Text-to-Image
Diffusers
English
lora
File size: 1,225 Bytes
51afa47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70c9e0
51afa47
c70c9e0
51afa47
 
 
 
 
 
 
 
 
 
 
c70c9e0
51afa47
 
 
 
c70c9e0
51afa47
 
 
 
c70c9e0
dcc16ad
51afa47
c70c9e0
51afa47
 
 
 
47b1228
 
 
 
 
 
51afa47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: apache-2.0
datasets:
- Rapidata/Face_Generation_Benchmark
language:
- en
base_model:
- stabilityai/stable-diffusion-xl-base-1.0
pipeline_tag: text-to-image
library_name: diffusers
tags:
- text-to-image
- lora
- diffusers
---
## Model description 

# Portrait-generator

**Portrait-generator** is a LoRA fine-tuned adapter for the [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model, trained on the [Rapidata/Face_Generation_Benchmark dataset](https://huggingface.co/datasets/Rapidata/Face_Generation_Benchmark). It specializes in generating face images.

---

## Usage

1. **Install dependencies** (if not installed):

```bash
pip install diffusers transformers accelerate safetensor torch
```

2. **Load stable-diffusion-xl-base-1.0 and LoRA adapter**:

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
).to("cuda")

pipe.load_lora_weights("SkyAsl/Portrait-generator")
pipe.fuse_lora()

image = pipe("a high-quality portrait of a woman").images[0]
image.save("test.png")
```

---

# Metrics

- Average CLIPScore: 16.6980

---