--- language: - en base_model: - mistralai/Devstral-Small-2507 pipeline_tag: text-generation tags: - mistral - neuralmagic - redhat - llmcompressor - quantized - INT8 - compressed-tensors license: mit license_name: mit name: RedHatAI/Devstral-Small-2507 description: This model was obtained by quantizing weights and activations of Devstral-Small-2507 to INT8 data type. readme: https://huggingface.co/RedHatAI/Devstral-Small-2507-quantized.w8a8/main/README.md tasks: - text-to-text provider: mistralai --- # Devstral-Small-2507-quantized.w8a8 ## Model Overview - **Model Architecture:** MistralForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** INT8 - **Weight quantization:** INT8 - **Release Date:** 08/29/2025 - **Version:** 1.0 - **Model Developers:** Red Hat (Neural Magic) ### Model Optimizations This model was obtained by quantizing weights and activations of [Devstral-Small-2507](https://huggingface.co/mistralai/Devstral-Small-2507) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%). Weight quantization also reduces disk size requirements by approximately 50%. ## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```bash python quantize.py --model_path mistralai/Devstral-Small-2507 --calib_size 512 --dampening_frac 0.05 ``` ```python import argparse import os from datasets import load_dataset from transformers import AutoModelForCausalLM from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) def load_system_prompt(repo_id: str, filename: str) -> str: file_path = os.path.join(repo_id, filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.1) args = parser.parse_args() model = AutoModelForCausalLM.from_pretrained( args.model_path, device_map="auto", torch_dtype="auto", use_cache=False, trust_remote_code=True, ) ds = load_dataset("garage-bAInd/Open-Platypus", split="train") ds = ds.shuffle(seed=42).select(range(args.calib_size)) SYSTEM_PROMPT = load_system_prompt(args.model_path, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_hf_hub("mistralai/Devstral-Small-2507") def tokenize(sample): tmp = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content=sample['instruction']), ], ) ) return {'input_ids': tmp.tokens} ds = ds.map(tokenize, remove_columns=ds.column_names) recipe = [ SmoothQuantModifier( smoothing_strength=0.8, mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"], ], ), GPTQModifier( targets=["Linear"], ignore=["lm_head"], scheme="W8A8", dampening_frac=args.dampening_frac, ) ] oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size, max_seq_length=8192, ) save_path = args.model_path + "-quantized.w8a8" model.save_pretrained(save_path) ```
## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```bash vllm serve RedHatAI/Devstral-Small-2507-quantized.w8a8 --tensor-parallel-size 1 --tokenizer_mode mistral ``` ## Evaluation The model was evaluated on popular coding tasks (HumanEval, HumanEval+, MBPP, MBPP+) via [EvalPlus](https://github.com/evalplus/evalplus) and vllm backend (v0.10.1.1). For evaluations, we run greedy sampling and report pass@1. The command to reproduce evals: ```bash evalplus.evaluate --model "RedHatAI/Devstral-Small-2507-quantized.w8a8" \ --dataset [humaneval|mbpp] \ --base-url http://localhost:8000/v1 \ --backend openai --greedy ``` ### Accuracy | | Recovery (%) | mistralai/Devstral-Small-2507 | RedHatAI/Devstral-Small-2507-quantized.w8a8
(this model) | | --------------------------- | :----------: | :------------------: | :--------------------------------------------------: | | HumanEval | 100.67 | 89.0 | 89.6 | | HumanEval+ | 101.48 | 81.1 | 82.3 | | MBPP | 98.71 | 77.5 | 76.5 | | MBPP+ | 102.42 | 66.1 | 67.7 | | **Average Score** | **100.77** | **78.43** | **79.03** |