Qwen3Guard-Stream-8B / modeling_qwen3_guard.py
hzhwcmhf's picture
Update modeling_qwen3_guard.py
19bada9 verified
raw
history blame
28.7 kB
# coding=utf-8
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union, Tuple, Generator, List, Dict
import torch
from torch import nn
import torch.nn.functional as F
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.deprecation import deprecate_kwarg
from transformers.utils.generic import check_model_inputs
from .configuration_qwen3 import Qwen3Config
from dataclasses import dataclass, field
@dataclass
class GuardLogitsOutputWithPast:
risk_level_logits: torch.FloatTensor = None
category_logits: torch.FloatTensor = None
query_risk_level_logits: torch.FloatTensor = None
query_category_logits: torch.FloatTensor = None
loss: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@use_kernel_forward_from_hub("RMSNorm")
class Qwen3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps: float = 1e-6) -> None:
"""
Qwen3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Qwen3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Qwen3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Qwen3Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_values is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Qwen3DecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Qwen3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Qwen3Attention(config=config, layer_idx=layer_idx)
self.mlp = Qwen3MLP(config)
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class Qwen3PreTrainedModel(PreTrainedModel):
config: Qwen3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": Qwen3DecoderLayer,
"attentions": Qwen3Attention,
}
class Qwen3RotaryEmbedding(nn.Module):
inv_freq: torch.Tensor # fix linting for `register_buffer`
def __init__(self, config: Qwen3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class Qwen3Model(Qwen3PreTrainedModel):
def __init__(self, config: Qwen3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache(config=self.config)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
# Create the masks
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
}
# The sliding window alternating layers are not always activated depending on the config
if self.has_sliding_layers:
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
@auto_docstring
class Qwen3ForGuardModel(Qwen3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = Qwen3Model(config)
self.vocab_size = config.vocab_size
self.risk_level_category_pre = nn.Linear(config.hidden_size, config.guard_inner_size, bias=False)
self.risk_level_category_layernorm = Qwen3RMSNorm(config.guard_inner_size, eps=config.rms_norm_eps)
self.risk_level_head = nn.Linear(config.guard_inner_size, config.num_risk_level, bias=False)
self.category_head = nn.Linear(config.guard_inner_size, config.num_category, bias=False)
self.query_risk_level_category_pre = nn.Linear(config.hidden_size, config.guard_inner_size, bias=False)
self.query_risk_level_category_layernorm = Qwen3RMSNorm(config.guard_inner_size, eps=config.rms_norm_eps)
self.query_risk_level_head = nn.Linear(config.guard_inner_size, config.num_query_risk_level, bias=False)
self.query_category_head = nn.Linear(config.guard_inner_size, config.num_query_category, bias=False)
response_risk_level_map = config.response_risk_level_map
self.response_risk_level_map = {int(k): v for k, v in response_risk_level_map.items()}
response_category_map = config.response_category_map
self.response_category_map = {int(k): v for k, v in response_category_map.items()}
query_risk_level_map = config.query_risk_level_map
self.query_risk_level_map = {int(k): v for k, v in query_risk_level_map.items()}
query_category_map = config.query_category_map
self.query_category_map = {int(k): v for k, v in query_category_map.items()}
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> GuardLogitsOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
```"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
# modify the mapping here
risk_level_category_x = self.risk_level_category_pre(hidden_states[:, slice_indices, :])
risk_level_category_x = self.risk_level_category_layernorm(risk_level_category_x)
risk_level_logits = self.risk_level_head(risk_level_category_x)
category_logits = self.category_head(risk_level_category_x)
