Create quantization/apply_gptq_save_marlin.py
Browse files
quantization/apply_gptq_save_marlin.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse, gc, shutil
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
|
| 6 |
+
parser = argparse.ArgumentParser()
|
| 7 |
+
parser.add_argument("--model-id", type=str)
|
| 8 |
+
parser.add_argument("--save-dir", type=str)
|
| 9 |
+
parser.add_argument("--channelwise", action="store_true")
|
| 10 |
+
parser.add_argument("--num-samples", type=int, default=512)
|
| 11 |
+
parser.add_argument("--max-seq-len", type=int, default=2048)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def preprocess(example):
|
| 15 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)}
|
| 16 |
+
|
| 17 |
+
if __name__ == "__main__":
|
| 18 |
+
args = parser.parse_args()
|
| 19 |
+
|
| 20 |
+
dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:5%]")
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
| 22 |
+
ds = dataset.shuffle().select(range(args.num_samples))
|
| 23 |
+
ds = ds.map(preprocess)
|
| 24 |
+
|
| 25 |
+
examples = [
|
| 26 |
+
tokenizer(
|
| 27 |
+
example["text"], padding=False, max_length=args.max_seq_len, truncation=True,
|
| 28 |
+
) for example in ds
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
if args.channelwise:
|
| 32 |
+
group_size = -1
|
| 33 |
+
else:
|
| 34 |
+
group_size = 128
|
| 35 |
+
|
| 36 |
+
quantize_config = BaseQuantizeConfig(
|
| 37 |
+
bits=4, # Only support 4 bit
|
| 38 |
+
group_size=group_size, # Set to g=128 or -1 (for channelwise)
|
| 39 |
+
desc_act=False, # Marlin does not suport act_order=True
|
| 40 |
+
model_file_base_name="model" # Name of the model.safetensors when we call save_pretrained
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
| 44 |
+
args.model_id,
|
| 45 |
+
quantize_config,
|
| 46 |
+
device_map="auto")
|
| 47 |
+
model.quantize(examples)
|
| 48 |
+
|
| 49 |
+
gptq_save_dir = args.gptq_save_dir
|
| 50 |
+
print(f"Saving gptq model to {gptq_save_dir}")
|
| 51 |
+
model.save_pretrained(gptq_save_dir)
|
| 52 |
+
tokenizer.save_pretrained(gptq_save_dir)
|
| 53 |
+
|
| 54 |
+
del model
|
| 55 |
+
gc.collect()
|
| 56 |
+
|
| 57 |
+
print("Reloading in marlin format")
|
| 58 |
+
gptq_save_dir = "./tmp-gptq"
|
| 59 |
+
marlin_model = AutoGPTQForCausalLM.from_quantized(
|
| 60 |
+
gptq_save_dir,
|
| 61 |
+
use_marlin=True,
|
| 62 |
+
device_map="auto")
|
| 63 |
+
|
| 64 |
+
print("Saving in marlin format")
|
| 65 |
+
marlin_model.save_pretrained(args.marlin_save_dir)
|
| 66 |
+
tokenizer.save_pretrained(args.marlin_save_dir)
|
| 67 |
+
|
| 68 |
+
shutil.rmtree(gptq_save_dir)
|