Commit
·
4cb78ba
1
Parent(s):
82f9ab2
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- Silly-Machine/TuPyE-Dataset
|
| 5 |
+
language:
|
| 6 |
+
- pt
|
| 7 |
+
|
| 8 |
+
pipeline_tag: text-classification
|
| 9 |
+
base_model: neuralmind/bert-base-portuguese-cased
|
| 10 |
+
widget:
|
| 11 |
+
- text: 'Bom dia, flor do dia!!'
|
| 12 |
+
|
| 13 |
+
model-index:
|
| 14 |
+
- name: Yi-34B
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: text-classfication
|
| 18 |
+
dataset:
|
| 19 |
+
name: Silly-Machine/TuPyE-Dataset
|
| 20 |
+
type: Silly-Machine/TuPyE-Dataset
|
| 21 |
+
metrics:
|
| 22 |
+
- name: f1
|
| 23 |
+
type: f1
|
| 24 |
+
value: 64.59
|
| 25 |
+
source:
|
| 26 |
+
name: Open LLM Leaderboard
|
| 27 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
## Introduction
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
Tupi-BERT-Base is a fine-tuned BERT model designed specifically for binary classification of hate speech in Portuguese. Derived from the [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), TuPi-Base is refinde solution for addressing hate speech concerns.
|
| 34 |
+
For more details or specific inquiries, please refer to the [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
|
| 35 |
+
|
| 36 |
+
The efficacy of Language Models can exhibit notable variations when confronted with a shift in domain between training and test data. In the creation of a specialized Portuguese Language Model tailored for hate speech classification, the original BERTimbau model underwent fine-tuning processe carried out on the [TuPi Hate Speech DataSet](https://huggingface.co/datasets/FpOliveira/TuPi-Portuguese-Hate-Speech-Dataset-Binary), sourced from diverse social networks.
|
| 37 |
+
|
| 38 |
+
## Available models
|
| 39 |
+
|
| 40 |
+
| Model | Arch. | #Layers | #Params |
|
| 41 |
+
| ---------------------------------------- | ---------- | ------- | ------- |
|
| 42 |
+
| `Silly-Machine/TuPy-Bert-Base-Binary-Classifier` | BERT-Base |12 |109M|
|
| 43 |
+
| `Silly-Machine/TuPy-Bert-Large-Binary-Classifier` | BERT-Large | 24 | 334M |
|
| 44 |
+
| `Silly-Machine/TuPy-Bert-Base-Multilabel` | BERT-Base | 12 | 109M |
|
| 45 |
+
| `Silly-Machine/TuPy-Bert-Large-Multilabel` | BERT-Large | 24 | 334M |
|
| 46 |
+
|
| 47 |
+
## Example usage usage
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
| 51 |
+
import torch
|
| 52 |
+
import numpy as np
|
| 53 |
+
from scipy.special import softmax
|
| 54 |
+
|
| 55 |
+
def classify_hate_speech(model_name, text):
|
| 56 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 58 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 59 |
+
|
| 60 |
+
# Tokenize input text and prepare model input
|
| 61 |
+
model_input = tokenizer(text, padding=True, return_tensors="pt")
|
| 62 |
+
|
| 63 |
+
# Get model output scores
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
output = model(**model_input)
|
| 66 |
+
scores = softmax(output.logits.numpy(), axis=1)
|
| 67 |
+
ranking = np.argsort(scores[0])[::-1]
|
| 68 |
+
|
| 69 |
+
# Print the results
|
| 70 |
+
for i, rank in enumerate(ranking):
|
| 71 |
+
label = config.id2label[rank]
|
| 72 |
+
score = scores[0, rank]
|
| 73 |
+
print(f"{i + 1}) Label: {label} Score: {score:.4f}")
|
| 74 |
+
|
| 75 |
+
# Example usage
|
| 76 |
+
model_name = "Silly-Machine/TuPy-Bert-Base-Multilabel"
|
| 77 |
+
text = "Bom dia, flor do dia!!"
|
| 78 |
+
classify_hate_speech(model_name, text)
|
| 79 |
+
|
| 80 |
+
```
|