|
| 214 |
:, :, key_length - query_length : key_length, :key_length
|
| 215 |
]
|
| 216 |
mask_value = torch.finfo(attn_weights.dtype).min
|
|
|
|
| 251 |
def forward(
|
| 252 |
self,
|
| 253 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 254 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
| 255 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
| 256 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 257 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 258 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
| 263 |
):
|
| 264 |
|
| 265 |
mixed_x_layer = self.c_attn(hidden_states)
|
| 266 |
+
|
| 267 |
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
| 268 |
|
| 269 |
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 270 |
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 271 |
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
if rotary_pos_emb is not None:
|
| 274 |
+
cur_len = query.shape[1]
|
| 275 |
+
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
| 276 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
| 277 |
q_pos_emb, k_pos_emb = rotary_pos_emb
|
| 278 |
# Slice the pos emb for current inference
|
|
|
|
|
|
|
|
|
|
| 279 |
query = apply_rotary_pos_emb(query, q_pos_emb)
|
| 280 |
key = apply_rotary_pos_emb(key, k_pos_emb)
|
| 281 |
|
|
|
|
| 301 |
key = key.permute(0, 2, 1, 3)
|
| 302 |
value = value.permute(0, 2, 1, 3)
|
| 303 |
attn_output, attn_weight = self._attn(
|
| 304 |
+
query, key, value, registered_causal_mask, attention_mask, head_mask
|
| 305 |
)
|
| 306 |
context_layer = self._merge_heads(
|
| 307 |
attn_output, self.num_heads, self.head_dim
|
| 308 |
)
|
| 309 |
|
| 310 |
attn_output = self.c_proj(context_layer)
|
| 311 |
+
|
| 312 |
outputs = (attn_output, present)
|
| 313 |
if output_attentions:
|
| 314 |
outputs += (attn_weight,)
|
|
|
|
| 335 |
output = self.c_proj(intermediate_parallel)
|
| 336 |
return output
|
| 337 |
|
|
|
|
| 338 |
class QWenBlock(nn.Module):
|
| 339 |
def __init__(self, config):
|
| 340 |
super().__init__()
|
|
|
|
| 356 |
def forward(
|
| 357 |
self,
|
| 358 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 359 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
| 360 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
| 361 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 362 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 363 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
| 370 |
|
| 371 |
attn_outputs = self.attn(
|
| 372 |
layernorm_output,
|
| 373 |
+
rotary_pos_emb,
|
| 374 |
+
registered_causal_mask=registered_causal_mask,
|
| 375 |
layer_past=layer_past,
|
| 376 |
attention_mask=attention_mask,
|
| 377 |
head_mask=head_mask,
|
|
|
|
| 447 |
self.embed_dim = config.hidden_size
|
| 448 |
|
| 449 |
self.gradient_checkpointing = False
|
| 450 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
| 451 |
+
self.seq_length = config.seq_length
|
| 452 |
|
| 453 |
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
| 454 |
|
| 455 |
self.drop = nn.Dropout(config.emb_dropout_prob)
|
| 456 |
+
|
| 457 |
+
if config.rotary_pct == 1.0:
|
| 458 |
+
self.rotary_ndims = None
|
| 459 |
+
else:
|
| 460 |
+
assert config.rotary_pct < 1
|
| 461 |
+
self.rotary_ndims = int(
|
| 462 |
+
config.kv_channels * config.rotary_pct
|
| 463 |
+
)
|
| 464 |
+
dim = (
|
| 465 |
+
self.rotary_ndims
|
| 466 |
+
if self.rotary_ndims is not None
|
| 467 |
+
else config.kv_channels
|
| 468 |
+
)
|
| 469 |
+
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
| 470 |
+
|
| 471 |
+
self.use_flash_attn = config.use_flash_attn
|
| 472 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
| 473 |
+
self.registered_causal_mask = None
|
| 474 |
+
# if (
|
| 475 |
+
# self.use_flash_attn
|
| 476 |
+
# and flash_attn_unpadded_func is not None
|
| 477 |
+
# and not self.is_fp32
|
| 478 |
+
# ):
|
| 479 |
+
# self.registered_causal_mask = None
|
| 480 |
+
# else:
|
| 481 |
+
# max_positions = config.max_position_embeddings
|
| 482 |
+
# self.register_buffer(
|
| 483 |
+
# "registered_causal_mask",
|
| 484 |
+
# torch.tril(
|
