---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-4B
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
---
# Qwen3-4B-FP8-dynamic
## Model Overview
- **Model Architecture:** Qwen3ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** FP8
- **Weight quantization:** FP8
- **Intended Use Cases:**
- Reasoning.
- Function calling.
- Subject matter experts via fine-tuning.
- Multilingual instruction following.
- Translation.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 05/02/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing activations and weights of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-4B-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "Qwen/Qwen3-4B"
model_name = model_stub.split("/")[-1]
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
ignore=["lm_head"],
targets="Linear",
scheme="FP8_dynamic",
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
Evaluation details
**lm-evaluation-harness**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-4B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-4B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks mgsm \
--apply_chat_template\
--batch_size auto
```
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-4B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks leaderboard \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**lighteval**
lighteval_model_arguments.yaml
```yaml
model_parameters:
model_name: RedHatAI/Qwen3-4B-FP8-dynamic
dtype: auto
gpu_memory_utilization: 0.9
max_model_length: 40960
generation_parameters:
temperature: 0.6
top_k: 20
min_p: 0.0
top_p: 0.95
max_new_tokens: 32768
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime24|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|math_500|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|gpqa:diamond|0|0 \
--use_chat_template = true
```
```
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks extended|lcb:codegeneration \
--use_chat_template = true
```
| Category | Benchmark | Qwen3-4B | Qwen3-4B-FP8-dynamic (this model) |
Recovery |
|---|---|---|---|---|
| OpenLLM v1 | MMLU (5-shot) | 66.76 | 66.34 | 99.4% |
| ARC Challenge (25-shot) | 50.17 | 49.91 | 99.5% | |
| GSM-8K (5-shot, strict-match) | 60.80 | 66.11 | 108.7% | |
| Hellaswag (10-shot) | 52.80 | 53.51 | 101.3% | |
| Winogrande (5-shot) | 58.41 | 60.54 | 103.7% | |
| TruthfulQA (0-shot, mc2) | 51.79 | 51.52 | 99.5% | |
| Average | 56.79 | 57.99 | 102.1% | |
| OpenLLM v2 | MMLU-Pro (5-shot) | 29.82 | 28.13 | 94.3% |
| IFEval (0-shot) | 82.09 | 83.16 | 101.3% | |
| BBH (3-shot) | 29.69 | 27.27 | 91.7% | |
| Math-lvl-5 (4-shot) | 50.63 | 51.42 | 101.6% | |
| GPQA (0-shot) | 0.00 | 0.00 | --- | |
| MuSR (0-shot) | 11.37 | 11.00 | --- | |
| Average | 33.93 | 33.49 | 98.7% | |
| Multilingual | MGSM (0-shot) | 26.67 | 26.00 | 97.5% |
| Reasoning (generation) |
AIME 2024 | 71.35 | 69.37 | 97.2% |
| AIME 2025 | 59.58 | 60.73 | 101.9% | |
| GPQA diamond | 55.56 | 54.04 | 97.3% | |
| Math-lvl-5 | 95.60 | 96.80 | 101.3% | |
| LiveCodeBench | 53.03 | 51.45 | 97.0% |