Commit
·
c10861e
1
Parent(s):
3c0ddff
Llama2-base 7B Chinese chat ver 0.01
Browse files- README.md +70 -0
- all_results.json +14 -0
- config.json +26 -0
- eval_results.json +9 -0
- generation_config.json +7 -0
- latest +1 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- special_tokens_map.json +6 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- train_results.json +8 -0
- trainer_state.json +2395 -0
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- zh
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- llama2
|
| 7 |
+
- llama2-base
|
| 8 |
+
- llama2-base-7B
|
| 9 |
+
---
|
| 10 |
+
# 7B Chinese Chatbot trained based on LLama2-base 7B
|
| 11 |
+
|
| 12 |
+
## Introduction
|
| 13 |
+
|
| 14 |
+
在完成了[Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) 和 [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W) 的训练后,我非常好奇能否直接基于Llama2-base 系列直接进行SFT训练。这也是本模型仓库的初衷。
|
| 15 |
+
|
| 16 |
+
但是在实际操作中,在用了原先chat模型的LoRA训练框架后,我发现基于Llama2 base的 LoRA 训练非常难以收敛,随时处于梯度爆炸的边缘。DeepSpeed 会频繁触发reduce scale 操作,最终scale太小越界导致训练崩溃。我遍历了LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\]等超参数,均无法稳定训练。因此,本模型重新回归了全参数SFT训练。其难以进行LoRA训练的原因还待分析。
|
| 17 |
+
|
| 18 |
+
由于网上存在使用LoRA 在英文SFT数据集上基于Llama2-base 进行SFT训练成功的样例,因此我怀疑难以训练的原因可能是扩中文词表embedding导致训练难度大幅度提升。
|
| 19 |
+
|
| 20 |
+
为了方便后来人一起分析,本模型仓库特地将训练的全部loss/LR信息附在[Material](trainer_state.json)中。
|
| 21 |
+
|
| 22 |
+
训练数据使用[BELLE](https://huggingface.co/BelleGroup)项目中采样的50万SFT数据进行SFT训练。
|
| 23 |
+
|
| 24 |
+
After finishing the training of [Llama2-chat 7B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-Chinese-50W) and [Llama2-chat 13B Chinese](https://huggingface.co/RicardoLee/Llama2-chat-13B-Chinese-50W), I am deeply intrigued by the possibility of conducting SFT (Style-Fine-Tuning) training directly based on the Llama2-base series. This is the fundamental purpose of this model repository.
|
| 25 |
+
|
| 26 |
+
**However**, in real practice, I have observed that conducting LoRA training based on the Llama2 base model, within the framework of the previous Llama2-chat SFT project, presents significant challenges in achieving convergence. The gradient explosion happens in every training step and casue reducing scale operation in Deepspeed. In the end, the scale is too small and out of bounds, causing the training to crash. I have traversed LR 1e-5 - 2e-4,LoRA rank \[4, 8, 64\],LoRA Alpha \[1,4,8,16,32\],LoRA Dropout \[0.05, 0.1\] ,Warmup Ratio \[0.01, 0.03, 0.05\] and other hyperparameters, all of which cannot be trained stably. Therefore, this model has reverted to full-parameter SFT training. The reasons behind the difficulties encountered during LoRA training require further analysis.
|
| 27 |
+
|
| 28 |
+
As there are instances online where successful LoRA training on English SFT datasets using Llama2-base has been demonstrated, I suspect that the challenge in training might be attributed to the expansion of the Chinese word embedding, resulting in a substantial increase in training difficulty.
|
| 29 |
+
|
| 30 |
+
In order to facilitate collaborative analysis for future researchers, this model repository has thoughtfully appended all training-related loss/LR information in [Material](trainer_state.json).
|
| 31 |
+
|
| 32 |
+
The training data is sampled from [BELLE](https://huggingface.co/BelleGroup) project, which consists of 500,000 SFT samples.
|
| 33 |
+
|
| 34 |
+
## Train Detail
|
| 35 |
+
|
| 36 |
+
一些训练上的细节:
|
| 37 |
+
|
| 38 |
+
1. 训练框架:该模型采用全参数SFT训练,而非LoRA
|
| 39 |
+
2. Tokenizer:该模型使用了Chinese-Alpaca-Plus模型的tokenizer.model。这是因为LLama2本身的tokenizer.model同LLama1是一摸一样的。因此理论上可以完全复用Chinese-LLaMa项目的tokenizer而不会产生如何错位问题。
|
| 40 |
+
3. 训练参数:受限于资源,本模型只训练了1 epoch。其LR 为2e-4。Warmup ratio 为0.01。可以看到这是一个非常激进的训练,因此本模型仓库被命名为了预发布版本。未来会接着放出3 epoch版本。
|
| 41 |
+
4. 训练资源:8卡V100。21个小时
|
| 42 |
+
5. 训练起始的loss:参见[Material](trainer_state.json)
|
| 43 |
+
6. 训练终止的loss:参见[Material](trainer_state.json)
|
| 44 |
+
|
| 45 |
+
Some details in training:
|
| 46 |
+
|
| 47 |
+
1. Trianing Framework: This model adopts full-parameter SFT training instead of LoRA.
|
| 48 |
+
2. Tokenizer: This model utilizes the tokenizer.model from the Chinese-Alpaca-Plus model. The reason for this choice is that the tokenizer.model in LLama2 is identical to the one used in LLama1. As a result, it is theoretically feasible to entirely reuse the tokenizer from the Chinese-LLaMa project without encountering any issues related to token misalignment.
|
| 49 |
+
3. Training Parameters: Constrained by limited resources, this model was trained for only 1 epoch, with a learning rate of 2e-4 and a warmup ratio of 0.01. Obviously, this is an exceedingly aggressive training schema, hence this model repository has been labeled as the 'pre-release' version. In the future, a 3-epoch version will be released subsequently for the comparison of previous Llama2-chat Chinese models.
|
| 50 |
+
4. Training Resource: 8\*V100, 21 hours.
|
| 51 |
+
5. Initial Loss: Please refer to [Material](trainer_state.json)
|
| 52 |
+
6. Train Loss: Please refer to [Material](trainer_state.json)
|
| 53 |
+
|
| 54 |
+
## Licence
|
| 55 |
+
|
| 56 |
+
本仓库的模型依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循LLama2[MODEL LICENCE](LICENSE)。
|
| 57 |
+
|
| 58 |
+
This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 [MODEL LICENCE](LICENSE) license.
|
| 59 |
+
|
| 60 |
+
## Future Work
|
| 61 |
+
|
| 62 |
+
将会在近期逐步放出
|
| 63 |
+
|
| 64 |
+
1. 更大SFT数据规模训练下的模型。
|
| 65 |
+
2. 13B及以下的LLama2 同LLama2-chat的模型,以供大家对比。
|
| 66 |
+
|
| 67 |
+
I will release the following models:
|
| 68 |
+
|
| 69 |
+
1. Models trained on larger data scale.
|
| 70 |
+
2. Models trained on LLama2 and LLama2-chat (under the 13B, since I only have V100), for comparison.
|
all_results.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"eval_loss": 1.3428778648376465,
|
| 4 |
+
"eval_runtime": 2.0111,
|
| 5 |
+
"eval_samples": 100,
|
| 6 |
+
"eval_samples_per_second": 49.725,
|
| 7 |
+
"eval_steps_per_second": 1.989,
|
| 8 |
+
"perplexity": 3.830050026427415,
|
| 9 |
+
"train_loss": 1.9416432221974707,
|
| 10 |
+
"train_runtime": 74872.2082,
|
| 11 |
+
"train_samples": 500000,
|
| 12 |
+
"train_samples_per_second": 6.678,
|
| 13 |
+
"train_steps_per_second": 0.052
|
| 14 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "RicardoLee/Llama2-base-7B-Chinese-50W-pre_release",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 4096,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 11008,
|
| 12 |
+
"max_position_embeddings": 2048,
|
| 13 |
+
"model_type": "llama",
|
| 14 |
+
"num_attention_heads": 32,
|
| 15 |
+
"num_hidden_layers": 32,
|
| 16 |
+
"num_key_value_heads": 32,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"pretraining_tp": 1,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.31.0",
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 49954
|
| 26 |
+
}
|
eval_results.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"eval_loss": 1.3428778648376465,
|
| 4 |
+
"eval_runtime": 2.0111,
|
| 5 |
+
"eval_samples": 100,
|
| 6 |
+
"eval_samples_per_second": 49.725,
|
| 7 |
+
"eval_steps_per_second": 1.989,
|
| 8 |
+
"perplexity": 3.830050026427415
|
| 9 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.31.0"
|
| 7 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step3906
|
pytorch_model-00001-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3fb0d89aa054853f5572d10c0297a29ea5a4289232837a8efaf11b1836d3126
|
| 3 |
+
size 9991794123
|
pytorch_model-00002-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:495cc56568d3147a85eb2aba08f80b832da26ee21ca6171608830e350706d115
|
| 3 |
+
size 9894802738
|
pytorch_model-00003-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2620260c3425b384632c4fe17c2e1bfae8e509320fd188c37a0804fdee2e8dc6
|
| 3 |
+
size 7655505659
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 27541987328
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
| 177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
| 267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
| 327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 328 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
| 329 |
+
}
|
| 330 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"unk_token": "<unk>"
|
| 6 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d967e855b1213a439df6c8ce2791f869c84b4f3b6cfacf22b86440b8192a2f8
|
| 3 |
+
size 757972
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": true,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"legacy": true,
|
| 22 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 23 |
+
"pad_token": null,
|
| 24 |
+
"sp_model_kwargs": {},
|
| 25 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"__type": "AddedToken",
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
},
|
| 34 |
+
"use_fast": true
|
| 35 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"train_loss": 1.9416432221974707,
|
| 4 |
+
"train_runtime": 74872.2082,
|
| 5 |
+
"train_samples": 500000,
|
| 6 |
+
"train_samples_per_second": 6.678,
|
| 7 |
+
"train_steps_per_second": 0.052
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9998720081914757,
|
| 5 |
+
"global_step": 3906,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.0,
|
| 12 |
+
"learning_rate": 0.0,
|
| 13 |
+
"loss": 9.2076,
|
| 14 |
+
"step": 1
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.0,
|
| 18 |
+
"learning_rate": 2e-05,
|
| 19 |
+
"loss": 9.3403,
|
| 20 |
