Update README.md
Browse files
README.md
CHANGED
|
@@ -2799,4 +2799,3020 @@ model-index:
|
|
| 2799 |
metrics:
|
| 2800 |
- type: v_measure
|
| 2801 |
value: 79.58576208710117
|
| 2802 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2799 |
metrics:
|
| 2800 |
- type: v_measure
|
| 2801 |
value: 79.58576208710117
|
| 2802 |
+
---
|
| 2803 |
+
---
|
| 2804 |
+
tags:
|
| 2805 |
+
- mteb
|
| 2806 |
+
- arctic
|
| 2807 |
+
- arctic-embed
|
| 2808 |
+
model-index:
|
| 2809 |
+
- name: base
|
| 2810 |
+
results:
|
| 2811 |
+
- task:
|
| 2812 |
+
type: Classification
|
| 2813 |
+
dataset:
|
| 2814 |
+
type: mteb/amazon_counterfactual
|
| 2815 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
| 2816 |
+
config: en
|
| 2817 |
+
split: test
|
| 2818 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 2819 |
+
metrics:
|
| 2820 |
+
- type: accuracy
|
| 2821 |
+
value: 76.80597014925374
|
| 2822 |
+
- type: ap
|
| 2823 |
+
value: 39.31198155789558
|
| 2824 |
+
- type: f1
|
| 2825 |
+
value: 70.48198448222148
|
| 2826 |
+
- task:
|
| 2827 |
+
type: Classification
|
| 2828 |
+
dataset:
|
| 2829 |
+
type: mteb/amazon_polarity
|
| 2830 |
+
name: MTEB AmazonPolarityClassification
|
| 2831 |
+
config: default
|
| 2832 |
+
split: test
|
| 2833 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
| 2834 |
+
metrics:
|
| 2835 |
+
- type: accuracy
|
| 2836 |
+
value: 82.831525
|
| 2837 |
+
- type: ap
|
| 2838 |
+
value: 77.4474050181638
|
| 2839 |
+
- type: f1
|
| 2840 |
+
value: 82.77204845110204
|
| 2841 |
+
- task:
|
| 2842 |
+
type: Classification
|
| 2843 |
+
dataset:
|
| 2844 |
+
type: mteb/amazon_reviews_multi
|
| 2845 |
+
name: MTEB AmazonReviewsClassification (en)
|
| 2846 |
+
config: en
|
| 2847 |
+
split: test
|
| 2848 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 2849 |
+
metrics:
|
| 2850 |
+
- type: accuracy
|
| 2851 |
+
value: 38.93000000000001
|
| 2852 |
+
- type: f1
|
| 2853 |
+
value: 37.98013371053459
|
| 2854 |
+
- task:
|
| 2855 |
+
type: Retrieval
|
| 2856 |
+
dataset:
|
| 2857 |
+
type: mteb/arguana
|
| 2858 |
+
name: MTEB ArguAna
|
| 2859 |
+
config: default
|
| 2860 |
+
split: test
|
| 2861 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
| 2862 |
+
metrics:
|
| 2863 |
+
- type: map_at_1
|
| 2864 |
+
value: 31.223
|
| 2865 |
+
- type: map_at_10
|
| 2866 |
+
value: 47.43
|
| 2867 |
+
- type: map_at_100
|
| 2868 |
+
value: 48.208
|
| 2869 |
+
- type: map_at_1000
|
| 2870 |
+
value: 48.211
|
| 2871 |
+
- type: map_at_3
|
| 2872 |
+
value: 42.579
|
| 2873 |
+
- type: map_at_5
|
| 2874 |
+
value: 45.263999999999996
|
| 2875 |
+
- type: mrr_at_1
|
| 2876 |
+
value: 31.65
|
| 2877 |
+
- type: mrr_at_10
|
| 2878 |
+
value: 47.573
|
| 2879 |
+
- type: mrr_at_100
|
| 2880 |
+
value: 48.359
|
| 2881 |
+
- type: mrr_at_1000
|
| 2882 |
+
value: 48.362
|
| 2883 |
+
- type: mrr_at_3
|
| 2884 |
+
value: 42.734
|
| 2885 |
+
- type: mrr_at_5
|
| 2886 |
+
value: 45.415
|
| 2887 |
+
- type: ndcg_at_1
|
| 2888 |
+
value: 31.223
|
| 2889 |
+
- type: ndcg_at_10
