File size: 2,452 Bytes
2318914 7d53d7d 27ca01a 7d53d7d 27ca01a 2318914 c794240 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 db7e8a9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 9d10ab9 2318914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
base_model: unsloth/Qwen2.5-1.5B-Instruct
library_name: peft
license: mit
datasets:
- ituperceptron/turkish_medical_reasoning
language:
- tr
pipeline_tag: text-generation
tags:
- medical
- biology
- transformers
- unsloth
- trl
---
# Model Card for Turkish-Medical-R1
## Model Details
This model is a fine-tuned version of Qwen2.5-1.5B-Instruct for medical reasoning in Turkish. The model was trained on ituperceptron/turkish_medical_reasoning dataset, which contains
instruction-tuned examples focused on clinical reasoning, diagnosis, patient care, and medical decision-making.
### Model Description
- **Developed by:** Rustam Shiriyev
- **Language(s) (NLP):** Turkish
- **License:** MIT
- **Finetuned from model:** unsloth/Qwen2.5-1.5B-Instruct
## Uses
### Direct Use
- Medical Q&A in Turkish
- Clinical reasoning tasks (educational or non-diagnostic)
- Research on medical domain adaptation and multilingual LLMs
### Out-of-Scope Use
This model is intended for research and educational purposes only. It should not be used for real-world medical decision-making or patient care.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
login(token="")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-1.5B-Instruct",)
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen2.5-1.5B-Instruct",
device_map={"": 0}, token=""
)
model = PeftModel.from_pretrained(base_model,"Rustamshry/Turkish-Medical-R1")
question = "Medüller tiroid karsinomu örneklerinin elektron mikroskopisinde gözlemlenen spesifik özellik nedir?"
prompt = (
"### Talimat:\n"
"Siz bir tıbb alanında uzmanlaşmış yapay zeka asistanısınız. Gelen soruları yalnızca Türkçe olarak, "
"açıklayıcı bir şekilde yanıtlayın.\n\n"
f"### Soru:\n{question.strip()}\n\n"
f"### Cevap:\n"
)
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**input_ids,
max_new_tokens=2048,
)
print(tokenizer.decode(outputs[0]))
```
## Training Data
- Dataset: ituperceptron/turkish_medical_reasoning; Translated version of FreedomIntelligence/medical-o1-reasoning-SFT (Turkish, ~7K examples)
## Evaluation
No formal quantitative evaluation yet.
### Framework versions
- PEFT 0.15.2 |