---
language:
- en
base_model:
- mistralai/Devstral-Small-2507
pipeline_tag: text-generation
tags:
- mistral
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT8
- compressed-tensors
license: mit
license_name: mit
name: RedHatAI/Devstral-Small-2507
description: This model was obtained by quantizing weights and activations of Devstral-Small-2507 to INT8 data type.
readme: https://huggingface.co/RedHatAI/Devstral-Small-2507-quantized.w8a8/main/README.md
tasks:
- text-to-text
provider: mistralai
---
# Devstral-Small-2507-quantized.w8a8
## Model Overview
- **Model Architecture:** MistralForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** INT8
- **Weight quantization:** INT8
- **Release Date:** 08/29/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing weights and activations of [Devstral-Small-2507](https://huggingface.co/mistralai/Devstral-Small-2507) to INT8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%).
Weight quantization also reduces disk size requirements by approximately 50%.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```bash
python quantize.py --model_path mistralai/Devstral-Small-2507 --calib_size 512 --dampening_frac 0.05
```
```python
import argparse
import os
from datasets import load_dataset
from transformers import AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.protocol.instruct.messages import (
SystemMessage, UserMessage
)
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = os.path.join(repo_id, filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
args = parser.parse_args()
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
trust_remote_code=True,
)
ds = load_dataset("garage-bAInd/Open-Platypus", split="train")
ds = ds.shuffle(seed=42).select(range(args.calib_size))
SYSTEM_PROMPT = load_system_prompt(args.model_path, "SYSTEM_PROMPT.txt")
tokenizer = MistralTokenizer.from_hf_hub("mistralai/Devstral-Small-2507")
def tokenize(sample):
tmp = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
SystemMessage(content=SYSTEM_PROMPT),
UserMessage(content=sample['instruction']),
],
)
)
return {'input_ids': tmp.tokens}
ds = ds.map(tokenize, remove_columns=ds.column_names)
recipe = [
SmoothQuantModifier(
smoothing_strength=0.8,
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"],
],
),
GPTQModifier(
targets=["Linear"],
ignore=["lm_head"],
scheme="W8A8",
dampening_frac=args.dampening_frac,
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
max_seq_length=8192,
)
save_path = args.model_path + "-quantized.w8a8"
model.save_pretrained(save_path)
```
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```bash
vllm serve RedHatAI/Devstral-Small-2507-quantized.w8a8 --tensor-parallel-size 1 --tokenizer_mode mistral
```
## Evaluation
The model was evaluated on popular coding tasks (HumanEval, HumanEval+, MBPP, MBPP+) via [EvalPlus](https://github.com/evalplus/evalplus) and vllm backend (v0.10.1.1).
For evaluations, we run greedy sampling and report pass@1. The command to reproduce evals:
```bash
evalplus.evaluate --model "RedHatAI/Devstral-Small-2507-quantized.w8a8" \
--dataset [humaneval|mbpp] \
--base-url http://localhost:8000/v1 \
--backend openai --greedy
```
### Accuracy
| | Recovery (%) | mistralai/Devstral-Small-2507 | RedHatAI/Devstral-Small-2507-quantized.w8a8
(this model) |
| --------------------------- | :----------: | :------------------: | :--------------------------------------------------: |
| HumanEval | 100.67 | 89.0 | 89.6 |
| HumanEval+ | 101.48 | 81.1 | 82.3 |
| MBPP | 98.71 | 77.5 | 76.5 |
| MBPP+ | 102.42 | 66.1 | 67.7 |
| **Average Score** | **100.77** | **78.43** | **79.03** |