--- license: mit datasets: - lennart-finke/SimpleStories language: - en tags: - small-language-model - story-generation - text-generation - efficient-nlp - distilled-models --- # SimpleStories Model Family The SimpleStories models are a tiny model family created for interpretability research, trained on the [SimpleStories dataset](https://huggingface.co/datasets/lennart-finke/SimpleStories). ## Usage ```python import torch from transformers import AutoTokenizer, LlamaForCausalLM MODEL_SIZE = "5M" model_path = "SimpleStories/SimpleStories-{}".format(MODEL_SIZE) tokenizer = AutoTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained(model_path) model.to("cuda") model.eval() prompt = "The curious cat looked at the" inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) input_ids = inputs.input_ids.to("cuda") eos_token_id = 1 with torch.no_grad(): output_ids = model.generate( input_ids=input_ids, max_new_tokens=400, temperature=0.7, do_sample=True, eos_token_id=eos_token_id ) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(f"\nGenerated text:\n{output_text}") ``` ## Model Variants | Model Name | n_params | n_layers | d_model | n_heads | n_ctx | d_vocab | |------------|----------|----------|---------|---------|-------|---------| | SimpleStories-35M | 35 million | 12 | 512 | 8 | 512 | 4096 | | SimpleStories-30M | 30 million | 10 | 512 | 8 | 512 | 4096 | | SimpleStories-11M | 11 million | 6 | 384 | 6 | 512 | 4096 | | SimpleStories-5M | 5 million | 6 | 256 | 4 | 512 | 4096 | | SimpleStories-1.25M | 1.25 million | 4 | 128 | 4 | 512 | 4096 | ## Performance Comparison Model-evaluated generation quality metrics:

## Tokenizer We use a custom WordPiece tokenizer with a small vocabulary size of 4096. We conducted morphological analysis and coverage gain analysis on the dataset to build a small tokenizer without compromising on the quality of generation. ## Dataset The SimpleStories dataset is a collection of short stories generated by state-of-the-art language models. It features: - Story annotation with high-level concepts: theme, topic, style, etc. - Higher semantic and syntactic diversity through seeded story generation - Generated by 2024 models - Several NLP-metrics pre-computed to aid filtering - ASCII-only guarantee for the English dataset Read the dataset paper on [arXiv](https://arxiv.org/abs/2504.09184). ## Training The training and evaluation scripts can be accessed at https://github.com/danbraunai/simple_stories_train