littlebird13 commited on
Commit
9729168
·
verified ·
1 Parent(s): e67ac5d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ ---
7
+
8
+ # Qwen3-30B-A3B-Instruct-2507
9
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
10
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
11
+ </a>
12
+
13
+ ## Highlights
14
+
15
+ We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements:
16
+
17
+ - **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
18
+ - **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
19
+ - **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
20
+ - **Enhanced capabilities** in **256K long-context understanding**.
21
+
22
+ ## Model Overview
23
+
24
+ **Qwen3-30B-A3B-Instruct-2507** has the following features:
25
+ - Type: Causal Language Models
26
+ - Training Stage: Pretraining & Post-training
27
+ - Number of Parameters: 30.5B in total and 3.3B activated
28
+ - Number of Paramaters (Non-Embedding): 29.9B
29
+ - Number of Layers: 48
30
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
31
+ - Number of Experts: 128
32
+ - Number of Activated Experts: 8
33
+ - Context Length: **262,144 natively**.
34
+
35
+ **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
36
+
37
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
38
+
39
+
40
+ ## Quickstart
41
+
42
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
43
+
44
+ With `transformers<4.51.0`, you will encounter the following error:
45
+ ```
46
+ KeyError: 'qwen3_moe'
47
+ ```
48
+
49
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
54
+
55
+ # load the tokenizer and the model
56
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_name,
59
+ torch_dtype="auto",
60
+ device_map="auto"
61
+ )
62
+
63
+ # prepare the model input
64
+ prompt = "Give me a short introduction to large language model."
65
+ messages = [
66
+ {"role": "user", "content": prompt}
67
+ ]
68
+ text = tokenizer.apply_chat_template(
69
+ messages,
70
+ tokenize=False,
71
+ add_generation_prompt=True,
72
+ )
73
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
74
+
75
+ # conduct text completion
76
+ generated_ids = model.generate(
77
+ **model_inputs,
78
+ max_new_tokens=16384
79
+ )
80
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
81
+
82
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
83
+
84
+ print("content:", content)
85
+ ```
86
+
87
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
88
+ - SGLang:
89
+ ```shell
90
+ python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --tp 8 --context-length 262144
91
+ ```
92
+ - vLLM:
93
+ ```shell
94
+ vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --tensor-parallel-size 8 --max-model-len 262144
95
+ ```
96
+
97
+ **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
98
+
99
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
100
+
101
+ ## Agentic Use
102
+
103
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
104
+
105
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
106
+ ```python
107
+ from qwen_agent.agents import Assistant
108
+
109
+ # Define LLM
110
+ llm_cfg = {
111
+ 'model': 'Qwen3-30B-A3B-Instruct-2507',
112
+
113
+ # Use a custom endpoint compatible with OpenAI API:
114
+ 'model_server': 'http://localhost:8000/v1', # api_base
115
+ 'api_key': 'EMPTY',
116
+ }
117
+
118
+ # Define Tools
119
+ tools = [
120
+ {'mcpServers': { # You can specify the MCP configuration file
121
+ 'time': {
122
+ 'command': 'uvx',
123
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
124
+ },
125
+ "fetch": {
126
+ "command": "uvx",
127
+ "args": ["mcp-server-fetch"]
128
+ }
129
+ }
130
+ },
131
+ 'code_interpreter', # Built-in tools
132
+ ]
133
+
134
+ # Define Agent
135
+ bot = Assistant(llm=llm_cfg, function_list=tools)
136
+
137
+ # Streaming generation
138
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
139
+ for responses in bot.run(messages=messages):
140
+ pass
141
+ print(responses)
142
+ ```
143
+
144
+ ## Best Practices
145
+
146
+ To achieve optimal performance, we recommend the following settings:
147
+
148
+ 1. **Sampling Parameters**:
149
+ - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
150
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
151
+
152
+ 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
153
+
154
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
155
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
156
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
157
+
158
+ ### Citation
159
+
160
+ If you find our work helpful, feel free to give us a cite.
161
+
162
+ ```
163
+ @misc{qwen3technicalreport,
164
+ title={Qwen3 Technical Report},
165
+ author={Qwen Team},
166
+ year={2025},
167
+ eprint={2505.09388},
168
+ archivePrefix={arXiv},
169
+ primaryClass={cs.CL},
170
+ url={https://arxiv.org/abs/2505.09388},
171
+ }
172
+ ```