| 485 |
+
# torch.ones((max_positions, max_positions), dtype=torch.bool)
|
| 486 |
+
# ).view(1, 1, max_positions, max_positions),
|
| 487 |
+
# persistent=False,
|
| 488 |
+
# )
|
| 489 |
+
|
| 490 |
self.h = nn.ModuleList(
|
| 491 |
[
|
| 492 |
QWenBlock(
|
| 493 |
+
config
|
| 494 |
)
|
| 495 |
for i in range(config.num_hidden_layers)
|
| 496 |
]
|
|
|
|
| 632 |
|
| 633 |
hidden_states = inputs_embeds
|
| 634 |
|
| 635 |
+
kv_seq_len = hidden_states.size()[1]
|
| 636 |
+
if past_key_values[0] is not None:
|
| 637 |
+
# past key values[0][0] shape: bs * seq_len * head_num * dim
|
| 638 |
+
kv_seq_len += past_key_values[0][0].shape[1]
|
| 639 |
+
if (
|
| 640 |
+
self.use_dynamic_ntk
|
| 641 |
+
and kv_seq_len == hidden_states.size()[1]
|
| 642 |
+
and not self.training
|
| 643 |
+
):
|
| 644 |
+
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
| 645 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
| 646 |
+
ntk_alpha = max(ntk_alpha, 1)
|
| 647 |
+
else:
|
| 648 |
+
ntk_alpha = self.rotary_emb._ntk_alpha_cached
|
| 649 |
+
|
| 650 |
+
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
|
| 651 |
+
for idx in range(len(rotary_pos_emb)):
|
| 652 |
+
rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
|
| 653 |
+
|
| 654 |
hidden_states = self.drop(hidden_states)
|
| 655 |
if images is not None:
|
| 656 |
for idx, (i, a, b) in enumerate(img_pos):
|
|
|
|
| 684 |
outputs = torch.utils.checkpoint.checkpoint(
|
| 685 |
create_custom_forward(block),
|
| 686 |
hidden_states,
|
| 687 |
+
rotary_pos_emb,
|
| 688 |
+
self.registered_causal_mask,
|
| 689 |
None,
|
| 690 |
attention_mask,
|
| 691 |
head_mask[i],
|
|
|
|
| 696 |
outputs = block(
|
| 697 |
hidden_states,
|
| 698 |
layer_past=layer_past,
|
| 699 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 700 |
+
registered_causal_mask=self.registered_causal_mask,
|
| 701 |
attention_mask=attention_mask,
|
| 702 |
head_mask=head_mask[i],
|
| 703 |
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
| 708 |
|
| 709 |
hidden_states = outputs[0]
|
| 710 |
if use_cache is True:
|
| 711 |
+
presents = presents + (outputs[1],)
|
| 712 |
|
| 713 |
if output_attentions:
|
| 714 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 715 |
|
| 716 |
hidden_states = self.ln_f(hidden_states)
|
| 717 |
hidden_states = hidden_states.view(output_shape)
|
|
|
|
| 908 |
append_history: bool = True,
|
| 909 |
stream: Optional[bool] = _SENTINEL,
|
| 910 |
stop_words_ids: Optional[List[List[int]]] = None,
|
| 911 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 912 |
**kwargs,
|
| 913 |
) -> Tuple[str, HistoryType]:
|
| 914 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 915 |
+
|
| 916 |
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
| 917 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
| 918 |
if history is None:
|
| 919 |
history = []
|
| 920 |
if stop_words_ids is None:
|
|
|
|
| 922 |
|
| 923 |
max_window_size = kwargs.get('max_window_size', None)
|
| 924 |
if max_window_size is None:
|
| 925 |
+
max_window_size = generation_config.max_window_size
|
| 926 |
raw_text, context_tokens = make_context(
|
| 927 |
tokenizer,
|
| 928 |
query,
|
| 929 |
history=history,
|
| 930 |
system=system,
|
| 931 |
max_window_size=max_window_size,
|
| 932 |
+
chat_format=generation_config.chat_format,
|
| 933 |
)
|
| 934 |
|
| 935 |
stop_words_ids.extend(get_stop_words_ids(
|
| 936 |
+
generation_config.chat_format, tokenizer
|
| 937 |
))
|
| 938 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
| 939 |
outputs = self.generate(
|
| 940 |
input_ids,
|
| 941 |
+
stop_words_ids=stop_words_ids,
|
| 942 |
+
return_dict_in_generate=False,
|
| 943 |
+
generation_config=generation_config,
|
| 944 |
**kwargs,
|
| 945 |
)
|
| 946 |
|
|
|
|
| 949 |
tokenizer,
|
| 950 |
raw_text_len=len(raw_text),
|
| 951 |
context_length=len(context_tokens),
|
| 952 |
+
chat_format=generation_config.chat_format,
|
| 953 |
verbose=False,
|
| 954 |
errors='replace'
|
| 955 |
)
|
|
|
|
| 967 |
system: str = "You are a helpful assistant.",
|
| 968 |
stop_words_ids: Optional[List[List[int]]] = None,
