swinv2-tiny-patch4-window8-256-dmae-humeda-DAV61

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2449
  • Accuracy: 0.9086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1254 1.0 10 1.0551 0.48
0.967 2.0 20 0.9770 0.4571
0.8537 3.0 30 0.7128 0.7086
0.6489 4.0 40 0.5167 0.7371
0.567 5.0 50 0.3952 0.8
0.4724 6.0 60 0.3705 0.8571
0.4106 7.0 70 0.3076 0.8743
0.3853 8.0 80 0.3155 0.8914
0.3369 9.0 90 0.2908 0.8514
0.3345 10.0 100 0.3034 0.8457
0.3092 11.0 110 0.2575 0.88
0.3027 12.0 120 0.2486 0.8971
0.2945 13.0 130 0.2956 0.8629
0.254 14.0 140 0.2787 0.8971
0.2476 15.0 150 0.2594 0.9029
0.2058 16.0 160 0.3091 0.8971
0.2254 17.0 170 0.2778 0.8971
0.2165 18.0 180 0.3094 0.88
0.2501 19.0 190 0.2536 0.8914
0.2016 20.0 200 0.2652 0.9029
0.1791 21.0 210 0.2449 0.9086
0.1401 22.0 220 0.3205 0.8743
0.17 23.0 230 0.3446 0.8686
0.1665 24.0 240 0.3058 0.8743
0.1192 25.0 250 0.3537 0.8743
0.1249 26.0 260 0.2929 0.8743
0.143 27.0 270 0.3050 0.8743
0.1809 28.0 280 0.2964 0.8914
0.135 29.0 290 0.3047 0.8743
0.1235 30.0 300 0.3011 0.8971
0.1351 31.0 310 0.3147 0.8914
0.1124 32.0 320 0.3123 0.8857
0.1122 33.0 330 0.3289 0.8857
0.1163 34.0 340 0.3256 0.88
0.0885 35.0 350 0.3126 0.8971
0.097 36.0 360 0.3425 0.8857
0.1036 37.0 370 0.3221 0.8857
0.1107 38.0 380 0.3598 0.8971
0.0928 39.0 390 0.3355 0.8857
0.1104 40.0 400 0.3425 0.8857
0.1104 40.5128 405 0.3428 0.8857

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV61

Finetuned
(138)
this model