SandLogicTechnologies commited on
Commit
9858d2d
·
verified ·
1 Parent(s): df4685a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -22
README.md CHANGED
@@ -49,6 +49,30 @@ a compact Mixture-of-Experts (MoE) model
49
 
50
  ---
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ## Dataset Preparation
53
  ### Data Sources
54
  - **Total collected:** 561M samples from **53 datasets** from Hugging Face.
@@ -151,29 +175,7 @@ Accuracy: **(Phi-mini-MoE) 21.03 → (IndicPhi-mini) 24.46 (+3.43%)**
151
 
152
  Accuracy: **(Phi-mini-MoE) 27.47 → (IndicPhi-mini) 30.95 (+3.48%)**
153
 
154
- ## Usage
155
- To load the fine-tuned model:
156
-
157
- ```python
158
- from transformers import AutoModelForCausalLM, AutoTokenizer
159
-
160
- model_name = "sandlogic/indicphi-mini-moe-v3"
161
 
162
- tokenizer = AutoTokenizer.from_pretrained(model_name)
163
- model = AutoModelForCausalLM.from_pretrained(
164
- model_name,
165
- device_map="auto",
166
- load_in_4bit=True
167
- )
168
-
169
- prompt = "ग्रामीण क्षेत्रों में ऑनलाइन शिक्षा की समस्याएं क्या हैं?"
170
-
171
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
172
- outputs = model.generate(**inputs, max_new_tokens=100)
173
-
174
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
175
-
176
- ```
177
 
178
  ## Acknowledgments
179
 
 
49
 
50
  ---
51
 
52
+ ## Usage
53
+ To load the fine-tuned model:
54
+
55
+ ```python
56
+ from transformers import AutoModelForCausalLM, AutoTokenizer
57
+
58
+ model_name = "sandlogic/indicphi-mini-moe-v3"
59
+
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
+ model = AutoModelForCausalLM.from_pretrained(
62
+ model_name,
63
+ device_map="auto",
64
+ load_in_4bit=True
65
+ )
66
+
67
+ prompt = "ग्रामीण क्षेत्रों में ऑनलाइन शिक्षा की समस्याएं क्या हैं?"
68
+
69
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
70
+ outputs = model.generate(**inputs, max_new_tokens=100)
71
+
72
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
73
+
74
+ ```
75
+
76
  ## Dataset Preparation
77
  ### Data Sources
78
  - **Total collected:** 561M samples from **53 datasets** from Hugging Face.
 
175
 
176
  Accuracy: **(Phi-mini-MoE) 27.47 → (IndicPhi-mini) 30.95 (+3.48%)**
177
 
 
 
 
 
 
 
 
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
  ## Acknowledgments
181