+
"step": 10
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.01,
|
| 24 |
+
"learning_rate": 4.5e-05,
|
| 25 |
+
"loss": 7.9144,
|
| 26 |
+
"step": 20
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.01,
|
| 30 |
+
"learning_rate": 7.500000000000001e-05,
|
| 31 |
+
"loss": 6.7554,
|
| 32 |
+
"step": 30
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.01,
|
| 36 |
+
"learning_rate": 0.00012,
|
| 37 |
+
"loss": 5.7716,
|
| 38 |
+
"step": 40
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.01,
|
| 42 |
+
"learning_rate": 0.00017,
|
| 43 |
+
"loss": 5.0089,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.02,
|
| 48 |
+
"learning_rate": 0.00019999947171819797,
|
| 49 |
+
"loss": 4.383,
|
| 50 |
+
"step": 60
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.02,
|
| 54 |
+
"learning_rate": 0.00019999352861202634,
|
| 55 |
+
"loss": 4.1286,
|
| 56 |
+
"step": 70
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.02,
|
| 60 |
+
"learning_rate": 0.0001999809824411913,
|
| 61 |
+
"loss": 3.7428,
|
| 62 |
+
"step": 80
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 0.02,
|
| 66 |
+
"learning_rate": 0.0001999618340341782,
|
| 67 |
+
"loss": 3.4558,
|
| 68 |
+
"step": 90
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.03,
|
| 72 |
+
"learning_rate": 0.00019993608465545054,
|
| 73 |
+
"loss": 3.3284,
|
| 74 |
+
"step": 100
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.03,
|
| 78 |
+
"learning_rate": 0.00019990373600536657,
|
| 79 |
+
"loss": 3.202,
|
| 80 |
+
"step": 110
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.03,
|
| 84 |
+
"learning_rate": 0.00019986479022006677,
|
| 85 |
+
"loss": 3.1471,
|
| 86 |
+
"step": 120
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.03,
|
| 90 |
+
"learning_rate": 0.00019981924987133289,
|
| 91 |
+
"loss": 3.0477,
|
| 92 |
+
"step": 130
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 0.04,
|
| 96 |
+
"learning_rate": 0.00019976711796641832,
|
| 97 |
+
"loss": 2.9572,
|
| 98 |
+
"step": 140
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.04,
|
| 102 |
+
"learning_rate": 0.00019970839794784917,
|
| 103 |
+
"loss": 2.9283,
|
| 104 |
+
"step": 150
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 0.04,
|
| 108 |
+
"learning_rate": 0.00019964309369319722,
|
| 109 |
+
"loss": 2.882,
|
| 110 |
+
"step": 160
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.04,
|
| 114 |
+
"learning_rate": 0.00019957120951482363,
|
| 115 |
+
"loss": 2.799,
|
| 116 |
+
"step": 170
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.05,
|
| 120 |
+
"learning_rate": 0.00019949275015959442,
|
| 121 |
+
"loss": 2.7808,
|
| 122 |
+
"step": 180
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.05,
|
| 126 |
+
"learning_rate": 0.0001994077208085668,
|
| 127 |
+
"loss": 2.7251,
|
| 128 |
+
"step": 190
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.05,
|
| 132 |
+
"learning_rate": 0.0001993161270766472,
|
| 133 |
+
"loss": 2.6977,
|
| 134 |
+
"step": 200
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 0.05,
|
| 138 |
+
"learning_rate": 0.00019921797501222036,
|
| 139 |
+
"loss": 2.7366,
|
| 140 |
+
"step": 210
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.06,
|
| 144 |
+
"learning_rate": 0.00019911327109675003,
|
| 145 |
+
"loss": 2.7007,
|
| 146 |
+
"step": 220
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.06,
|
| 150 |
+
"learning_rate": 0.00019900202224435086,
|
| 151 |
+
"loss": 2.6237,
|
| 152 |
+
"step": 230
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 0.06,
|
| 156 |
+
"learning_rate": 0.00019888423580133194,
|
| 157 |
+
"loss": 2.4928,
|
| 158 |
+
"step": 240
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.06,
|
| 162 |
+
"learning_rate": 0.0001987599195457116,
|
| 163 |
+
"loss": 2.6081,
|
| 164 |
+
"step": 250
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.07,
|
| 168 |
+
"learning_rate": 0.00019862908168670384,
|
| 169 |
+
"loss": 2.59,
|
| 170 |
+
"step": 260
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.07,
|
| 174 |
+
"learning_rate": 0.00019849173086417622,
|
| 175 |
+
"loss": 2.5477,
|
| 176 |
+
"step": 270
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 0.07,
|
| 180 |
+
"learning_rate": 0.0001983478761480793,
|
| 181 |
+
"loss": 2.5678,
|
| 182 |
+
"step": 280
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 0.07,
|
| 186 |
+
"learning_rate": 0.00019819752703784777,
|
| 187 |
+
"loss": 2.4678,
|
| 188 |
+
"step": 290
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.08,
|
| 192 |
+
"learning_rate": 0.0001980406934617731,
|
| 193 |
+
"loss": 2.4486,
|
| 194 |
+
"step": 300
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.08,
|
| 198 |
+
"learning_rate": 0.00019787738577634794,
|
| 199 |
+
"loss": 2.5024,
|
| 200 |
+
"step": 310
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.08,
|
| 204 |
+
"learning_rate": 0.00019770761476558223,
|
| 205 |
+
"loss": 2.5042,
|
| 206 |
+
"step": 320
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.08,
|
| 210 |
+
"learning_rate": 0.00019753139164029108,
|
| 211 |
+
"loss": 2.4463,
|
| 212 |
+
"step": 330
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.09,
|
| 216 |
+
"learning_rate": 0.00019734872803735444,
|
| 217 |
+
"loss": 2.4035,
|
| 218 |
+
"step": 340
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.09,
|
| 222 |
+
"learning_rate": 0.0001971596360189488,
|
| 223 |
+
"loss": 2.4444,
|
| 224 |
+
"step": 350
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 0.09,
|
| 228 |
+
"learning_rate": 0.0001969641280717504,
|
| 229 |
+
"loss": 2.4404,
|
| 230 |
+
"step": 360
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.09,
|
| 234 |
+
"learning_rate": 0.00019676221710611093,
|
| 235 |
+
"loss": 2.4378,
|
| 236 |
+
"step": 370
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.1,
|
| 240 |
+
"learning_rate": 0.00019655391645520486,
|
| 241 |
+
"loss": 2.3842,
|
| 242 |
+
"step": 380
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.1,
|
| 246 |
+
"learning_rate": 0.000196339239874149,
|
| 247 |
+
"loss": 2.3743,
|
| 248 |
+
"step": 390
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.1,
|
| 252 |
+
"learning_rate": 0.00019611820153909418,
|
| 253 |
+
"loss": 2.3983,
|
| 254 |
+
"step": 400
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.1,
|
| 258 |
+
"learning_rate": 0.0001958908160462892,
|
| 259 |
+
"loss": 2.3224,
|
| 260 |
+
"step": 410
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.11,
|
| 264 |
+
"learning_rate": 0.0001956570984111169,
|
| 265 |
+
"loss": 2.3779,
|
| 266 |
+
"step": 420
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.11,
|
| 270 |
+
"learning_rate": 0.00019541706406710256,
|
| 271 |
+
"loss": 2.3706,
|
| 272 |
+
"step": 430
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 0.11,
|
| 276 |
+
"learning_rate": 0.000195170728864895,
|
| 277 |
+
"loss": 2.3213,
|
| 278 |
+
"step": 440
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.12,
|
| 282 |
+
"learning_rate": 0.0001949181090712195,
|
| 283 |
+
"loss": 2.3222,
|
| 284 |
+
"step": 450
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 0.12,
|
| 288 |
+
"learning_rate": 0.00019465922136780396,
|
| 289 |
+
"loss": 2.3018,
|
| 290 |
+
"step": 460
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.12,
|
| 294 |
+
"learning_rate": 0.00019439408285027717,
|
| 295 |
+
"loss": 2.3268,
|
| 296 |
+
"step": 470
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.12,
|
| 300 |
+
"learning_rate": 0.00019412271102703992,
|
| 301 |
+
"loss": 2.2956,
|
| 302 |
+
"step": 480
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.13,
|
| 306 |
+
"learning_rate": 0.00019384512381810887,
|
| 307 |
+
"loss": 2.2676,
|
| 308 |
+
"step": 490
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.13,
|
| 312 |
+
"learning_rate": 0.00019356133955393312,
|
| 313 |
+
"loss": 2.2877,
|
| 314 |
+
"step": 500
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.13,
|
| 318 |
+
"learning_rate": 0.0001932713769741839,
|
| 319 |
+
"loss": 2.3348,
|
| 320 |
+
"step": 510
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.13,
|
| 324 |
+
"learning_rate": 0.0001929752552265169,
|
| 325 |
+
"loss": 2.3026,
|
| 326 |
+
"step": 520
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 0.14,
|
| 330 |
+
"learning_rate": 0.00019267299386530813,
|
| 331 |
+
"loss": 2.3344,
|
| 332 |
+
"step": 530
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.14,
|
| 336 |
+
"learning_rate": 0.00019236461285036233,
|
| 337 |
+
"loss": 2.258,
|
| 338 |
+
"step": 540
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.14,
|
| 342 |
+
"learning_rate": 0.0001920501325455952,
|
| 343 |
+
"loss": 2.2424,
|
| 344 |
+
"step": 550
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 0.14,
|
| 348 |
+
"learning_rate": 0.00019172957371768848,
|
| 349 |
+
"loss": 2.2824,
|
| 350 |
+
"step": 560
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 0.15,
|
| 354 |
+
"learning_rate": 0.00019140295753471872,
|
| 355 |
+
"loss": 2.2618,
|
| 356 |
+
"step": 570
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 0.15,
|
| 360 |
+
"learning_rate": 0.0001910703055647595,
|
| 361 |
+
"loss": 2.243,
|
| 362 |
+
"step": 580
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.15,
|
| 366 |
+
"learning_rate": 0.00019073163977445696,
|
| 367 |
+
"loss": 2.2295,
|
| 368 |
+
"step": 590
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 0.15,
|
| 372 |
