uploaded readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Quantization made by Richard Erkhov.
|
| 2 |
+
|
| 3 |
+
[Github](https://github.com/RichardErkhov)
|
| 4 |
+
|
| 5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
| 6 |
+
|
| 7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
LLaMA3-SFT-v2 - bnb 4bits
|
| 11 |
+
- Model creator: https://huggingface.co/RLHFlow/
|
| 12 |
+
- Original model: https://huggingface.co/RLHFlow/LLaMA3-SFT-v2/
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Original model description:
|
| 18 |
+
---
|
| 19 |
+
library_name: transformers
|
| 20 |
+
tags: []
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
This is the SFT checkpoint used for the project [RLHFlow/Online-RLHF](https://github.com/RLHFlow/Online-RLHF)
|
| 24 |
+
|
| 25 |
+
* **Paper**: [RLHF Workflow: From Reward Modeling to Online RLHF](https://arxiv.org/pdf/2405.07863) (Published in TMLR, 2024)
|
| 26 |
+
* **Authors**: Hanze Dong*, Wei Xiong*, Bo Pang*, Haoxiang Wang*, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, Tong Zhang
|
| 27 |
+
* **Code**: https://github.com/RLHFlow/Online-RLHF
|
| 28 |
+
|
| 29 |
+
The model is trained from [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on [RLHFlow/RLHFlow-SFT-Dataset-ver2](https://huggingface.co/datasets/RLHFlow/RLHFlow-SFT-Dataset-ver2) for 2 epochs. We use a global batch size of 128 and a learning rate of 2e-5, where we pack the samples and split them into chunks of 8192 token. See more training details at https://github.com/RLHFlow/Online-RLHF/blob/main/sft/llama3-8b-it.yaml .
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## Academic Benchmarks
|
| 33 |
+
|
| 34 |
+
We use ToRA script to evaluate GSM8K and MATH, Evalplut for HumanEval, and lm-evaluation-harness for other benchmarks. The model is evaluated in zero-shot setting.
|
| 35 |
+
|
| 36 |
+
| **Model** | **Size** | **Method** | **LC AlpacaEval** | **MT-Bench** | **GSM-8K** | **MATH** | **MMLU** | **HumanEval** | **TruthfulQA** | **ARC** |
|
| 37 |
+
|----------------------------|----------|-----------------|------------|------------|------------|----------|---------------|----------------|---------|----------|
|
| 38 |
+
| LLaMA-3-8B-it | 8B | RS+DPO+PPO |22.9|8.16| 79.6 | 26.3 | 66.0 | 61.6 | 43.9 | 59.5 |
|
| 39 |
+
| RLHFlow/LLaMA3-SFT | 8B | SFT |10.2|7.69| 74.2 | 30.0 | 64.6 | 63.4 | 53.5 | 58.6 |
|
| 40 |
+
| RLHFlow/LLaMA3-SFT-v2 | 8B | SFT |12.66|-| 83.4 | 41.1 | 64.8 | 66.5 | 53.9 | 60.0 |
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Citation
|
| 45 |
+
Please cite our techical report if you find our model is useful for your research or product.
|
| 46 |
+
```
|
| 47 |
+
@misc{dong2024rlhf,
|
| 48 |
+
title={RLHF Workflow: From Reward Modeling to Online RLHF},
|
| 49 |
+
author={Hanze Dong and Wei Xiong and Bo Pang and Haoxiang Wang and Han Zhao and Yingbo Zhou and Nan Jiang and Doyen Sahoo and Caiming Xiong and Tong Zhang},
|
| 50 |
+
year={2024},
|
| 51 |
+
eprint={2405.07863},
|
| 52 |
+
archivePrefix={arXiv},
|
| 53 |
+
primaryClass={cs.LG}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|