ESmike commited on
Commit
14bc7b7
·
verified ·
1 Parent(s): 74dfac9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -150
README.md CHANGED
@@ -1,199 +1,132 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
+ base_model:
7
+ - microsoft/phi-2
8
  ---
9
 
10
+ # Model Card for ShAIkespear/Phi-2_DPO_M3_Base_Alt
 
 
11
 
12
+ A **LoRA-finetuned** and **Direct Preference Optimization (DPO)**–aligned variant of **microsoft/phi-2**, specialized for **multiple-choice question answering (MCQA)** with an emphasis on **STEM and general knowledge** domains.
13
+ This model represents the *alternative base configuration* of the final **M3 (balanced-then-DPO)** training pipeline from the *ShAIkespear* project. It preserves full precision for highest fidelity and further fine-tuning, without 8-bit quantization.
14
 
15
+ ---
16
 
17
  ## Model Details
18
 
19
+ * **Developed by:** ShAIkespear team
20
+ * **Shared by:** ShAIkespear team
21
+ * **Model type:** Causal LM (Phi-2) with LoRA adapters; DPO-aligned
22
+ * **Languages:** English
23
+ * **License:** MIT
24
+ * **Finetuned from:** microsoft/phi-2
 
 
 
 
 
 
 
25
 
26
+ ### Model Sources
27
 
28
+ * **Repository:** [2.8B-Phi-2-LLM-QA](https://github.com/EricSaikali/2.8B-Phi-2-LLM-QA)
29
+ * **Report:** *“ShAIkespear – How to replace TAs: A comprehensive study on letting LLMs answer your questions”*
30
 
31
+ ---
 
 
32
 
33
  ## Uses
34
 
 
 
35
  ### Direct Use
36
 
37
+ * MCQA and educational Q&A (MMLU, OpenBookQA, ScienceQA).
38
+ * Alignment research — comparison between DPO training setups (Base vs. Quantized).
39
+ * As a **high-fidelity reference checkpoint** for quantized and downstream variants.
 
 
 
 
 
 
40
 
41
  ### Out-of-Scope Use
42
 
43
+ * High-stakes or safety-critical applications (medical, legal, policy).
44
+ * Generative tasks outside multiple-choice reasoning.
45
+ * Misuse in automated exam solving or confidential data leakage.
46
 
47
+ ---
48
 
49
  ## Bias, Risks, and Limitations
50
 
51
+ * **Domain bias:** Stronger on factual MCQA, weaker on advanced reasoning tasks.
52
+ * **Answer drift:** May occasionally produce verbose or follow-up answers without explicit formatting.
53
+ * **Data source risks:** EPFL-derived preferences may encode narrow style biases.
54
 
55
  ### Recommendations
56
 
57
+ * Maintain the structured prompt format:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ ```
60
+ ### Question ...
61
+ ### Explanation ...
62
+ ### Answer:
63
+ ```
64
+ * Keep human supervision in any educational or grading use.
65
+ * Prefer this full-precision model for fine-tuning or evaluation; use quantized versions for deployment.
66
 
67
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ ## How to Get Started
70
 
71
+ ```python
72
+ from transformers import AutoModelForCausalLM, AutoTokenizer
73
+ import torch
74
 
75
+ model_id = "ShAIkespear/Phi-2_DPO_M3_Base_Alt"
76
 
77
+ tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
78
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
79
 
80
+ prompt = "### Question: Which element has the chemical symbol 'O'?\n### Explanation: The symbol 'O' represents this essential gas.\n### Answer:"
81
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
82
+ out = model.generate(**inputs, max_new_tokens=15)
83
+ print(tok.decode(out[0], skip_special_tokens=True))
84
+ ```
85
 
86
+ ---
87
 
88
+ ## Training Details
89
 
90
+ ### Training Data
91
 
92
+ * **SFT stage:** Balanced MCQA mix — MathQA, OpenBookQA, ScienceQA, TAL-SCQ5K, and EPFL question sets.
93
+ * **DPO stage:** Human preference pairs (EPFL exams + public feedback datasets like HelpSteer).
94
+ * **Schema:** Unified “### Question / ### Explanation / ### Answer” format.
95
+ * **Filtering:** ≤512 tokens, balanced sample caps (~20k per dataset).
96
 
97
+ ### Training Procedure
98
 
99
+ * **Pipeline:** SFT → DPO (M3 configuration).
100
+ * **LoRA parameters:** rank = 16, α = 16, dropout = 0.05.
101
+ * **Batch sizes:** SFT = 4; DPO = 1.
102
+ * **Learning rates:** 1e-5 (public) / 1e-4 (EPFL).
103
+ * **Scheduler:** Cosine with warmup.
104
+ * **Frameworks:** Hugging Face Transformers + TRL + PEFT (LoRA).
105
 
106
+ ---
107
 
108
+ ## Evaluation Summary
109
 
110
+ * **Configuration:** *M3 Base (Alt)* is the unquantized reference model for the quantized 8-bit variant.
111
+ * **Performance:** Balanced dataset improves cross-domain consistency; DPO enhances answer formatting and style alignment.
112
+ * **Accuracy:** Similar to quantized model (~0.61 MMLU avg.), slightly higher on reasoning subtasks.
113
+ * **Use case:** For experimentation, evaluation, or further domain-specific fine-tuning.
114
 
115
+ ---
116
 
117
+ ## Technical Specifications
118
 
119
+ * **Architecture:** Phi-2 (~2.78B parameters), decoder-only transformer.
120
+ * **Objective:** SFT next-token prediction + DPO preference alignment.
121
+ * **Precision:** Full precision (fp16/bf16).
122
+ * **Software:** Hugging Face Transformers, TRL, PEFT.
123
 
124
+ ---
125
 
126
+ ## Glossary
127
 
128
+ * **MCQA:** Multiple-Choice Question Answering
129
+ * **SFT:** Supervised Finetuning
130
+ * **DPO:** Direct Preference Optimization
131
+ * **LoRA:** Low-Rank Adaptation
132
+ * **Alt (Alternative):** Internal naming for the alternate full-precision checkpoint variant of M3