+
"learning_rate": 0.00019038698252757952,
|
| 373 |
+
"loss": 2.2533,
|
| 374 |
+
"step": 600
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.16,
|
| 378 |
+
"learning_rate": 0.00019003635658354094,
|
| 379 |
+
"loss": 2.2098,
|
| 380 |
+
"step": 610
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.16,
|
| 384 |
+
"learning_rate": 0.0001896797850958973,
|
| 385 |
+
"loss": 2.3026,
|
| 386 |
+
"step": 620
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 0.16,
|
| 390 |
+
"learning_rate": 0.00018931729161081835,
|
| 391 |
+
"loss": 2.19,
|
| 392 |
+
"step": 630
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 0.16,
|
| 396 |
+
"learning_rate": 0.00018894890006553237,
|
| 397 |
+
"loss": 2.1298,
|
| 398 |
+
"step": 640
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 0.17,
|
| 402 |
+
"learning_rate": 0.00018857463478674552,
|
| 403 |
+
"loss": 2.1882,
|
| 404 |
+
"step": 650
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.17,
|
| 408 |
+
"learning_rate": 0.00018819452048903561,
|
| 409 |
+
"loss": 2.1378,
|
| 410 |
+
"step": 660
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.17,
|
| 414 |
+
"learning_rate": 0.00018780858227321988,
|
| 415 |
+
"loss": 2.1886,
|
| 416 |
+
"step": 670
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.17,
|
| 420 |
+
"learning_rate": 0.0001874168456246975,
|
| 421 |
+
"loss": 2.1542,
|
| 422 |
+
"step": 680
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.18,
|
| 426 |
+
"learning_rate": 0.00018701933641176676,
|
| 427 |
+
"loss": 2.1299,
|
| 428 |
+
"step": 690
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 0.18,
|
| 432 |
+
"learning_rate": 0.00018661608088391671,
|
| 433 |
+
"loss": 2.164,
|
| 434 |
+
"step": 700
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.18,
|
| 438 |
+
"learning_rate": 0.0001862071056700939,
|
| 439 |
+
"loss": 2.1497,
|
| 440 |
+
"step": 710
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 0.18,
|
| 444 |
+
"learning_rate": 0.00018579243777694387,
|
| 445 |
+
"loss": 2.1869,
|
| 446 |
+
"step": 720
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.19,
|
| 450 |
+
"learning_rate": 0.00018537210458702773,
|
| 451 |
+
"loss": 2.1317,
|
| 452 |
+
"step": 730
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 0.19,
|
| 456 |
+
"learning_rate": 0.00018494613385701408,
|
| 457 |
+
"loss": 2.138,
|
| 458 |
+
"step": 740
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.19,
|
| 462 |
+
"learning_rate": 0.00018451455371584603,
|
| 463 |
+
"loss": 2.1337,
|
| 464 |
+
"step": 750
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.19,
|
| 468 |
+
"learning_rate": 0.00018407739266288365,
|
| 469 |
+
"loss": 2.1062,
|
| 470 |
+
"step": 760
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 0.2,
|
| 474 |
+
"learning_rate": 0.00018363467956602206,
|
| 475 |
+
"loss": 2.0968,
|
| 476 |
+
"step": 770
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 0.2,
|
| 480 |
+
"learning_rate": 0.0001831864436597853,
|
| 481 |
+
"loss": 2.095,
|
| 482 |
+
"step": 780
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.2,
|
| 486 |
+
"learning_rate": 0.00018273271454339552,
|
| 487 |
+
"loss": 2.1348,
|
| 488 |
+
"step": 790
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 0.2,
|
| 492 |
+
"learning_rate": 0.0001822735221788186,
|
| 493 |
+
"loss": 2.0977,
|
| 494 |
+
"step": 800
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 0.21,
|
| 498 |
+
"learning_rate": 0.0001818088968887857,
|
| 499 |
+
"loss": 2.1029,
|
| 500 |
+
"step": 810
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.21,
|
| 504 |
+
"learning_rate": 0.00018133886935479057,
|
| 505 |
+
"loss": 2.1493,
|
| 506 |
+
"step": 820
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.21,
|
| 510 |
+
"learning_rate": 0.0001808634706150639,
|
| 511 |
+
"loss": 2.088,
|
| 512 |
+
"step": 830
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 0.22,
|
| 516 |
+
"learning_rate": 0.0001803827320625234,
|
| 517 |
+
"loss": 2.1212,
|
| 518 |
+
"step": 840
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.22,
|
| 522 |
+
"learning_rate": 0.00017989668544270097,
|
| 523 |
+
"loss": 2.0288,
|
| 524 |
+
"step": 850
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 0.22,
|
| 528 |
+
"learning_rate": 0.0001794053628516462,
|
| 529 |
+
"loss": 2.0432,
|
| 530 |
+
"step": 860
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.22,
|
| 534 |
+
"learning_rate": 0.00017890879673380719,
|
| 535 |
+
"loss": 2.0355,
|
| 536 |
+
"step": 870
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"epoch": 0.23,
|
| 540 |
+
"learning_rate": 0.00017840701987988772,
|
| 541 |
+
"loss": 2.0755,
|
| 542 |
+
"step": 880
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.23,
|
| 546 |
+
"learning_rate": 0.0001779000654246823,
|
| 547 |
+
"loss": 2.0453,
|
| 548 |
+
"step": 890
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.23,
|
| 552 |
+
"learning_rate": 0.00017738796684488772,
|
| 553 |
+
"loss": 2.0582,
|
| 554 |
+
"step": 900
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 0.23,
|
| 558 |
+
"learning_rate": 0.00017687075795689278,
|
| 559 |
+
"loss": 2.0768,
|
| 560 |
+
"step": 910
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 0.24,
|
| 564 |
+
"learning_rate": 0.00017634847291454503,
|
| 565 |
+
"loss": 2.091,
|
| 566 |
+
"step": 920
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 0.24,
|
| 570 |
+
"learning_rate": 0.0001758211462068955,
|
| 571 |
+
"loss": 2.0577,
|
| 572 |
+
"step": 930
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 0.24,
|
| 576 |
+
"learning_rate": 0.00017528881265592108,
|
| 577 |
+
"loss": 2.0704,
|
| 578 |
+
"step": 940
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 0.24,
|
| 582 |
+
"learning_rate": 0.00017475150741422528,
|
| 583 |
+
"loss": 2.0305,
|
| 584 |
+
"step": 950
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.25,
|
| 588 |
+
"learning_rate": 0.0001742092659627167,
|
| 589 |
+
"loss": 2.0256,
|
| 590 |
+
"step": 960
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.25,
|
| 594 |
+
"learning_rate": 0.0001736621241082663,
|
| 595 |
+
"loss": 2.0357,
|
| 596 |
+
"step": 970
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"epoch": 0.25,
|
| 600 |
+
"learning_rate": 0.00017311011798134263,
|
| 601 |
+
"loss": 1.9873,
|
| 602 |
+
"step": 980
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 0.25,
|
| 606 |
+
"learning_rate": 0.00017255328403362606,
|
| 607 |
+
"loss": 2.0248,
|
| 608 |
+
"step": 990
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 0.26,
|
| 612 |
+
"learning_rate": 0.00017199165903560192,
|
| 613 |
+
"loss": 1.9927,
|
| 614 |
+
"step": 1000
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"epoch": 0.26,
|
| 618 |
+
"eval_loss": 1.7968560457229614,
|
| 619 |
+
"eval_runtime": 2.032,
|
| 620 |
+
"eval_samples_per_second": 49.213,
|
| 621 |
+
"eval_steps_per_second": 1.969,
|
| 622 |
+
"step": 1000
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 0.26,
|
| 626 |
+
"learning_rate": 0.00017142528007413192,
|
| 627 |
+
"loss": 1.9916,
|
| 628 |
+
"step": 1010
|
| 629 |
+
},
|
| 630 |
+
{
|
| 631 |
+
"epoch": 0.26,
|
| 632 |
+
"learning_rate": 0.00017085418455000553,
|
| 633 |
+
"loss": 2.0123,
|
| 634 |
+
"step": 1020
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 0.26,
|
| 638 |
+
"learning_rate": 0.00017027841017546998,
|
| 639 |
+
"loss": 2.0141,
|
| 640 |
+
"step": 1030
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.27,
|
| 644 |
+
"learning_rate": 0.00016969799497174005,
|
| 645 |
+
"loss": 1.976,
|
| 646 |
+
"step": 1040
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.27,
|
| 650 |
+
"learning_rate": 0.0001691129772664873,
|
| 651 |
+
"loss": 1.9943,
|
| 652 |
+
"step": 1050
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"epoch": 0.27,
|
| 656 |
+
"learning_rate": 0.00016852339569130905,
|
| 657 |
+
"loss": 1.9607,
|
| 658 |
+
"step": 1060
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 0.27,
|
| 662 |
+
"learning_rate": 0.00016792928917917755,
|
| 663 |
+
"loss": 1.9793,
|
| 664 |
+
"step": 1070
|
| 665 |
+
},
|
| 666 |
+
{
|
| 667 |
+
"epoch": 0.28,
|
| 668 |
+
"learning_rate": 0.00016733069696186868,
|
| 669 |
+
"loss": 1.988,
|
| 670 |
+
"step": 1080
|
| 671 |
+
},
|
| 672 |
+
{
|
| 673 |
+
"epoch": 0.28,
|
| 674 |
+
"learning_rate": 0.00016672765856737178,
|
| 675 |
+
"loss": 1.9143,
|
| 676 |
+
"step": 1090
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.28,
|
| 680 |
+
"learning_rate": 0.00016612021381727887,
|
| 681 |
+
"loss": 1.9971,
|
| 682 |
+
"step": 1100
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.28,
|
| 686 |
+
"learning_rate": 0.0001655084028241555,
|
| 687 |
+
"loss": 1.9675,
|
| 688 |
+
"step": 1110
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.29,
|
| 692 |
+
"learning_rate": 0.0001648922659888916,
|
| 693 |
+
"loss": 2.0046,
|
| 694 |
+
"step": 1120
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"epoch": 0.29,
|
| 698 |
+
"learning_rate": 0.00016427184399803383,
|
| 699 |
+
"loss": 2.018,
|
| 700 |
+
"step": 1130
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"epoch": 0.29,
|
| 704 |
+
"learning_rate": 0.0001636471778210988,
|
| 705 |
+
"loss": 1.999,
|
| 706 |
+
"step": 1140
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.29,
|
| 710 |
+
"learning_rate": 0.00016301830870786742,
|
| 711 |
+
"loss": 1.9143,
|
| 712 |
+
"step": 1150
|
| 713 |
+
},
|