|
| 969 |
logits_processor: Optional[LogitsProcessorList] = None,
|
| 970 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 971 |
**kwargs,
|
| 972 |
) -> Generator[str, Any, None]:
|
| 973 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 974 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
| 975 |
if history is None:
|
| 976 |
history = []
|
| 977 |
if stop_words_ids is None:
|
|
|
|
| 979 |
|
| 980 |
max_window_size = kwargs.get('max_window_size', None)
|
| 981 |
if max_window_size is None:
|
| 982 |
+
max_window_size = generation_config.max_window_size
|
| 983 |
raw_text, context_tokens = make_context(
|
| 984 |
tokenizer,
|
| 985 |
query,
|
| 986 |
history=history,
|
| 987 |
system=system,
|
| 988 |
max_window_size=max_window_size,
|
| 989 |
+
chat_format=generation_config.chat_format,
|
| 990 |
)
|
| 991 |
|
| 992 |
stop_words_ids.extend(get_stop_words_ids(
|
| 993 |
+
generation_config.chat_format, tokenizer
|
| 994 |
))
|
| 995 |
if stop_words_ids is not None:
|
| 996 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 997 |
stop_words_ids=stop_words_ids,
|
| 998 |
+
eos_token_id=generation_config.eos_token_id,
|
| 999 |
)
|
| 1000 |
if logits_processor is None:
|
| 1001 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
|
|
| 1006 |
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
| 1007 |
self.__class__.generate_stream = NewGenerationMixin.generate
|
| 1008 |
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
| 1009 |
+
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
|
| 1010 |
+
|
| 1011 |
def stream_generator():
|
| 1012 |
outputs = []
|
| 1013 |
for token in self.generate_stream(
|
|
|
|
| 1036 |
streamer: Optional["BaseStreamer"] = None,
|
| 1037 |
**kwargs,
|
| 1038 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 1039 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 1040 |
+
|
| 1041 |
# Process stop_words_ids.
|
| 1042 |
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
| 1043 |
if stop_words_ids is None and generation_config is not None:
|
| 1044 |
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
| 1045 |
if stop_words_ids is None:
|
| 1046 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
| 1047 |
|
| 1048 |
if stop_words_ids is not None:
|
| 1049 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 1050 |
stop_words_ids=stop_words_ids,
|
| 1051 |
+
eos_token_id=generation_config.eos_token_id,
|
| 1052 |
)
|
| 1053 |
if logits_processor is None:
|
| 1054 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
|
|
| 1096 |
self._ntk_alpha_cached = ntk_alpha
|
| 1097 |
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
| 1098 |
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
| 1099 |
+
|
| 1100 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 1101 |
from einops import rearrange
|
| 1102 |
|
| 1103 |
+
emb = rearrange(emb, "n d -> 1 n 1 d")
|
| 1104 |
+
|
| 1105 |
+
cos, sin = emb.cos(), emb.sin()
|
| 1106 |
+
self._rotary_pos_emb_cache = [cos, sin]
|
| 1107 |
|
| 1108 |
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
| 1109 |
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
| 1110 |
+
cos, sin = self._rotary_pos_emb_cache
|
| 1111 |
+
return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
|
| 1112 |
|
| 1113 |
|
| 1114 |
def _rotate_half(x):
|
|
|
|
| 1120 |
|
| 1121 |
|
| 1122 |
def apply_rotary_pos_emb(t, freqs):
|
| 1123 |
+
cos, sin = freqs
|
| 1124 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
| 1125 |
t_ = t.float()
|
| 1126 |
+
cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
|
| 1127 |
+
sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
|
|
|
|
| 1128 |
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
| 1129 |
return output
|
| 1130 |
else:
|
| 1131 |
+
rot_dim = freqs[0].shape[-1]
|
| 1132 |
+
cos, sin = freqs
|
| 1133 |
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
| 1134 |
t_ = t_.float()
|
| 1135 |
t_pass_ = t_pass_.float()
|
| 1136 |
+
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
| 1137 |
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
| 1138 |
|
| 1139 |
|