query_risk_level_category_x = self.query_risk_level_category_pre(hidden_states[:, slice_indices, :])
query_risk_level_category_x = self.query_risk_level_category_layernorm(query_risk_level_category_x)
query_risk_level_logits = self.query_risk_level_head(query_risk_level_category_x)
query_category_logits = self.query_category_head(query_risk_level_category_x)
loss = None
return GuardLogitsOutputWithPast(
loss=loss,
risk_level_logits=risk_level_logits,
category_logits=category_logits,
query_risk_level_logits=query_risk_level_logits,
query_category_logits=query_category_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@torch.no_grad()
def stream_generate(
self,
input_ids: torch.LongTensor
) -> Generator[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], Optional[torch.LongTensor], None]:
seq_length = len(input_ids)
causal_mask = torch.tril(torch.ones((seq_length, seq_length), device=self.device, dtype=torch.bool))
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
past_key_values = None
current_input_ids = input_ids
while True:
outputs = self.forward(
input_ids=current_input_ids.unsqueeze(0),
attention_mask=causal_mask,
past_key_values=past_key_values
)
past_key_values = outputs.past_key_values
logits_tuple = (
outputs.risk_level_logits,
outputs.category_logits,
outputs.query_risk_level_logits,
outputs.query_category_logits,
)
next_token_id = yield logits_tuple
if next_token_id is None:
break
current_input_ids = torch.cat([current_input_ids, torch.tensor([next_token_id],device=self.device)])
cur_len = causal_mask.shape[2]
new_causal_mask = torch.zeros((1, cur_len+1, cur_len+1), device=causal_mask.device, dtype=torch.bool)
new_causal_mask[:, :cur_len, :cur_len] = causal_mask.squeeze(0)
new_causal_mask[:, cur_len, :cur_len+1] = True
causal_mask = new_causal_mask.unsqueeze(0)
@torch.no_grad()
def stream_moderate_from_ids(
self,
token_ids: torch.LongTensor,
role: str,
stream_state: Optional[Generator] = None
) -> Tuple[Dict, Generator]:
"""
Incrementally processes token_ids to evaluate the risk of the latest tokens.
Args:
token_ids (torch.LongTensor): The token IDs to process.
- For the first call (when `stream_state` is None), this should be the
full sequence of token IDs for the initial prompt.
- For subsequent calls, this should ONLY be the new, incremental token id.
Shape should be (1).
role (str): The role of the speaker for the provided `token_ids`.
Must be 'user' or 'assistant'.
stream_state (Generator, optional): The state from the previous call to
this function. Pass `None` to start a
new conversation stream.
Returns:
Tuple[Dict, Generator]: A tuple containing:
- A dictionary with the prediction results for the *last token* processed.
- The updated stream_state generator to be passed to the next call.
"""
token_ids = token_ids.to(self.device)
if stream_state is None:
stream_state = self.stream_generate(token_ids)
logits_tuple = next(stream_state)
else:
logits_tuple = stream_state.send(token_ids)
if role == "user":
risk_level_logits = logits_tuple[2]
category_logits = logits_tuple[3]
elif role == "assistant":
risk_level_logits = logits_tuple[0]
category_logits = logits_tuple[1]
else:
raise ValueError("Role must be either 'user' or 'assistant'")
risk_probs = F.softmax(risk_level_logits.squeeze(1), dim=-1)
pred_risk_prob, pred_risk_idx = torch.max(risk_probs, dim=-1)
category_probs = F.softmax(category_logits.squeeze(1), dim=-1)
pred_cat_prob, pred_cat_idx = torch.max(category_probs, dim=-1)
if role == "user":
result = {
"risk_level": [self.query_risk_level_map[int(i)] for i in pred_risk_idx[0]],
"risk_prob": [round(float(i),2) for i in pred_risk_prob[0]],
"category": [self.query_category_map[int(i)] for i in pred_cat_idx[0]],
"category_prob": [round(float(i),2) for i in pred_cat_prob[0]]
}
else:
result = {
"risk_level": [self.response_risk_level_map[int(i)] for i in pred_risk_idx[0]],
"risk_prob": [round(float(i),2) for i in pred_risk_prob[0]],
"category": [self.response_category_map[int(i)] for i in pred_cat_idx[0]],
"category_prob": [round(float(i),2) for i in pred_cat_prob[0]]
}
return result, stream_state
@torch.no_grad()
def close_stream(self, stream_state: Optional[Generator]) -> None:
if stream_state is not None:
try:
stream_state.send(None)
except StopIteration:
pass
finally:
stream_state.close()
__all__ = [
"Qwen3PreTrainedModel",
"Qwen3Model",
"Qwen3ForGuardModel",
]