| 714 |
+
{
|
| 715 |
+
"epoch": 0.3,
|
| 716 |
+
"learning_rate": 0.00016238527818566138,
|
| 717 |
+
"loss": 1.9324,
|
| 718 |
+
"step": 1160
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"epoch": 0.3,
|
| 722 |
+
"learning_rate": 0.0001617481280566005,
|
| 723 |
+
"loss": 1.9493,
|
| 724 |
+
"step": 1170
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.3,
|
| 728 |
+
"learning_rate": 0.00016110690039484267,
|
| 729 |
+
"loss": 1.9507,
|
| 730 |
+
"step": 1180
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.3,
|
| 734 |
+
"learning_rate": 0.00016046163754380514,
|
| 735 |
+
"loss": 1.9408,
|
| 736 |
+
"step": 1190
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"epoch": 0.31,
|
| 740 |
+
"learning_rate": 0.00015981238211336873,
|
| 741 |
+
"loss": 2.0009,
|
| 742 |
+
"step": 1200
|
| 743 |
+
},
|
| 744 |
+
{
|
| 745 |
+
"epoch": 0.31,
|
| 746 |
+
"learning_rate": 0.00015915917697706386,
|
| 747 |
+
"loss": 1.9684,
|
| 748 |
+
"step": 1210
|
| 749 |
+
},
|
| 750 |
+
{
|
| 751 |
+
"epoch": 0.31,
|
| 752 |
+
"learning_rate": 0.0001585020652692394,
|
| 753 |
+
"loss": 1.9373,
|
| 754 |
+
"step": 1220
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 0.31,
|
| 758 |
+
"learning_rate": 0.0001578410903822145,
|
| 759 |
+
"loss": 1.9038,
|
| 760 |
+
"step": 1230
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.32,
|
| 764 |
+
"learning_rate": 0.00015717629596341288,
|
| 765 |
+
"loss": 1.9065,
|
| 766 |
+
"step": 1240
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.32,
|
| 770 |
+
"learning_rate": 0.00015650772591248085,
|
| 771 |
+
"loss": 1.9327,
|
| 772 |
+
"step": 1250
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.32,
|
| 776 |
+
"learning_rate": 0.0001558354243783882,
|
| 777 |
+
"loss": 1.935,
|
| 778 |
+
"step": 1260
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 0.33,
|
| 782 |
+
"learning_rate": 0.000155159435756513,
|
| 783 |
+
"loss": 1.9339,
|
| 784 |
+
"step": 1270
|
| 785 |
+
},
|
| 786 |
+
{
|
| 787 |
+
"epoch": 0.33,
|
| 788 |
+
"learning_rate": 0.00015447980468570979,
|
| 789 |
+
"loss": 1.929,
|
| 790 |
+
"step": 1280
|
| 791 |
+
},
|
| 792 |
+
{
|
| 793 |
+
"epoch": 0.33,
|
| 794 |
+
"learning_rate": 0.00015379657604536203,
|
| 795 |
+
"loss": 1.9184,
|
| 796 |
+
"step": 1290
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"epoch": 0.33,
|
| 800 |
+
"learning_rate": 0.00015310979495241825,
|
| 801 |
+
"loss": 1.9242,
|
| 802 |
+
"step": 1300
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.34,
|
| 806 |
+
"learning_rate": 0.00015241950675841306,
|
| 807 |
+
"loss": 1.9133,
|
| 808 |
+
"step": 1310
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.34,
|
| 812 |
+
"learning_rate": 0.0001517257570464721,
|
| 813 |
+
"loss": 1.9014,
|
| 814 |
+
"step": 1320
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.34,
|
| 818 |
+
"learning_rate": 0.00015102859162830209,
|
| 819 |
+
"loss": 1.9283,
|
| 820 |
+
"step": 1330
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"epoch": 0.34,
|
| 824 |
+
"learning_rate": 0.00015032805654116566,
|
| 825 |
+
"loss": 1.8821,
|
| 826 |
+
"step": 1340
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 0.35,
|
| 830 |
+
"learning_rate": 0.00014962419804484127,
|
| 831 |
+
"loss": 1.8956,
|
| 832 |
+
"step": 1350
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
"epoch": 0.35,
|
| 836 |
+
"learning_rate": 0.00014891706261856844,
|
| 837 |
+
"loss": 1.9166,
|
| 838 |
+
"step": 1360
|
| 839 |
+
},
|
| 840 |
+
{
|
| 841 |
+
"epoch": 0.35,
|
| 842 |
+
"learning_rate": 0.00014820669695797843,
|
| 843 |
+
"loss": 1.9385,
|
| 844 |
+
"step": 1370
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 0.35,
|
| 848 |
+
"learning_rate": 0.00014749314797201084,
|
| 849 |
+
"loss": 1.9325,
|
| 850 |
+
"step": 1380
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.36,
|
| 854 |
+
"learning_rate": 0.00014677646277981593,
|
| 855 |
+
"loss": 1.8642,
|
| 856 |
+
"step": 1390
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.36,
|
| 860 |
+
"learning_rate": 0.00014605668870764293,
|
| 861 |
+
"loss": 1.8964,
|
| 862 |
+
"step": 1400
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"epoch": 0.36,
|
| 866 |
+
"learning_rate": 0.0001453338732857152,
|
| 867 |
+
"loss": 1.8727,
|
| 868 |
+
"step": 1410
|
| 869 |
+
},
|
| 870 |
+
{
|
| 871 |
+
"epoch": 0.36,
|
| 872 |
+
"learning_rate": 0.00014460806424509132,
|
| 873 |
+
"loss": 1.8644,
|
| 874 |
+
"step": 1420
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 0.37,
|
| 878 |
+
"learning_rate": 0.0001438793095145132,
|
| 879 |
+
"loss": 1.8591,
|
| 880 |
+
"step": 1430
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"epoch": 0.37,
|
| 884 |
+
"learning_rate": 0.00014314765721724118,
|
| 885 |
+
"loss": 1.8931,
|
| 886 |
+
"step": 1440
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.37,
|
| 890 |
+
"learning_rate": 0.00014241315566787617,
|
| 891 |
+
"loss": 1.8953,
|
| 892 |
+
"step": 1450
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.37,
|
| 896 |
+
"learning_rate": 0.00014167585336916926,
|
| 897 |
+
"loss": 1.8672,
|
| 898 |
+
"step": 1460
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.38,
|
| 902 |
+
"learning_rate": 0.0001409357990088188,
|
| 903 |
+
"loss": 1.8414,
|
| 904 |
+
"step": 1470
|
| 905 |
+
},
|
| 906 |
+
{
|
| 907 |
+
"epoch": 0.38,
|
| 908 |
+
"learning_rate": 0.00014019304145625517,
|
| 909 |
+
"loss": 1.8838,
|
| 910 |
+
"step": 1480
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 0.38,
|
| 914 |
+
"learning_rate": 0.00013944762975941403,
|
| 915 |
+
"loss": 1.856,
|
| 916 |
+
"step": 1490
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"epoch": 0.38,
|
| 920 |
+
"learning_rate": 0.00013877453061830693,
|
| 921 |
+
"loss": 1.8715,
|
| 922 |
+
"step": 1500
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 0.39,
|
| 926 |
+
"learning_rate": 0.00013802421179949775,
|
| 927 |
+
"loss": 1.8323,
|
| 928 |
+
"step": 1510
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.39,
|
| 932 |
+
"learning_rate": 0.00013727138205490392,
|
| 933 |
+
"loss": 1.898,
|
| 934 |
+
"step": 1520
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.39,
|
| 938 |
+
"learning_rate": 0.00013651609109757744,
|
| 939 |
+
"loss": 1.8455,
|
| 940 |
+
"step": 1530
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.39,
|
| 944 |
+
"learning_rate": 0.00013575838880309623,
|
| 945 |
+
"loss": 1.8788,
|
| 946 |
+
"step": 1540
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 0.4,
|
| 950 |
+
"learning_rate": 0.00013499832520627076,
|
| 951 |
+
"loss": 1.8881,
|
| 952 |
+
"step": 1550
|
| 953 |
+
},
|
| 954 |
+
{
|
| 955 |
+
"epoch": 0.4,
|
| 956 |
+
"learning_rate": 0.00013423595049783974,
|
| 957 |
+
"loss": 1.8326,
|
| 958 |
+
"step": 1560
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"epoch": 0.4,
|
| 962 |
+
"learning_rate": 0.00013347131502115616,
|
| 963 |
+
"loss": 1.845,
|
| 964 |
+
"step": 1570
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 0.4,
|
| 968 |
+
"learning_rate": 0.00013270446926886252,
|
| 969 |
+
"loss": 1.8768,
|
| 970 |
+
"step": 1580
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.41,
|
| 974 |
+
"learning_rate": 0.00013193546387955672,
|
| 975 |
+
"loss": 1.8571,
|
| 976 |
+
"step": 1590
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.41,
|
| 980 |
+
"learning_rate": 0.00013116434963444815,
|
| 981 |
+
"loss": 1.8596,
|
| 982 |
+
"step": 1600
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.41,
|
| 986 |
+
"learning_rate": 0.00013039117745400426,
|
| 987 |
+
"loss": 1.8515,
|
| 988 |
+
"step": 1610
|
| 989 |
+
},
|
| 990 |
+
{
|
| 991 |
+
"epoch": 0.41,
|
| 992 |
+
"learning_rate": 0.00012961599839458825,
|
| 993 |
+
"loss": 1.8281,
|
| 994 |
+
"step": 1620
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.42,
|
| 998 |
+
"learning_rate": 0.00012883886364508718,
|
| 999 |
+
"loss": 1.7872,
|
| 1000 |
+
"step": 1630
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"epoch": 0.42,
|
| 1004 |
+
"learning_rate": 0.00012805982452353213,
|
| 1005 |
+
"loss": 1.8333,
|
| 1006 |
+
"step": 1640
|
| 1007 |
+
},
|
| 1008 |
+
{
|
| 1009 |
+
"epoch": 0.42,
|
| 1010 |
+
"learning_rate": 0.00012727893247370918,
|
| 1011 |
+
"loss": 1.7989,
|
| 1012 |
+
"step": 1650
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 0.42,
|
| 1016 |
+
"learning_rate": 0.00012657458799214414,
|
| 1017 |
+
"loss": 1.8662,
|
| 1018 |
+
"step": 1660
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.43,
|
| 1022 |
+
"learning_rate": 0.00012579031754172398,
|
| 1023 |
+
"loss": 1.8667,
|
| 1024 |
+
"step": 1670
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.43,
|
| 1028 |
+
"learning_rate": 0.0001250043440297479,
|
| 1029 |
+
"loss": 1.821,
|
| 1030 |
+
"step": 1680
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"epoch": 0.43,
|
| 1034 |
+
"learning_rate": 0.0001242167193579139,
|
| 1035 |
+
"loss": 1.8333,
|
| 1036 |
+
"step": 1690
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"epoch": 0.44,
|
| 1040 |
+
"learning_rate": 0.00012342749553695423,
|
| 1041 |
+
"loss": 1.8554,
|
| 1042 |
+
"step": 1700
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"epoch": 0.44,
|
| 1046 |
+
"learning_rate": 0.0001226367246832007,
|
| 1047 |
+
"loss": 1.8308,
|
| 1048 |
+
"step": 1710
|
| 1049 |
+
},
|
| 1050 |
+
{
|
| 1051 |
+
"epoch": 0.44,
|
| 1052 |
+
"learning_rate": 0.00012184445901514343,
|
| 1053 |
