File size: 1,225 Bytes
51afa47 c70c9e0 51afa47 c70c9e0 51afa47 c70c9e0 51afa47 c70c9e0 51afa47 c70c9e0 dcc16ad 51afa47 c70c9e0 51afa47 47b1228 51afa47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: apache-2.0
datasets:
- Rapidata/Face_Generation_Benchmark
language:
- en
base_model:
- stabilityai/stable-diffusion-xl-base-1.0
pipeline_tag: text-to-image
library_name: diffusers
tags:
- text-to-image
- lora
- diffusers
---
## Model description
# Portrait-generator
**Portrait-generator** is a LoRA fine-tuned adapter for the [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model, trained on the [Rapidata/Face_Generation_Benchmark dataset](https://huggingface.co/datasets/Rapidata/Face_Generation_Benchmark). It specializes in generating face images.
---
## Usage
1. **Install dependencies** (if not installed):
```bash
pip install diffusers transformers accelerate safetensor torch
```
2. **Load stable-diffusion-xl-base-1.0 and LoRA adapter**:
```python
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
).to("cuda")
pipe.load_lora_weights("SkyAsl/Portrait-generator")
pipe.fuse_lora()
image = pipe("a high-quality portrait of a woman").images[0]
image.save("test.png")
```
---
# Metrics
- Average CLIPScore: 16.6980
--- |