|
| 2890 |
+
value: 56.436
|
| 2891 |
+
- type: ndcg_at_100
|
| 2892 |
+
value: 59.657000000000004
|
| 2893 |
+
- type: ndcg_at_1000
|
| 2894 |
+
value: 59.731
|
| 2895 |
+
- type: ndcg_at_3
|
| 2896 |
+
value: 46.327
|
| 2897 |
+
- type: ndcg_at_5
|
| 2898 |
+
value: 51.178000000000004
|
| 2899 |
+
- type: precision_at_1
|
| 2900 |
+
value: 31.223
|
| 2901 |
+
- type: precision_at_10
|
| 2902 |
+
value: 8.527999999999999
|
| 2903 |
+
- type: precision_at_100
|
| 2904 |
+
value: 0.991
|
| 2905 |
+
- type: precision_at_1000
|
| 2906 |
+
value: 0.1
|
| 2907 |
+
- type: precision_at_3
|
| 2908 |
+
value: 19.061
|
| 2909 |
+
- type: precision_at_5
|
| 2910 |
+
value: 13.797999999999998
|
| 2911 |
+
- type: recall_at_1
|
| 2912 |
+
value: 31.223
|
| 2913 |
+
- type: recall_at_10
|
| 2914 |
+
value: 85.277
|
| 2915 |
+
- type: recall_at_100
|
| 2916 |
+
value: 99.075
|
| 2917 |
+
- type: recall_at_1000
|
| 2918 |
+
value: 99.644
|
| 2919 |
+
- type: recall_at_3
|
| 2920 |
+
value: 57.18299999999999
|
| 2921 |
+
- type: recall_at_5
|
| 2922 |
+
value: 68.99
|
| 2923 |
+
- task:
|
| 2924 |
+
type: Clustering
|
| 2925 |
+
dataset:
|
| 2926 |
+
type: mteb/arxiv-clustering-p2p
|
| 2927 |
+
name: MTEB ArxivClusteringP2P
|
| 2928 |
+
config: default
|
| 2929 |
+
split: test
|
| 2930 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 2931 |
+
metrics:
|
| 2932 |
+
- type: v_measure
|
| 2933 |
+
value: 47.23625429411296
|
| 2934 |
+
- task:
|
| 2935 |
+
type: Clustering
|
| 2936 |
+
dataset:
|
| 2937 |
+
type: mteb/arxiv-clustering-s2s
|
| 2938 |
+
name: MTEB ArxivClusteringS2S
|
| 2939 |
+
config: default
|
| 2940 |
+
split: test
|
| 2941 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 2942 |
+
metrics:
|
| 2943 |
+
- type: v_measure
|
| 2944 |
+
value: 37.433880471403654
|
| 2945 |
+
- task:
|
| 2946 |
+
type: Reranking
|
| 2947 |
+
dataset:
|
| 2948 |
+
type: mteb/askubuntudupquestions-reranking
|
| 2949 |
+
name: MTEB AskUbuntuDupQuestions
|
| 2950 |
+
config: default
|
| 2951 |
+
split: test
|
| 2952 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 2953 |
+
metrics:
|
| 2954 |
+
- type: map
|
| 2955 |
+
value: 60.53175025582013
|
| 2956 |
+
- type: mrr
|
| 2957 |
+
value: 74.51160796728664
|
| 2958 |
+
- task:
|
| 2959 |
+
type: STS
|
| 2960 |
+
dataset:
|
| 2961 |
+
type: mteb/biosses-sts
|
| 2962 |
+
name: MTEB BIOSSES
|
| 2963 |
+
config: default
|
| 2964 |
+
split: test
|
| 2965 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 2966 |
+
metrics:
|
| 2967 |
+
- type: cos_sim_pearson
|
| 2968 |
+
value: 88.93746103286769
|
| 2969 |
+
- type: cos_sim_spearman
|
| 2970 |
+
value: 86.62245567912619
|
| 2971 |
+
- type: euclidean_pearson
|
| 2972 |
+
value: 87.154173907501
|
| 2973 |
+
- type: euclidean_spearman
|
| 2974 |
+
value: 86.62245567912619
|
| 2975 |
+
- type: manhattan_pearson
|
| 2976 |
+
value: 87.17682026633462
|
| 2977 |
+
- type: manhattan_spearman
|
| 2978 |
+
value: 86.74775973908348
|
| 2979 |
+
- task:
|
| 2980 |
+
type: Classification