+
"loss": 1.8215,
|
| 1054 |
+
"step": 1720
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.44,
|
| 1058 |
+
"learning_rate": 0.00012105075084998242,
|
| 1059 |
+
"loss": 1.8347,
|
| 1060 |
+
"step": 1730
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.45,
|
| 1064 |
+
"learning_rate": 0.00012025565260017291,
|
| 1065 |
+
"loss": 1.7671,
|
| 1066 |
+
"step": 1740
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.45,
|
| 1070 |
+
"learning_rate": 0.00011945921676996417,
|
| 1071 |
+
"loss": 1.8035,
|
| 1072 |
+
"step": 1750
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"epoch": 0.45,
|
| 1076 |
+
"learning_rate": 0.00011866149595193254,
|
| 1077 |
+
"loss": 1.8008,
|
| 1078 |
+
"step": 1760
|
| 1079 |
+
},
|
| 1080 |
+
{
|
| 1081 |
+
"epoch": 0.45,
|
| 1082 |
+
"learning_rate": 0.0001178625428235085,
|
| 1083 |
+
"loss": 1.8057,
|
| 1084 |
+
"step": 1770
|
| 1085 |
+
},
|
| 1086 |
+
{
|
| 1087 |
+
"epoch": 0.46,
|
| 1088 |
+
"learning_rate": 0.00011706241014349788,
|
| 1089 |
+
"loss": 1.8286,
|
| 1090 |
+
"step": 1780
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.46,
|
| 1094 |
+
"learning_rate": 0.00011626115074859829,
|
| 1095 |
+
"loss": 1.7838,
|
| 1096 |
+
"step": 1790
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"epoch": 0.46,
|
| 1100 |
+
"learning_rate": 0.00011545881754990972,
|
| 1101 |
+
"loss": 1.7678,
|
| 1102 |
+
"step": 1800
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.46,
|
| 1106 |
+
"learning_rate": 0.00011465546352944083,
|
| 1107 |
+
"loss": 1.8015,
|
| 1108 |
+
"step": 1810
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.47,
|
| 1112 |
+
"learning_rate": 0.00011385114173661003,
|
| 1113 |
+
"loss": 1.773,
|
| 1114 |
+
"step": 1820
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 0.47,
|
| 1118 |
+
"learning_rate": 0.00011304590528474257,
|
| 1119 |
+
"loss": 1.7528,
|
| 1120 |
+
"step": 1830
|
| 1121 |
+
},
|
| 1122 |
+
{
|
| 1123 |
+
"epoch": 0.47,
|
| 1124 |
+
"learning_rate": 0.00011223980734756319,
|
| 1125 |
+
"loss": 1.7651,
|
| 1126 |
+
"step": 1840
|
| 1127 |
+
},
|
| 1128 |
+
{
|
| 1129 |
+
"epoch": 0.47,
|
| 1130 |
+
"learning_rate": 0.00011143290115568473,
|
| 1131 |
+
"loss": 1.7817,
|
| 1132 |
+
"step": 1850
|
| 1133 |
+
},
|
| 1134 |
+
{
|
| 1135 |
+
"epoch": 0.48,
|
| 1136 |
+
"learning_rate": 0.00011062523999309291,
|
| 1137 |
+
"loss": 1.7699,
|
| 1138 |
+
"step": 1860
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 0.48,
|
| 1142 |
+
"learning_rate": 0.00010981687719362807,
|
| 1143 |
+
"loss": 1.7672,
|
| 1144 |
+
"step": 1870
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.48,
|
| 1148 |
+
"learning_rate": 0.00010900786613746299,
|
| 1149 |
+
"loss": 1.789,
|
| 1150 |
+
"step": 1880
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.48,
|
| 1154 |
+
"learning_rate": 0.00010819826024757807,
|
| 1155 |
+
"loss": 1.7622,
|
| 1156 |
+
"step": 1890
|
| 1157 |
+
},
|
| 1158 |
+
{
|
| 1159 |
+
"epoch": 0.49,
|
| 1160 |
+
"learning_rate": 0.00010738811298623348,
|
| 1161 |
+
"loss": 1.7543,
|
| 1162 |
+
"step": 1900
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 0.49,
|
| 1166 |
+
"learning_rate": 0.00010657747785143882,
|
| 1167 |
+
"loss": 1.7432,
|
| 1168 |
+
"step": 1910
|
| 1169 |
+
},
|
| 1170 |
+
{
|
| 1171 |
+
"epoch": 0.49,
|
| 1172 |
+
"learning_rate": 0.00010576640837342036,
|
| 1173 |
+
"loss": 1.7765,
|
| 1174 |
+
"step": 1920
|
| 1175 |
+
},
|
| 1176 |
+
{
|
| 1177 |
+
"epoch": 0.49,
|
| 1178 |
+
"learning_rate": 0.00010495495811108622,
|
| 1179 |
+
"loss": 1.768,
|
| 1180 |
+
"step": 1930
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"epoch": 0.5,
|
| 1184 |
+
"learning_rate": 0.00010414318064848956,
|
| 1185 |
+
"loss": 1.7852,
|
| 1186 |
+
"step": 1940
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.5,
|
| 1190 |
+
"learning_rate": 0.0001033311295912902,
|
| 1191 |
+
"loss": 1.7551,
|
| 1192 |
+
"step": 1950
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.5,
|
| 1196 |
+
"learning_rate": 0.0001025188585632147,
|
| 1197 |
+
"loss": 1.7474,
|
| 1198 |
+
"step": 1960
|
| 1199 |
+
},
|
| 1200 |
+
{
|
| 1201 |
+
"epoch": 0.5,
|
| 1202 |
+
"learning_rate": 0.00010186891940623151,
|
| 1203 |
+
"loss": 1.7737,
|
| 1204 |
+
"step": 1970
|
| 1205 |
+
},
|
| 1206 |
+
{
|
| 1207 |
+
"epoch": 0.51,
|
| 1208 |
+
"learning_rate": 0.00010105638760647513,
|
| 1209 |
+
"loss": 1.7802,
|
| 1210 |
+
"step": 1980
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"epoch": 0.51,
|
| 1214 |
+
"learning_rate": 0.00010024378604824765,
|
| 1215 |
+
"loss": 1.7723,
|
| 1216 |
+
"step": 1990
|
| 1217 |
+
},
|
| 1218 |
+
{
|
| 1219 |
+
"epoch": 0.51,
|
| 1220 |
+
"learning_rate": 9.943116839162797e-05,
|
| 1221 |
+
"loss": 1.7412,
|
| 1222 |
+
"step": 2000
|
| 1223 |
+
},
|
| 1224 |
+
{
|
| 1225 |
+
"epoch": 0.51,
|
| 1226 |
+
"eval_loss": 1.5315768718719482,
|
| 1227 |
+
"eval_runtime": 2.0299,
|
| 1228 |
+
"eval_samples_per_second": 49.264,
|
| 1229 |
+
"eval_steps_per_second": 1.971,
|
| 1230 |
+
"step": 2000
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 0.51,
|
| 1234 |
+
"learning_rate": 9.869984308751394e-05,
|
| 1235 |
+
"loss": 1.7468,
|
| 1236 |
+
"step": 2010
|
| 1237 |
+
},
|
| 1238 |
+
{
|
| 1239 |
+
"epoch": 0.52,
|
| 1240 |
+
"learning_rate": 9.788734267841828e-05,
|
| 1241 |
+
"loss": 1.7681,
|
| 1242 |
+
"step": 2020
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.52,
|
| 1246 |
+
"learning_rate": 9.707498177847988e-05,
|
| 1247 |
+
"loss": 1.8109,
|
| 1248 |
+
"step": 2030
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.52,
|
| 1252 |
+
"learning_rate": 9.626281403188578e-05,
|
| 1253 |
+
"loss": 1.72,
|
| 1254 |
+
"step": 2040
|
| 1255 |
+
},
|
| 1256 |
+
{
|
| 1257 |
+
"epoch": 0.52,
|
| 1258 |
+
"learning_rate": 9.545089307006811e-05,
|
| 1259 |
+
"loss": 1.703,
|
| 1260 |
+
"step": 2050
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"epoch": 0.53,
|
| 1264 |
+
"learning_rate": 9.463927250816272e-05,
|
| 1265 |
+
"loss": 1.7624,
|
| 1266 |
+
"step": 2060
|
| 1267 |
+
},
|
| 1268 |
+
{
|
| 1269 |
+
"epoch": 0.53,
|
| 1270 |
+
"learning_rate": 9.382800594146841e-05,
|
| 1271 |
+
"loss": 1.7587,
|
| 1272 |
+
"step": 2070
|
| 1273 |
+
},
|
| 1274 |
+
{
|
| 1275 |
+
"epoch": 0.53,
|
| 1276 |
+
"learning_rate": 9.301714694190808e-05,
|
| 1277 |
+
"loss": 1.7375,
|
| 1278 |
+
"step": 2080
|
| 1279 |
+
},
|
| 1280 |
+
{
|
| 1281 |
+
"epoch": 0.54,
|
| 1282 |
+
"learning_rate": 9.220674905449091e-05,
|
| 1283 |
+
"loss": 1.7579,
|
| 1284 |
+
"step": 2090
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.54,
|
| 1288 |
+
"learning_rate": 9.139686579377649e-05,
|
| 1289 |
+
"loss": 1.7396,
|
| 1290 |
+
"step": 2100
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.54,
|
| 1294 |
+
"learning_rate": 9.058755064034127e-05,
|
| 1295 |
+
"loss": 1.6666,
|
| 1296 |
+
"step": 2110
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"epoch": 0.54,
|
| 1300 |
+
"learning_rate": 8.977885703724658e-05,
|
| 1301 |
+
"loss": 1.7319,
|
| 1302 |
+
"step": 2120
|
| 1303 |
+
},
|
| 1304 |
+
{
|
| 1305 |
+
"epoch": 0.55,
|
| 1306 |
+
"learning_rate": 8.897083838650984e-05,
|
| 1307 |
+
"loss": 1.7387,
|
| 1308 |
+
"step": 2130
|
| 1309 |
+
},
|
| 1310 |
+
{
|
| 1311 |
+
"epoch": 0.55,
|
| 1312 |
+
"learning_rate": 8.816354804557807e-05,
|
| 1313 |
+
"loss": 1.7204,
|
| 1314 |
+
"step": 2140
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.55,
|
| 1318 |
+
"learning_rate": 8.743765350485347e-05,
|
| 1319 |
+
"loss": 1.7183,
|
| 1320 |
+
"step": 2150
|
| 1321 |
+
},
|
| 1322 |
+
{
|
| 1323 |
+
"epoch": 0.55,
|
| 1324 |
+
"learning_rate": 8.671243090320367e-05,
|
| 1325 |
+
"loss": 1.7173,
|
| 1326 |
+
"step": 2160
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.56,
|
| 1330 |
+
"learning_rate": 8.590746326848647e-05,
|
| 1331 |
+
"loss": 1.7185,
|
| 1332 |
+
"step": 2170
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.56,
|
| 1336 |
+
"learning_rate": 8.510342623330503e-05,
|
| 1337 |
+
"loss": 1.7228,
|
| 1338 |
+
"step": 2180
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"epoch": 0.56,
|
| 1342 |
+
"learning_rate": 8.430037289218072e-05,
|
| 1343 |
+
"loss": 1.7542,
|
| 1344 |
+
"step": 2190
|
| 1345 |
+
},
|
| 1346 |
+
{
|
| 1347 |
+
"epoch": 0.56,
|
| 1348 |
+
"learning_rate": 8.349835627467664e-05,
|
| 1349 |
+
"loss": 1.7005,
|
| 1350 |
+
"step": 2200
|
| 1351 |
+
},
|
| 1352 |
+
{
|
| 1353 |
+
"epoch": 0.57,
|
| 1354 |
+
"learning_rate": 8.269742934189604e-05,
|
| 1355 |
+
"loss": 1.7211,
|
| 1356 |
+
"step": 2210
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 0.57,
|
| 1360 |
+
"learning_rate": 8.189764498298483e-05,
|
| 1361 |
+
"loss": 1.7455,
|
| 1362 |
+
"step": 2220
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"epoch": 0.57,
|
| 1366 |
+
"learning_rate": 8.109905601163912e-05,
|
| 1367 |
+
"loss": 1.6729,
|
| 1368 |
+
"step": 2230
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.57,
|
| 1372 |
+
"learning_rate": 8.030171516261782e-05,
|
| 1373 |
+
"loss": 1.7341,
|
| 1374 |
+
"step": 2240
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.58,
|
| 1378 |
+
"learning_rate": 7.950567508826012e-05,
|
| 1379 |
+
"loss": 1.7286,
|
| 1380 |
+
"step": 2250
|
| 1381 |
+
},
|
| 1382 |
+
{
|
| 1383 |
+
"epoch": 0.58,
|
| 1384 |
+
"learning_rate": 7.871098835500859e-05,
|
| 1385 |
+
"loss": 1.7079,
|
| 1386 |
+
"step": 2260
|
| 1387 |
+
},
|
