Upload examples/basic_usage.py with huggingface_hub
Browse files- examples/basic_usage.py +150 -0
examples/basic_usage.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Basic usage examples for DOM KNN models from Hugging Face Hub.
|
| 3 |
+
|
| 4 |
+
This script demonstrates how to load and use the models for formula assignment.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from transformers import AutoModel
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def example_1_default_model():
|
| 12 |
+
"""Load the default best-performing model."""
|
| 13 |
+
print("=" * 60)
|
| 14 |
+
print("Example 1: Loading default model (21T, K=1, Euclidean)")
|
| 15 |
+
print("=" * 60)
|
| 16 |
+
|
| 17 |
+
model = AutoModel.from_pretrained(
|
| 18 |
+
"SaeedLab/dom-formula-assignment-using-knn",
|
| 19 |
+
trust_remote_code=True
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
print(f"[OK] Model loaded successfully")
|
| 23 |
+
print(f" Config: {model.config}")
|
| 24 |
+
print()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def example_2_variant_by_parameters():
|
| 28 |
+
"""Load a specific variant using parameters."""
|
| 29 |
+
print("=" * 60)
|
| 30 |
+
print("Example 2: Loading variant by parameters")
|
| 31 |
+
print("=" * 60)
|
| 32 |
+
|
| 33 |
+
model = AutoModel.from_pretrained(
|
| 34 |
+
"SaeedLab/dom-formula-assignment-using-knn",
|
| 35 |
+
data_source="7T-21T",
|
| 36 |
+
k_neighbors=1,
|
| 37 |
+
metric="euclidean",
|
| 38 |
+
training_version="ver3",
|
| 39 |
+
trust_remote_code=True
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
print(f"[OK] Model loaded successfully")
|
| 43 |
+
print(f" Data source: 7T-21T")
|
| 44 |
+
print(f" K neighbors: 1")
|
| 45 |
+
print(f" Metric: euclidean")
|
| 46 |
+
print(f" Training version: ver3")
|
| 47 |
+
print()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def example_3_variant_by_name():
|
| 51 |
+
"""Load a specific variant by direct name."""
|
| 52 |
+
print("=" * 60)
|
| 53 |
+
print("Example 3: Loading variant by name")
|
| 54 |
+
print("=" * 60)
|
| 55 |
+
|
| 56 |
+
model = AutoModel.from_pretrained(
|
| 57 |
+
"SaeedLab/dom-formula-assignment-using-knn",
|
| 58 |
+
variant="knn_21T_k3_manhattan",
|
| 59 |
+
trust_remote_code=True
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
print(f"[OK] Model loaded: knn_21T_k3_manhattan")
|
| 63 |
+
print(f" Config: {model.config}")
|
| 64 |
+
print()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def example_4_make_predictions():
|
| 68 |
+
"""Make predictions with the model."""
|
| 69 |
+
print("=" * 60)
|
| 70 |
+
print("Example 4: Making predictions")
|
| 71 |
+
print("=" * 60)
|
| 72 |
+
|
| 73 |
+
# Load model
|
| 74 |
+
model = AutoModel.from_pretrained(
|
| 75 |
+
"SaeedLab/dom-formula-assignment-using-knn",
|
| 76 |
+
trust_remote_code=True
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Create sample data (replace with your actual mass spec features)
|
| 80 |
+
# Features might include: m/z, O/C ratio, H/C ratio, N/C ratio, etc.
|
| 81 |
+
X_sample = np.array([
|
| 82 |
+
[300.1234, 0.5, 1.2, 0.1], # Sample 1
|
| 83 |
+
[450.6789, 0.6, 1.5, 0.2], # Sample 2
|
| 84 |
+
[275.5432, 0.4, 1.1, 0.0], # Sample 3
|
| 85 |
+
])
|
| 86 |
+
|
| 87 |
+
print(f"Input shape: {X_sample.shape}")
|
| 88 |
+
print(f"Making predictions...")
|
| 89 |
+
|
| 90 |
+
# Get predictions
|
| 91 |
+
predictions = model(X_sample)
|
| 92 |
+
|
| 93 |
+
print(f"[OK] Predictions shape: {predictions.shape}")
|
| 94 |
+
print(f" First 3 predictions: {predictions[:3]}")
|
| 95 |
+
print()
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def example_5_compare_models():
|
| 99 |
+
"""Compare predictions from different model variants."""
|
| 100 |
+
print("=" * 60)
|
| 101 |
+
print("Example 5: Comparing model variants")
|
| 102 |
+
print("=" * 60)
|
| 103 |
+
|
| 104 |
+
# Sample data
|
| 105 |
+
X_sample = np.array([[300.1234, 0.5, 1.2, 0.1]])
|
| 106 |
+
|
| 107 |
+
variants = [
|
| 108 |
+
("21T K=1 Euclidean", {"variant": "knn_21T_k1_euclidean"}),
|
| 109 |
+
("21T K=3 Manhattan", {"variant": "knn_21T_k3_manhattan"}),
|
| 110 |
+
("7T-21T K=1 Euclidean", {
|
| 111 |
+
"data_source": "7T-21T",
|
| 112 |
+
"k_neighbors": 1,
|
| 113 |
+
"metric": "euclidean",
|
| 114 |
+
"training_version": "ver3"
|
| 115 |
+
}),
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
for name, params in variants:
|
| 119 |
+
model = AutoModel.from_pretrained(
|
| 120 |
+
"SaeedLab/dom-formula-assignment-using-knn",
|
| 121 |
+
trust_remote_code=True,
|
| 122 |
+
**params
|
| 123 |
+
)
|
| 124 |
+
pred = model(X_sample)
|
| 125 |
+
print(f" {name}: {pred[0]}")
|
| 126 |
+
|
| 127 |
+
print()
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
print("\n" + "=" * 60)
|
| 132 |
+
print("DOM KNN Models - Usage Examples")
|
| 133 |
+
print("=" * 60 + "\n")
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
example_1_default_model()
|
| 137 |
+
example_2_variant_by_parameters()
|
| 138 |
+
example_3_variant_by_name()
|
| 139 |
+
example_4_make_predictions()
|
| 140 |
+
example_5_compare_models()
|
| 141 |
+
|
| 142 |
+
print("=" * 60)
|
| 143 |
+
print("[OK] All examples completed successfully!")
|
| 144 |
+
print("=" * 60)
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"\n[ERROR] Error: {e}")
|
| 148 |
+
print("\nNote: These examples require the model to be uploaded to")
|
| 149 |
+
print(" Hugging Face Hub at: SaeedLab/dom-formula-assignment-using-knn")
|
| 150 |
+
print("\nFor local testing, replace the repo ID with a local path.")
|