swinv2-tiny-patch4-window8-256-dmae-humeda-DAV61
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2449
- Accuracy: 0.9086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.1254 | 1.0 | 10 | 1.0551 | 0.48 |
| 0.967 | 2.0 | 20 | 0.9770 | 0.4571 |
| 0.8537 | 3.0 | 30 | 0.7128 | 0.7086 |
| 0.6489 | 4.0 | 40 | 0.5167 | 0.7371 |
| 0.567 | 5.0 | 50 | 0.3952 | 0.8 |
| 0.4724 | 6.0 | 60 | 0.3705 | 0.8571 |
| 0.4106 | 7.0 | 70 | 0.3076 | 0.8743 |
| 0.3853 | 8.0 | 80 | 0.3155 | 0.8914 |
| 0.3369 | 9.0 | 90 | 0.2908 | 0.8514 |
| 0.3345 | 10.0 | 100 | 0.3034 | 0.8457 |
| 0.3092 | 11.0 | 110 | 0.2575 | 0.88 |
| 0.3027 | 12.0 | 120 | 0.2486 | 0.8971 |
| 0.2945 | 13.0 | 130 | 0.2956 | 0.8629 |
| 0.254 | 14.0 | 140 | 0.2787 | 0.8971 |
| 0.2476 | 15.0 | 150 | 0.2594 | 0.9029 |
| 0.2058 | 16.0 | 160 | 0.3091 | 0.8971 |
| 0.2254 | 17.0 | 170 | 0.2778 | 0.8971 |
| 0.2165 | 18.0 | 180 | 0.3094 | 0.88 |
| 0.2501 | 19.0 | 190 | 0.2536 | 0.8914 |
| 0.2016 | 20.0 | 200 | 0.2652 | 0.9029 |
| 0.1791 | 21.0 | 210 | 0.2449 | 0.9086 |
| 0.1401 | 22.0 | 220 | 0.3205 | 0.8743 |
| 0.17 | 23.0 | 230 | 0.3446 | 0.8686 |
| 0.1665 | 24.0 | 240 | 0.3058 | 0.8743 |
| 0.1192 | 25.0 | 250 | 0.3537 | 0.8743 |
| 0.1249 | 26.0 | 260 | 0.2929 | 0.8743 |
| 0.143 | 27.0 | 270 | 0.3050 | 0.8743 |
| 0.1809 | 28.0 | 280 | 0.2964 | 0.8914 |
| 0.135 | 29.0 | 290 | 0.3047 | 0.8743 |
| 0.1235 | 30.0 | 300 | 0.3011 | 0.8971 |
| 0.1351 | 31.0 | 310 | 0.3147 | 0.8914 |
| 0.1124 | 32.0 | 320 | 0.3123 | 0.8857 |
| 0.1122 | 33.0 | 330 | 0.3289 | 0.8857 |
| 0.1163 | 34.0 | 340 | 0.3256 | 0.88 |
| 0.0885 | 35.0 | 350 | 0.3126 | 0.8971 |
| 0.097 | 36.0 | 360 | 0.3425 | 0.8857 |
| 0.1036 | 37.0 | 370 | 0.3221 | 0.8857 |
| 0.1107 | 38.0 | 380 | 0.3598 | 0.8971 |
| 0.0928 | 39.0 | 390 | 0.3355 | 0.8857 |
| 0.1104 | 40.0 | 400 | 0.3425 | 0.8857 |
| 0.1104 | 40.5128 | 405 | 0.3428 | 0.8857 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV61
Base model
microsoft/swinv2-tiny-patch4-window8-256