| 1388 |
+
{
|
| 1389 |
+
"epoch": 0.58,
|
| 1390 |
+
"learning_rate": 7.791770743993817e-05,
|
| 1391 |
+
"loss": 1.7001,
|
| 1392 |
+
"step": 2270
|
| 1393 |
+
},
|
| 1394 |
+
{
|
| 1395 |
+
"epoch": 0.58,
|
| 1396 |
+
"learning_rate": 7.712588472729058e-05,
|
| 1397 |
+
"loss": 1.7239,
|
| 1398 |
+
"step": 2280
|
| 1399 |
+
},
|
| 1400 |
+
{
|
| 1401 |
+
"epoch": 0.59,
|
| 1402 |
+
"learning_rate": 7.633557250501531e-05,
|
| 1403 |
+
"loss": 1.7032,
|
| 1404 |
+
"step": 2290
|
| 1405 |
+
},
|
| 1406 |
+
{
|
| 1407 |
+
"epoch": 0.59,
|
| 1408 |
+
"learning_rate": 7.55468229613168e-05,
|
| 1409 |
+
"loss": 1.6624,
|
| 1410 |
+
"step": 2300
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.59,
|
| 1414 |
+
"learning_rate": 7.475968818120798e-05,
|
| 1415 |
+
"loss": 1.7258,
|
| 1416 |
+
"step": 2310
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.59,
|
| 1420 |
+
"learning_rate": 7.405269046437083e-05,
|
| 1421 |
+
"loss": 1.6995,
|
| 1422 |
+
"step": 2320
|
| 1423 |
+
},
|
| 1424 |
+
{
|
| 1425 |
+
"epoch": 0.6,
|
| 1426 |
+
"learning_rate": 7.342541200785587e-05,
|
| 1427 |
+
"loss": 1.6715,
|
| 1428 |
+
"step": 2330
|
| 1429 |
+
},
|
| 1430 |
+
{
|
| 1431 |
+
"epoch": 0.6,
|
| 1432 |
+
"learning_rate": 7.26428964082281e-05,
|
| 1433 |
+
"loss": 1.7005,
|
| 1434 |
+
"step": 2340
|
| 1435 |
+
},
|
| 1436 |
+
{
|
| 1437 |
+
"epoch": 0.6,
|
| 1438 |
+
"learning_rate": 7.186218733274769e-05,
|
| 1439 |
+
"loss": 1.6575,
|
| 1440 |
+
"step": 2350
|
| 1441 |
+
},
|
| 1442 |
+
{
|
| 1443 |
+
"epoch": 0.6,
|
| 1444 |
+
"learning_rate": 7.1083336335476e-05,
|
| 1445 |
+
"loss": 1.7001,
|
| 1446 |
+
"step": 2360
|
| 1447 |
+
},
|
| 1448 |
+
{
|
| 1449 |
+
"epoch": 0.61,
|
| 1450 |
+
"learning_rate": 7.030639484777641e-05,
|
| 1451 |
+
"loss": 1.6679,
|
| 1452 |
+
"step": 2370
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.61,
|
| 1456 |
+
"learning_rate": 6.953141417491781e-05,
|
| 1457 |
+
"loss": 1.7034,
|
| 1458 |
+
"step": 2380
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.61,
|
| 1462 |
+
"learning_rate": 6.875844549268706e-05,
|
| 1463 |
+
"loss": 1.6804,
|
| 1464 |
+
"step": 2390
|
| 1465 |
+
},
|
| 1466 |
+
{
|
| 1467 |
+
"epoch": 0.61,
|
| 1468 |
+
"learning_rate": 6.798753984400916e-05,
|
| 1469 |
+
"loss": 1.6844,
|
| 1470 |
+
"step": 2400
|
| 1471 |
+
},
|
| 1472 |
+
{
|
| 1473 |
+
"epoch": 0.62,
|
| 1474 |
+
"learning_rate": 6.721874813557699e-05,
|
| 1475 |
+
"loss": 1.7038,
|
| 1476 |
+
"step": 2410
|
| 1477 |
+
},
|
| 1478 |
+
{
|
| 1479 |
+
"epoch": 0.62,
|
| 1480 |
+
"learning_rate": 6.645212113448953e-05,
|
| 1481 |
+
"loss": 1.6728,
|
| 1482 |
+
"step": 2420
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"epoch": 0.62,
|
| 1486 |
+
"learning_rate": 6.568770946489948e-05,
|
| 1487 |
+
"loss": 1.682,
|
| 1488 |
+
"step": 2430
|
| 1489 |
+
},
|
| 1490 |
+
{
|
| 1491 |
+
"epoch": 0.62,
|
| 1492 |
+
"learning_rate": 6.492556360467025e-05,
|
| 1493 |
+
"loss": 1.6799,
|
| 1494 |
+
"step": 2440
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.63,
|
| 1498 |
+
"learning_rate": 6.416573388204282e-05,
|
| 1499 |
+
"loss": 1.66,
|
| 1500 |
+
"step": 2450
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.63,
|
| 1504 |
+
"learning_rate": 6.340827047231211e-05,
|
| 1505 |
+
"loss": 1.6806,
|
| 1506 |
+
"step": 2460
|
| 1507 |
+
},
|
| 1508 |
+
{
|
| 1509 |
+
"epoch": 0.63,
|
| 1510 |
+
"learning_rate": 6.265322339451376e-05,
|
| 1511 |
+
"loss": 1.6661,
|
| 1512 |
+
"step": 2470
|
| 1513 |
+
},
|
| 1514 |
+
{
|
| 1515 |
+
"epoch": 0.63,
|
| 1516 |
+
"learning_rate": 6.190064250812124e-05,
|
| 1517 |
+
"loss": 1.6696,
|
| 1518 |
+
"step": 2480
|
| 1519 |
+
},
|
| 1520 |
+
{
|
| 1521 |
+
"epoch": 0.64,
|
| 1522 |
+
"learning_rate": 6.115057750975312e-05,
|
| 1523 |
+
"loss": 1.6153,
|
| 1524 |
+
"step": 2490
|
| 1525 |
+
},
|
| 1526 |
+
{
|
| 1527 |
+
"epoch": 0.64,
|
| 1528 |
+
"learning_rate": 6.040307792989157e-05,
|
| 1529 |
+
"loss": 1.6824,
|
| 1530 |
+
"step": 2500
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"epoch": 0.64,
|
| 1534 |
+
"learning_rate": 5.9658193129611604e-05,
|
| 1535 |
+
"loss": 1.6886,
|
| 1536 |
+
"step": 2510
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.65,
|
| 1540 |
+
"learning_rate": 5.891597229732135e-05,
|
| 1541 |
+
"loss": 1.6358,
|
| 1542 |
+
"step": 2520
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 0.65,
|
| 1546 |
+
"learning_rate": 5.8176464445514166e-05,
|
| 1547 |
+
"loss": 1.6462,
|
| 1548 |
+
"step": 2530
|
| 1549 |
+
},
|
| 1550 |
+
{
|
| 1551 |
+
"epoch": 0.65,
|
| 1552 |
+
"learning_rate": 5.7439718407531906e-05,
|
| 1553 |
+
"loss": 1.6434,
|
| 1554 |
+
"step": 2540
|
| 1555 |
+
},
|
| 1556 |
+
{
|
| 1557 |
+
"epoch": 0.65,
|
| 1558 |
+
"learning_rate": 5.670578283434016e-05,
|
| 1559 |
+
"loss": 1.6459,
|
| 1560 |
+
"step": 2550
|
| 1561 |
+
},
|
| 1562 |
+
{
|
| 1563 |
+
"epoch": 0.66,
|
| 1564 |
+
"learning_rate": 5.5974706191315884e-05,
|
| 1565 |
+
"loss": 1.6705,
|
| 1566 |
+
"step": 2560
|
| 1567 |
+
},
|
| 1568 |
+
{
|
| 1569 |
+
"epoch": 0.66,
|
| 1570 |
+
"learning_rate": 5.5246536755046706e-05,
|
| 1571 |
+
"loss": 1.6638,
|
| 1572 |
+
"step": 2570
|
| 1573 |
+
},
|
| 1574 |
+
{
|
| 1575 |
+
"epoch": 0.66,
|
| 1576 |
+
"learning_rate": 5.452132261014304e-05,
|
| 1577 |
+
"loss": 1.6656,
|
| 1578 |
+
"step": 2580
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.66,
|
| 1582 |
+
"learning_rate": 5.379911164606304e-05,
|
| 1583 |
+
"loss": 1.6572,
|
| 1584 |
+
"step": 2590
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 0.67,
|
| 1588 |
+
"learning_rate": 5.315172891887351e-05,
|
| 1589 |
+
"loss": 1.643,
|
| 1590 |
+
"step": 2600
|
| 1591 |
+
},
|
| 1592 |
+
{
|
| 1593 |
+
"epoch": 0.67,
|
| 1594 |
+
"learning_rate": 5.2435355221012797e-05,
|
| 1595 |
+
"loss": 1.6544,
|
| 1596 |
+
"step": 2610
|
| 1597 |
+
},
|
| 1598 |
+
{
|
| 1599 |
+
"epoch": 0.67,
|
| 1600 |
+
"learning_rate": 5.172212245066537e-05,
|
| 1601 |
+
"loss": 1.628,
|
| 1602 |
+
"step": 2620
|
| 1603 |
+
},
|
| 1604 |
+
{
|
| 1605 |
+
"epoch": 0.67,
|
| 1606 |
+
"learning_rate": 5.1012077706100125e-05,
|
| 1607 |
+
"loss": 1.6378,
|
| 1608 |
+
"step": 2630
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"epoch": 0.68,
|
| 1612 |
+
"learning_rate": 5.0305267875065087e-05,
|
| 1613 |
+
"loss": 1.6475,
|
| 1614 |
+
"step": 2640
|
| 1615 |
+
},
|
| 1616 |
+
{
|
| 1617 |
+
"epoch": 0.68,
|
| 1618 |
+
"learning_rate": 4.9601739631690836e-05,
|
| 1619 |
+
"loss": 1.5959,
|
| 1620 |
+
"step": 2650
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.68,
|
| 1624 |
+
"learning_rate": 4.897140837169796e-05,
|
| 1625 |
+
"loss": 1.657,
|
| 1626 |
+
"step": 2660
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 0.68,
|
| 1630 |
+
"learning_rate": 4.827424295352793e-05,
|
| 1631 |
+
"loss": 1.6716,
|
| 1632 |
+
"step": 2670
|
| 1633 |
+
},
|
| 1634 |
+
{
|
| 1635 |
+
"epoch": 0.69,
|
| 1636 |
+
"learning_rate": 4.758049324158693e-05,
|
| 1637 |
+
"loss": 1.59,
|
| 1638 |
+
"step": 2680
|
| 1639 |
+
},
|
| 1640 |
+
{
|
| 1641 |
+
"epoch": 0.69,
|
| 1642 |
+
"learning_rate": 4.6890205047581745e-05,
|
| 1643 |
+
"loss": 1.6442,
|
| 1644 |
+
"step": 2690
|
| 1645 |
+
},
|
| 1646 |
+
{
|
| 1647 |
+
"epoch": 0.69,
|
| 1648 |
+
"learning_rate": 4.6203423954637995e-05,
|
| 1649 |
+
"loss": 1.6152,
|
| 1650 |
+
"step": 2700
|
| 1651 |
+
},
|
| 1652 |
+
{
|
| 1653 |
+
"epoch": 0.69,
|
| 1654 |
+
"learning_rate": 4.552019531429019e-05,
|
| 1655 |
+
"loss": 1.6446,
|
| 1656 |
+
"step": 2710
|
| 1657 |
+
},
|
| 1658 |
+
{
|
| 1659 |
+
"epoch": 0.7,
|
| 1660 |
+
"learning_rate": 4.484056424348703e-05,
|
| 1661 |
+
"loss": 1.6216,
|
| 1662 |
+
"step": 2720
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.7,
|
| 1666 |
+
"learning_rate": 4.416457562161184e-05,
|
| 1667 |
+
"loss": 1.6534,
|
| 1668 |
+
"step": 2730
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 0.7,
|
| 1672 |
+
"learning_rate": 4.349227408751919e-05,
|
| 1673 |
+
"loss": 1.6474,
|
| 1674 |
+
"step": 2740
|
| 1675 |
+
},
|
| 1676 |
+
{
|
| 1677 |
+
"epoch": 0.7,
|
| 1678 |
+
"learning_rate": 4.282370403658717e-05,
|
| 1679 |
+
"loss": 1.6338,
|
| 1680 |
+
"step": 2750
|
| 1681 |
+
},
|
| 1682 |
+
{
|
| 1683 |
+
"epoch": 0.71,
|
| 1684 |
+
"learning_rate": 4.2158909617785525e-05,
|
| 1685 |
+
"loss": 1.6473,
|
| 1686 |
+
"step": 2760
|
| 1687 |
+
},
|
| 1688 |
+
{
|
| 1689 |
+
"epoch": 0.71,
|
| 1690 |
+
"learning_rate": 4.149793473076058e-05,
|
| 1691 |
+
"loss": 1.6315,
|
| 1692 |
+
"step": 2770
|
| 1693 |
+
},
|
| 1694 |
+
{
|
| 1695 |
+
"epoch": 0.71,
|
| 1696 |
+
"learning_rate": 4.084082302293617e-05,
|
| 1697 |
+
"loss": 1.6516,
|
| 1698 |
+
"step": 2780
|
| 1699 |
+
},
|
| 1700 |
+
{
|
| 1701 |
+
"epoch": 0.71,
|
| 1702 |
+
"learning_rate": 4.018761788663127e-05,
|
| 1703 |
+
"loss": 1.6112,
|
| 1704 |
+
"step": 2790
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.72,
|
| 1708 |
+
"learning_rate": 3.953836245619488e-05,
|
| 1709 |
+
"loss": 1.6077,
|
| 1710 |
+
"step": 2800
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 0.72,
|
| 1714 |
+
"learning_rate": 3.889309960515738e-05,
|
| 1715 |
+
"loss": 1.6182,
|
| 1716 |
+
"step": 2810
|
| 1717 |
+
},
|
| 1718 |
+
{
|
| 1719 |
+
"epoch": 0.72,
|
| 1720 |
+
"learning_rate": 3.82518719433995e-05,
|
| 1721 |
+
"loss": 1.6072,
|
| 1722 |
+
"step": 2820
|
| 1723 |
+
},
|
| 1724 |
+
{
|
| 1725 |
+
"epoch": 0.72,
|
| 1726 |
