--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-0.5B tags: - chat - neuralmagic - llmcompressor --- # Qwen2.5-0.5B-quantized.w4a16 ## Model Overview - **Model Architecture:** Qwen2 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 12/17/2024 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B). It achieves an average score of 41.25 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 44.03. ### Model Optimizations This model was obtained by quantizing the weights of [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only weights of the linear operators within transformers blocks are quantized. Symmetric per-group quantization is applied, in which a linear scaling per group of 64 parameters maps the INT4 and floating point representations of the quantized weights. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic-ent/Qwen2.5-0.5B-quantized.w4a16" number_gpus = 1 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Give me a short introduction to large language model." llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompt, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Qwen2.5-0.5B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,add_bos_token=True,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
| Benchmark | Qwen2.5-0.5B | Qwen2.5-0.5B-quantized.w4a16 (this model) | Recovery |
| MMLU (5-shot) | 47.57 | 45.04 | 94.7% |
| ARC Challenge (25-shot) | 34.90 | 32.68 | 98.8% |
| GSM-8K (5-shot, strict-match) | 34.19 | 27.98 | 81.8% |
| Hellaswag (10-shot) | 51.83 | 49.15 | 94.8% |
| Winogrande (5-shot) | 55.80 | 53.75 | 96.3% |
| TruthfulQA (0-shot, mc2) | 39.90 | 38.89 | 97.5% |
| Average | 44.03 | 41.25 | 93.7% |