File size: 4,713 Bytes
7e3d817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbcc921
7e3d817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
  - multilingual
  - compliant
  - swiss-ai
  - apertus
  - fp8
  - vllm
  - compressed-tensors
  - llm-compressor
base_model:
- swiss-ai/Apertus-70B-Instruct-2509
---
## Model Overview
- **Model Architecture:** ApertusForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
- **Release Date:** 9/22/2025
- **Version:** 1.0
- **Model Developers:** Red Hat

Quantized version of [swiss-ai/Apertus-70B-2509](https://huggingface.co/swiss-ai/Apertus-70B-2509).

### Model Optimizations

This model was obtained by quantizing the weights and activations of [swiss-ai/Apertus-70B-2509](https://huggingface.co/swiss-ai/Apertus-70B-2509) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized. 

## Deployment

### Use with vLLM

1. Initialize vLLM server:
```
vllm serve RedHatAI/Apertus-70B-Instruct-2509-quantized.w4a16
```

2. Send requests to the server:

```python
from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

model = "RedHatAI/Apertus-70B-Instruct-2509-quantized.w4a16"

messages = [
    {"role": "user", "content": "Give me a short introduction to large language model."},
]

outputs = client.chat.completions.create(
    model=model,
    messages=messages,
)

generated_text = outputs.choices[0].message.content
print(generated_text)
```

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 

<details>
  <summary>Model Creation Code</summary>

```python
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model
model_stub = "swiss-ai/Apertus-70B-Instruct-2509"
model_name = model_stub.split("/")[-1]

model = AutoModelForCausalLM.from_pretrained(model_stub, dtype="auto")

tokenizer = AutoTokenizer.from_pretrained(model_stub)

# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
    ignore=["lm_head"],
    targets="Linear",
    scheme="FP8_dynamic",
)

# Apply quantization
oneshot(
    model=model,
    recipe=recipe,
)

# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
</details>

## Evaluation

The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), using the following command:

<details>
<summary>Evaluation Commands</summary>
  
OpenLLM Leaderboard V1:
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Apertus-70B-Instruct-2509-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,gpu_memory_utilization=0.2,enable_chunked_prefill=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config
```
</details>

### Accuracy

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>swiss-ai/Apertus-70B-Instruct-2509</th>
      <th>RedHatAI/Apertus-70B-Instruct-2509-quantized.w4a16</th>
      <th>Recovery (%)</th>
    </tr>
  </thead>
  <tbody>
    <!-- OpenLLM Leaderboard V1 -->
    <tr>
      <td rowspan="7"><b>OpenLLM V1</b></td>
      <td>ARC-Challenge (Acc-Norm, 25-shot)</td>
      <td>70.82</td>
      <td>70.65</td>
      <td>99.8</td>
    </tr>
    <tr>
      <td>GSM8K (Strict-Match, 5-shot)</td>
      <td>73.69</td>
      <td>73.45</td>
      <td>99.7</td>
    </tr>
    <tr>
      <td>HellaSwag (Acc-Norm, 10-shot)</td>
      <td>86.23</td>
      <td>85.67</td>
      <td>99.4</td>
    </tr>
    <tr>
      <td>MMLU (Acc, 5-shot)</td>
      <td>69.21</td>
      <td>68.25</td>
      <td>98.6</td>
    </tr>
    <tr>
      <td>TruthfulQA (MC2, 0-shot)</td>
      <td>60.31</td>
      <td>60.55</td>
      <td>100.4</td>
    </tr>
    <tr>
      <td>Winogrande (Acc, 5-shot)</td>
      <td>80.74</td>
      <td>80.03</td>
      <td>99.1</td>
    </tr>
    <tr>
      <td><b>Average Score</b></td>
      <td><b>73.50</b></td>
      <td><b>73.10</b></td>
      <td><b>99.5</b></td>
    </tr>
  </tbody>
</table>