+
"learning_rate": 3.761472181433865e-05,
|
| 1727 |
+
"loss": 1.6062,
|
| 1728 |
+
"step": 2830
|
| 1729 |
+
},
|
| 1730 |
+
{
|
| 1731 |
+
"epoch": 0.73,
|
| 1732 |
+
"learning_rate": 3.6981691292132604e-05,
|
| 1733 |
+
"loss": 1.6332,
|
| 1734 |
+
"step": 2840
|
| 1735 |
+
},
|
| 1736 |
+
{
|
| 1737 |
+
"epoch": 0.73,
|
| 1738 |
+
"learning_rate": 3.6352822178901235e-05,
|
| 1739 |
+
"loss": 1.6393,
|
| 1740 |
+
"step": 2850
|
| 1741 |
+
},
|
| 1742 |
+
{
|
| 1743 |
+
"epoch": 0.73,
|
| 1744 |
+
"learning_rate": 3.5728156001966154e-05,
|
| 1745 |
+
"loss": 1.6401,
|
| 1746 |
+
"step": 2860
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.73,
|
| 1750 |
+
"learning_rate": 3.5169584051980575e-05,
|
| 1751 |
+
"loss": 1.6234,
|
| 1752 |
+
"step": 2870
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 0.74,
|
| 1756 |
+
"learning_rate": 3.461447977339909e-05,
|
| 1757 |
+
"loss": 1.5814,
|
| 1758 |
+
"step": 2880
|
| 1759 |
+
},
|
| 1760 |
+
{
|
| 1761 |
+
"epoch": 0.74,
|
| 1762 |
+
"learning_rate": 3.4001800370596834e-05,
|
| 1763 |
+
"loss": 1.6018,
|
| 1764 |
+
"step": 2890
|
| 1765 |
+
},
|
| 1766 |
+
{
|
| 1767 |
+
"epoch": 0.74,
|
| 1768 |
+
"learning_rate": 3.339347915362796e-05,
|
| 1769 |
+
"loss": 1.6172,
|
| 1770 |
+
"step": 2900
|
| 1771 |
+
},
|
| 1772 |
+
{
|
| 1773 |
+
"epoch": 0.74,
|
| 1774 |
+
"learning_rate": 3.278955629293534e-05,
|
| 1775 |
+
"loss": 1.6042,
|
| 1776 |
+
"step": 2910
|
| 1777 |
+
},
|
| 1778 |
+
{
|
| 1779 |
+
"epoch": 0.75,
|
| 1780 |
+
"learning_rate": 3.219007166851673e-05,
|
| 1781 |
+
"loss": 1.6119,
|
| 1782 |
+
"step": 2920
|
| 1783 |
+
},
|
| 1784 |
+
{
|
| 1785 |
+
"epoch": 0.75,
|
| 1786 |
+
"learning_rate": 3.1595064867291394e-05,
|
| 1787 |
+
"loss": 1.621,
|
| 1788 |
+
"step": 2930
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.75,
|
| 1792 |
+
"learning_rate": 3.1004575180485885e-05,
|
| 1793 |
+
"loss": 1.6046,
|
| 1794 |
+
"step": 2940
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 0.76,
|
| 1798 |
+
"learning_rate": 3.0418641601039366e-05,
|
| 1799 |
+
"loss": 1.5811,
|
| 1800 |
+
"step": 2950
|
| 1801 |
+
},
|
| 1802 |
+
{
|
| 1803 |
+
"epoch": 0.76,
|
| 1804 |
+
"learning_rate": 2.9837302821028956e-05,
|
| 1805 |
+
"loss": 1.5635,
|
| 1806 |
+
"step": 2960
|
| 1807 |
+
},
|
| 1808 |
+
{
|
| 1809 |
+
"epoch": 0.76,
|
| 1810 |
+
"learning_rate": 2.926059722911447e-05,
|
| 1811 |
+
"loss": 1.6193,
|
| 1812 |
+
"step": 2970
|
| 1813 |
+
},
|
| 1814 |
+
{
|
| 1815 |
+
"epoch": 0.76,
|
| 1816 |
+
"learning_rate": 2.86885629080035e-05,
|
| 1817 |
+
"loss": 1.6067,
|
| 1818 |
+
"step": 2980
|
| 1819 |
+
},
|
| 1820 |
+
{
|
| 1821 |
+
"epoch": 0.77,
|
| 1822 |
+
"learning_rate": 2.823432416081132e-05,
|
| 1823 |
+
"loss": 1.5795,
|
| 1824 |
+
"step": 2990
|
| 1825 |
+
},
|
| 1826 |
+
{
|
| 1827 |
+
"epoch": 0.77,
|
| 1828 |
+
"learning_rate": 2.7670793109350358e-05,
|
| 1829 |
+
"loss": 1.5891,
|
| 1830 |
+
"step": 3000
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.77,
|
| 1834 |
+
"eval_loss": 1.3908636569976807,
|
| 1835 |
+
"eval_runtime": 2.0291,
|
| 1836 |
+
"eval_samples_per_second": 49.282,
|
| 1837 |
+
"eval_steps_per_second": 1.971,
|
| 1838 |
+
"step": 3000
|
| 1839 |
+
},
|
| 1840 |
+
{
|
| 1841 |
+
"epoch": 0.77,
|
| 1842 |
+
"learning_rate": 2.7112038311280828e-05,
|
| 1843 |
+
"loss": 1.599,
|
| 1844 |
+
"step": 3010
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.77,
|
| 1848 |
+
"learning_rate": 2.655809666393112e-05,
|
| 1849 |
+
"loss": 1.5877,
|
| 1850 |
+
"step": 3020
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 0.78,
|
| 1854 |
+
"learning_rate": 2.600900474679364e-05,
|
| 1855 |
+
"loss": 1.6096,
|
| 1856 |
+
"step": 3030
|
| 1857 |
+
},
|
| 1858 |
+
{
|
| 1859 |
+
"epoch": 0.78,
|
| 1860 |
+
"learning_rate": 2.546479881910918e-05,
|
| 1861 |
+
"loss": 1.6317,
|
| 1862 |
+
"step": 3040
|
| 1863 |
+
},
|
| 1864 |
+
{
|
| 1865 |
+
"epoch": 0.78,
|
| 1866 |
+
"learning_rate": 2.4925514817472618e-05,
|
| 1867 |
+
"loss": 1.5218,
|
| 1868 |
+
"step": 3050
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"epoch": 0.78,
|
| 1872 |
+
"learning_rate": 2.4391188353459925e-05,
|
| 1873 |
+
"loss": 1.5526,
|
| 1874 |
+
"step": 3060
|
| 1875 |
+
},
|
| 1876 |
+
{
|
| 1877 |
+
"epoch": 0.79,
|
| 1878 |
+
"learning_rate": 2.3861854711276378e-05,
|
| 1879 |
+
"loss": 1.5753,
|
| 1880 |
+
"step": 3070
|
| 1881 |
+
},
|
| 1882 |
+
{
|
| 1883 |
+
"epoch": 0.79,
|
| 1884 |
+
"learning_rate": 2.333754884542667e-05,
|
| 1885 |
+
"loss": 1.6214,
|
| 1886 |
+
"step": 3080
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.79,
|
| 1890 |
+
"learning_rate": 2.281830537840678e-05,
|
| 1891 |
+
"loss": 1.591,
|
| 1892 |
+
"step": 3090
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 0.79,
|
| 1896 |
+
"learning_rate": 2.2355342955230186e-05,
|
| 1897 |
+
"loss": 1.5578,
|
| 1898 |
+
"step": 3100
|
| 1899 |
+
},
|
| 1900 |
+
{
|
| 1901 |
+
"epoch": 0.8,
|
| 1902 |
+
"learning_rate": 2.189653361595686e-05,
|
| 1903 |
+
"loss": 1.5684,
|
| 1904 |
+
"step": 3110
|
| 1905 |
+
},
|
| 1906 |
+
{
|
| 1907 |
+
"epoch": 0.8,
|
| 1908 |
+
"learning_rate": 2.1391646203159456e-05,
|
| 1909 |
+
"loss": 1.5654,
|
| 1910 |
+
"step": 3120
|
| 1911 |
+
},
|
| 1912 |
+
{
|
| 1913 |
+
"epoch": 0.8,
|
| 1914 |
+
"learning_rate": 2.089194968671713e-05,
|
| 1915 |
+
"loss": 1.5803,
|
| 1916 |
+
"step": 3130
|
| 1917 |
+
},
|
| 1918 |
+
{
|
| 1919 |
+
"epoch": 0.8,
|
| 1920 |
+
"learning_rate": 2.039747706404943e-05,
|
| 1921 |
+
"loss": 1.5737,
|
| 1922 |
+
"step": 3140
|
| 1923 |
+
},
|
| 1924 |
+
{
|
| 1925 |
+
"epoch": 0.81,
|
| 1926 |
+
"learning_rate": 1.99082609876164e-05,
|
| 1927 |
+
"loss": 1.5444,
|
| 1928 |
+
"step": 3150
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.81,
|
| 1932 |
+
"learning_rate": 1.9472487573431274e-05,
|
| 1933 |
+
"loss": 1.5995,
|
| 1934 |
+
"step": 3160
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 0.81,
|
| 1938 |
+
"learning_rate": 1.8993347647457706e-05,
|
| 1939 |
+
"loss": 1.5803,
|
| 1940 |
+
"step": 3170
|
| 1941 |
+
},
|
| 1942 |
+
{
|
| 1943 |
+
"epoch": 0.81,
|
| 1944 |
+
"learning_rate": 1.8519556989292508e-05,
|
| 1945 |
+
"loss": 1.5892,
|
| 1946 |
+
"step": 3180
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"epoch": 0.82,
|
| 1950 |
+
"learning_rate": 1.8051146885663938e-05,
|
| 1951 |
+
"loss": 1.6006,
|
| 1952 |
+
"step": 3190
|
| 1953 |
+
},
|
| 1954 |
+
{
|
| 1955 |
+
"epoch": 0.82,
|
| 1956 |
+
"learning_rate": 1.7588148267995695e-05,
|
| 1957 |
+
"loss": 1.567,
|
| 1958 |
+
"step": 3200
|
| 1959 |
+
},
|
| 1960 |
+
{
|
| 1961 |
+
"epoch": 0.82,
|
| 1962 |
+
"learning_rate": 1.7130591710364486e-05,
|
| 1963 |
+
"loss": 1.5557,
|
| 1964 |
+
"step": 3210
|
| 1965 |
+
},
|
| 1966 |
+
{
|
| 1967 |
+
"epoch": 0.82,
|
| 1968 |
+
"learning_rate": 1.6678507427480983e-05,
|
| 1969 |
+
"loss": 1.5794,
|
| 1970 |
+
"step": 3220
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.83,
|
| 1974 |
+
"learning_rate": 1.6231925272694615e-05,
|
| 1975 |
+
"loss": 1.5858,
|
| 1976 |
+
"step": 3230
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 0.83,
|
| 1980 |
+
"learning_rate": 1.5790874736022287e-05,
|
| 1981 |
+
"loss": 1.5791,
|
| 1982 |
+
"step": 3240
|
| 1983 |
+
},
|
| 1984 |
+
{
|
| 1985 |
+
"epoch": 0.83,
|
| 1986 |
+
"learning_rate": 1.535538494220089e-05,
|
| 1987 |
+
"loss": 1.5721,
|
| 1988 |
+
"step": 3250
|
| 1989 |
+
},
|
| 1990 |
+
{
|
| 1991 |
+
"epoch": 0.83,
|
| 1992 |
+
"learning_rate": 1.4925484648764131e-05,
|
| 1993 |
+
"loss": 1.5537,
|
| 1994 |
+
"step": 3260
|
| 1995 |
+
},
|
| 1996 |
+
{
|
| 1997 |
+
"epoch": 0.84,
|
| 1998 |
+
"learning_rate": 1.450120224414352e-05,
|
| 1999 |
+
"loss": 1.5698,
|
| 2000 |
+
"step": 3270
|
| 2001 |
+
},
|
| 2002 |
+
{
|
| 2003 |
+
"epoch": 0.84,
|
| 2004 |
+
"learning_rate": 1.4082565745793686e-05,
|
| 2005 |
+
"loss": 1.5529,
|
| 2006 |
+
"step": 3280
|
| 2007 |
+
},
|
| 2008 |
+
{
|
| 2009 |
+
"epoch": 0.84,
|
| 2010 |
+
"learning_rate": 1.3669602798342296e-05,
|
| 2011 |
+
"loss": 1.5702,
|
| 2012 |
+
"step": 3290
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.84,
|
| 2016 |
+
"learning_rate": 1.3262340671764584e-05,
|
| 2017 |
+
"loss": 1.5273,
|
| 2018 |
+
"step": 3300
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 0.85,
|
| 2022 |
+
"learning_rate": 1.2860806259582492e-05,
|
| 2023 |
+
"loss": 1.5401,
|
| 2024 |
+
"step": 3310
|
| 2025 |
+
},
|
| 2026 |
+
{
|
| 2027 |
+
"epoch": 0.85,
|
| 2028 |
+
"learning_rate": 1.2504344407159785e-05,
|
| 2029 |
+
"loss": 1.5753,
|
| 2030 |
+
"step": 3320
|
| 2031 |
+
},
|
| 2032 |
+
{
|
| 2033 |
+
"epoch": 0.85,
|
| 2034 |
+
"learning_rate": 1.2113765387943211e-05,
|
| 2035 |
+
"loss": 1.5564,
|
| 2036 |
+
"step": 3330
|
| 2037 |
+
},
|
| 2038 |
+
{
|
| 2039 |
+
"epoch": 0.85,
|
| 2040 |
+
"learning_rate": 1.172898992919923e-05,
|
| 2041 |
+
"loss": 1.5189,
|
| 2042 |
+
"step": 3340
|
| 2043 |
+
},
|
| 2044 |
+
{
|
| 2045 |
+
"epoch": 0.86,
|
| 2046 |
+
"learning_rate": 1.1350043439544521e-05,
|
| 2047 |
+
"loss": 1.5607,
|
| 2048 |
+
"step": 3350
|
| 2049 |
+
},
|
| 2050 |
+
{
|
| 2051 |
+
"epoch": 0.86,
|
| 2052 |
+
"learning_rate": 1.0976950942680197e-05,
|
| 2053 |
+
"loss": 1.539,
|
| 2054 |
+
"step": 3360
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.86,
|
| 2058 |
+
"learning_rate": 1.0609737075739412e-05,
|
| 2059 |
+
"loss": 1.5593,
|
| 2060 |
+
"step": 3370
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 0.87,
|
| 2064 |
+
"learning_rate": 1.0248426087660557e-05,
|
| 2065 |
+
"loss": 1.5345,
|
| 2066 |
+
"step": 3380
|
| 2067 |
+
},
|
| 2068 |
+
{
|
| 2069 |
+
"epoch": 0.87,
|
| 2070 |
+
"learning_rate": 9.89304183758577e-06,
|
| 2071 |
+
"loss": 1.5988,
|
| 2072 |
+
"step": 3390
|
| 2073 |
+
},
|
| 2074 |
+
{
|
| 2075 |
+
"epoch": 0.87,
|
| 2076 |
+
"learning_rate": 9.543607793285626e-06,
|
| 2077 |
+
"loss": 1.5306,
|
| 2078 |
+
"step": 3400
|
| 2079 |
+
},
|
| 2080 |
+
{
|
| 2081 |
+
"epoch": 0.87,
|
| 2082 |
+
"learning_rate": 9.200147029609264e-06,
|
| 2083 |
+
"loss": 1.5702,
|
| 2084 |
+
"step": 3410
|
| 2085 |
+
},
|
| 2086 |
+
{
|
| 2087 |
+
"epoch": 0.88,
|
| 2088 |
+
"learning_rate": 8.896158250762244e-06,
|
| 2089 |
+
"loss": 1.5378,
|
| 2090 |
+
"step": 3420
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 0.88,
|
| 2094 |
+
"learning_rate": 8.59704246528129e-06,
|
| 2095 |
+
"loss": 1.5693,
|
| 2096 |
+
"step": 3430
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.88,
|
| 2100 |
+
"learning_rate": 8.270426282311539e-06,
|
| 2101 |
+
"loss": 1.5517,
|
| 2102 |
+
"step": 3440
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 0.88,
|
| 2106 |
+
"learning_rate": 7.949867454404824e-06,
|
| 2107 |
+
"loss": 1.5576,
|
| 2108 |
+
"step": 3450
|
| 2109 |
+
},
|
| 2110 |
+
{
|
| 2111 |
+
"epoch": 0.89,
|
| 2112 |
+
"learning_rate": 7.635387149637685e-06,
|
| 2113 |
+
"loss": 1.5763,
|
| 2114 |
+
"step": 3460
|
| 2115 |
+
},
|
| 2116 |
+
{
|
| 2117 |
+
"epoch": 0.89,
|
| 2118 |
+
"learning_rate": 7.327006134691883e-06,
|
| 2119 |
+
"loss": 1.5768,
|
| 2120 |
+
"step": 3470
|
| 2121 |
+
},
|
| 2122 |
+
{
|
| 2123 |
+
"epoch": 0.89,
|
| 2124 |
+
"learning_rate": 7.024744773483105e-06,
|
| 2125 |
+
"loss": 1.5393,
|
| 2126 |
+
"step": 3480
|
| 2127 |
+
},
|
| 2128 |
+
{
|
| 2129 |
+
"epoch": 0.89,
|
| 2130 |
+
"learning_rate": 6.7286230258161385e-06,
|
| 2131 |
+
"loss": 1.5617,
|
| 2132 |
+
"step": 3490
|
| 2133 |
+
},
|
| 2134 |
+
{
|
| 2135 |
+
"epoch": 0.9,
|
| 2136 |
+
"learning_rate": 6.438660446066891e-06,
|
| 2137 |
+
"loss": 1.5404,
|
| 2138 |
+
"step": 3500
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.9,
|
| 2142 |
+
"learning_rate": 6.154876181891145e-06,
|
| 2143 |
+
"loss": 1.5765,
|
| 2144 |
+
"step": 3510
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 0.9,
|
| 2148 |
+
"learning_rate": 5.877288972960071e-06,
|
| 2149 |
+
"loss": 1.5942,
|
| 2150 |
+
"step": 3520
|
| 2151 |
+
},
|
| 2152 |
+
{
|
| 2153 |
+
"epoch": 0.9,
|
| 2154 |
+
"learning_rate": 5.632774125747675e-06,
|
| 2155 |
+
"loss": 1.5557,
|
| 2156 |
+
"step": 3530
|
| 2157 |
+
},
|
| 2158 |
+
{
|
| 2159 |
+
"epoch": 0.91,
|
| 2160 |
+
"learning_rate": 5.367011482971008e-06,
|
| 2161 |
+
"loss": 1.5438,
|
| 2162 |
+
"step": 3540
|
| 2163 |
+
},
|
| 2164 |
+
{
|
| 2165 |
+
"epoch": 0.91,
|
| 2166 |
+
"learning_rate": 5.107497922021364e-06,
|
| 2167 |
+
"loss": 1.5351,
|
| 2168 |
+
"step": 3550
|
| 2169 |
+
},
|
| 2170 |
+
{
|
| 2171 |
+
"epoch": 0.91,
|
| 2172 |
+
"learning_rate": 4.854250579856034e-06,
|
| 2173 |
+
"loss": 1.5304,
|
| 2174 |
+
"step": 3560
|
| 2175 |
+
},
|
| 2176 |
+
{
|
| 2177 |
+
"epoch": 0.91,
|
| 2178 |
+
"learning_rate": 4.6072861796429665e-06,
|
| 2179 |
+
"loss": 1.554,
|
| 2180 |
+
"step": 3570
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.92,
|
| 2184 |
+
"learning_rate": 4.366621029656582e-06,
|
| 2185 |
+
"loss": 1.5185,
|
| 2186 |
+
"step": 3580
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 0.92,
|
| 2190 |
+
"learning_rate": 4.1322710222008065e-06,
|
| 2191 |
+
"loss": 1.5746,
|
| 2192 |
+
"step": 3590
|
| 2193 |
+
},
|
| 2194 |
+
{
|
| 2195 |
+
"epoch": 0.92,
|
| 2196 |
+
"learning_rate": 3.904251632559652e-06,
|
| 2197 |
+
"loss": 1.5413,
|
| 2198 |
+
"step": 3600
|
| 2199 |
+
},
|
| 2200 |
+
{
|
| 2201 |
+
"epoch": 0.92,
|
| 2202 |
+
"learning_rate": 3.6825779179752716e-06,
|
| 2203 |
+
"loss": 1.5533,
|
| 2204 |
+
"step": 3610
|
| 2205 |
+
},
|
| 2206 |
+
{
|
| 2207 |
+
"epoch": 0.93,
|
| 2208 |
+
"learning_rate": 3.467264516653668e-06,
|
| 2209 |
+
"loss": 1.5432,
|
| 2210 |
+
"step": 3620
|
| 2211 |
+
},
|
| 2212 |
+
{
|
| 2213 |
+
"epoch": 0.93,
|
| 2214 |
+
"learning_rate": 3.2583256467980773e-06,
|
| 2215 |
+
"loss": 1.5869,
|
| 2216 |
+
"step": 3630
|
| 2217 |
+
},
|
| 2218 |
+
{
|
| 2219 |
+
"epoch": 0.93,
|
| 2220 |
+
"learning_rate": 3.055775105670056e-06,
|
| 2221 |
+
"loss": 1.5374,
|
| 2222 |
+
"step": 3640
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 0.93,
|
| 2226 |
+
"learning_rate": 2.8596262686783837e-06,
|
| 2227 |
+
"loss": 1.5425,
|
| 2228 |
+
"step": 3650
|
| 2229 |
+
},
|
| 2230 |
+
{
|
| 2231 |
+
"epoch": 0.94,
|
| 2232 |
+
"learning_rate": 2.6698920884958177e-06,
|
| 2233 |
+
"loss": 1.5906,
|
| 2234 |
+
"step": 3660
|
| 2235 |
+
},
|
| 2236 |
+
{
|
| 2237 |
+
"epoch": 0.94,
|
| 2238 |
+
"learning_rate": 2.486585094203786e-06,
|
| 2239 |
+
"loss": 1.5787,
|
| 2240 |
+
"step": 3670
|
| 2241 |
+
},
|
| 2242 |
+
{
|
| 2243 |
+
"epoch": 0.94,
|
| 2244 |
+
"learning_rate": 2.309717390464983e-06,
|
| 2245 |
+
"loss": 1.5579,
|
| 2246 |
+
"step": 3680
|
| 2247 |
+
},
|
| 2248 |
+
{
|
| 2249 |
+
"epoch": 0.94,
|
| 2250 |
+
"learning_rate": 2.1393006567240635e-06,
|
| 2251 |
+
"loss": 1.5391,
|
| 2252 |
+
"step": 3690
|
| 2253 |
+
},
|
| 2254 |
+
{
|
| 2255 |
+
"epoch": 0.95,
|
| 2256 |
+
"learning_rate": 1.9753461464364408e-06,
|
| 2257 |
+
"loss": 1.5478,
|
| 2258 |
+
"step": 3700
|
| 2259 |
+
},
|
| 2260 |
+
{
|
| 2261 |
+
"epoch": 0.95,
|
| 2262 |
+
"learning_rate": 1.8178646863250548e-06,
|
| 2263 |
+
"loss": 1.5777,
|
| 2264 |
+
"step": 3710
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 0.95,
|
| 2268 |
+
"learning_rate": 1.6668666756655572e-06,
|
| 2269 |
+
"loss": 1.5239,
|
| 2270 |
+
"step": 3720
|
| 2271 |
+
},
|
| 2272 |
+
{
|
| 2273 |
+
"epoch": 0.95,
|
| 2274 |
+
"learning_rate": 1.5365200653588708e-06,
|
| 2275 |
+
"loss": 1.4992,
|
| 2276 |
+
"step": 3730
|
| 2277 |
+
},
|
| 2278 |
+
{
|
| 2279 |
+
"epoch": 0.96,
|
| 2280 |
+
"learning_rate": 1.397867724769042e-06,
|
| 2281 |
+
"loss": 1.5272,
|
| 2282 |
+
"step": 3740
|
| 2283 |
+
},
|
| 2284 |
+
{
|
| 2285 |
+
"epoch": 0.96,
|
| 2286 |
+
"learning_rate": 1.2657265680968589e-06,
|
| 2287 |
+
"loss": 1.541,
|
| 2288 |
+
"step": 3750
|
| 2289 |
+
},
|
| 2290 |
+
{
|
| 2291 |
+
"epoch": 0.96,
|
| 2292 |
+
"learning_rate": 1.1523738102167225e-06,
|
| 2293 |
+
"loss": 1.5219,
|
| 2294 |
+
"step": 3760
|
| 2295 |
+
},
|
| 2296 |
+
{
|
| 2297 |
+
"epoch": 0.97,
|
| 2298 |
+
"learning_rate": 1.044308247886483e-06,
|
| 2299 |
+
"loss": 1.5524,
|
| 2300 |
+
"step": 3770
|
| 2301 |
+
},
|
| 2302 |
+
{
|
| 2303 |
+
"epoch": 0.97,
|
| 2304 |
+
"learning_rate": 9.30443453495422e-07,
|
| 2305 |
+
"loss": 1.5508,
|
| 2306 |
+
"step": 3780
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 0.97,
|
| 2310 |
+
"learning_rate": 8.231207093463699e-07,
|
| 2311 |
+
"loss": 1.5758,
|
| 2312 |
+
"step": 3790
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 0.97,
|
| 2316 |
+
"learning_rate": 7.223471024881412e-07,
|
| 2317 |
+
"loss": 1.5658,
|
| 2318 |
+
"step": 3800
|
| 2319 |
+
},
|
| 2320 |
+
{
|
| 2321 |
+
"epoch": 0.98,
|
| 2322 |
+
"learning_rate": 6.281292874978029e-07,
|
| 2323 |
+
"loss": 1.5232,
|
| 2324 |
+
"step": 3810
|
| 2325 |
+
},
|
| 2326 |
+
{
|
| 2327 |
+
"epoch": 0.98,
|
| 2328 |
+
"learning_rate": 5.404734860412375e-07,
|
| 2329 |
+
"loss": 1.5646,
|
| 2330 |
+
"step": 3820
|
| 2331 |
+
},
|
| 2332 |
+
{
|
| 2333 |
+
"epoch": 0.98,
|
| 2334 |
+
"learning_rate": 4.5938548646227154e-07,
|
| 2335 |
+
"loss": 1.5771,
|
| 2336 |
+
"step": 3830
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"epoch": 0.98,
|
| 2340 |
+
"learning_rate": 3.8487064340047006e-07,
|
| 2341 |
+
"loss": 1.5611,
|
| 2342 |
+
"step": 3840
|
| 2343 |
+
},
|
| 2344 |
+
{
|
| 2345 |
+
"epoch": 0.99,
|
| 2346 |
+
"learning_rate": 3.16933877437553e-07,
|
| 2347 |
+
"loss": 1.6229,
|
| 2348 |
+
"step": 3850
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 0.99,
|
| 2352 |
+
"learning_rate": 2.555796747724104e-07,
|
| 2353 |
+
"loss": 1.5496,
|
| 2354 |
+
"step": 3860
|
| 2355 |
+
},
|
| 2356 |
+
{
|
| 2357 |
+
"epoch": 0.99,
|
| 2358 |
+
"learning_rate": 2.0081208692490638e-07,
|
| 2359 |
+
"loss": 1.5312,
|
| 2360 |
+
"step": 3870
|
| 2361 |
+
},
|
| 2362 |
+
{
|
| 2363 |
+
"epoch": 0.99,
|
| 2364 |
+
"learning_rate": 1.5263473046833732e-07,
|
| 2365 |
+
"loss": 1.5681,
|
| 2366 |
+
"step": 3880
|
| 2367 |
+
},
|
| 2368 |
+
{
|
| 2369 |
+
"epoch": 1.0,
|
| 2370 |
+
"learning_rate": 1.1105078679056747e-07,
|
| 2371 |
+
"loss": 1.5128,
|
| 2372 |
+
"step": 3890
|
| 2373 |
+
},
|
| 2374 |
+
{
|
| 2375 |
+
"epoch": 1.0,
|
| 2376 |
+
"learning_rate": 7.606300188400805e-08,
|
| 2377 |
+
"loss": 1.5764,
|
| 2378 |
+
"step": 3900
|
| 2379 |
+
},
|
| 2380 |
+
{
|
| 2381 |
+
"epoch": 1.0,
|
| 2382 |
+
"step": 3906,
|
| 2383 |
+
"total_flos": 331952415375360.0,
|
| 2384 |
+
"train_loss": 1.9416432221974707,
|
| 2385 |
+
"train_runtime": 74872.2082,
|
| 2386 |
+
"train_samples_per_second": 6.678,
|
| 2387 |
+
"train_steps_per_second": 0.052
|
| 2388 |
+
}
|
| 2389 |
+
],
|
| 2390 |
+
"max_steps": 3906,
|
| 2391 |
+
"num_train_epochs": 1,
|
| 2392 |
+
"total_flos": 331952415375360.0,
|
| 2393 |
+
"trial_name": null,
|
| 2394 |
+
"trial_params": null
|
| 2395 |
+
}
|