|
| 2981 |
+
dataset:
|
| 2982 |
+
type: mteb/banking77
|
| 2983 |
+
name: MTEB Banking77Classification
|
| 2984 |
+
config: default
|
| 2985 |
+
split: test
|
| 2986 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 2987 |
+
metrics:
|
| 2988 |
+
- type: accuracy
|
| 2989 |
+
value: 80.33766233766232
|
| 2990 |
+
- type: f1
|
| 2991 |
+
value: 79.64931422442245
|
| 2992 |
+
- task:
|
| 2993 |
+
type: Clustering
|
| 2994 |
+
dataset:
|
| 2995 |
+
type: jinaai/big-patent-clustering
|
| 2996 |
+
name: MTEB BigPatentClustering
|
| 2997 |
+
config: default
|
| 2998 |
+
split: test
|
| 2999 |
+
revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
|
| 3000 |
+
metrics:
|
| 3001 |
+
- type: v_measure
|
| 3002 |
+
value: 19.116028913890613
|
| 3003 |
+
- task:
|
| 3004 |
+
type: Clustering
|
| 3005 |
+
dataset:
|
| 3006 |
+
type: mteb/biorxiv-clustering-p2p
|
| 3007 |
+
name: MTEB BiorxivClusteringP2P
|
| 3008 |
+
config: default
|
| 3009 |
+
split: test
|
| 3010 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 3011 |
+
metrics:
|
| 3012 |
+
- type: v_measure
|
| 3013 |
+
value: 36.966921852810174
|
| 3014 |
+
- task:
|
| 3015 |
+
type: Clustering
|
| 3016 |
+
dataset:
|
| 3017 |
+
type: mteb/biorxiv-clustering-s2s
|
| 3018 |
+
name: MTEB BiorxivClusteringS2S
|
| 3019 |
+
config: default
|
| 3020 |
+
split: test
|
| 3021 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 3022 |
+
metrics:
|
| 3023 |
+
- type: v_measure
|
| 3024 |
+
value: 31.98019698537654
|
| 3025 |
+
- task:
|
| 3026 |
+
type: Retrieval
|
| 3027 |
+
dataset:
|
| 3028 |
+
type: mteb/cqadupstack-android
|
| 3029 |
+
name: MTEB CQADupstackAndroidRetrieval
|
| 3030 |
+
config: default
|
| 3031 |
+
split: test
|
| 3032 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
| 3033 |
+
metrics:
|
| 3034 |
+
- type: map_at_1
|
| 3035 |
+
value: 34.079
|
| 3036 |
+
- type: map_at_10
|
| 3037 |
+
value: 46.35
|
| 3038 |
+
- type: map_at_100
|
| 3039 |
+
value: 47.785
|
| 3040 |
+
- type: map_at_1000
|
| 3041 |
+
value: 47.903
|
| 3042 |
+
- type: map_at_3
|
| 3043 |
+
value: 42.620999999999995
|
| 3044 |
+
- type: map_at_5
|
| 3045 |
+
value: 44.765
|
| 3046 |
+
- type: mrr_at_1
|
| 3047 |
+
value: 41.345
|
| 3048 |
+
- type: mrr_at_10
|
| 3049 |
+
value: 52.032000000000004
|
| 3050 |
+
- type: mrr_at_100
|
| 3051 |
+
value: 52.690000000000005
|
| 3052 |
+
- type: mrr_at_1000
|
| 3053 |
+
value: 52.727999999999994
|
| 3054 |
+
- type: mrr_at_3
|
| 3055 |
+
value: 49.428
|
| 3056 |
+
- type: mrr_at_5
|
| 3057 |
+
value: 51.093999999999994
|
| 3058 |
+
- type: ndcg_at_1
|
| 3059 |
+
value: 41.345
|
| 3060 |
+
- type: ndcg_at_10
|
| 3061 |
+
value: 53.027
|
| 3062 |
+
- type: ndcg_at_100
|
| 3063 |
+
value: 57.962
|
| 3064 |
+
- type: ndcg_at_1000
|
| 3065 |
+
value: 59.611999999999995
|
| 3066 |
+
- type: ndcg_at_3
|
| 3067 |
+
value: 47.687000000000005
|
| 3068 |
+
- type: ndcg_at_5
|
| 3069 |
+
value: 50.367
|
| 3070 |
+
- type: precision_at_1
|
| 3071 |
+
value: 41.345
|
| 3072 |
+
- type: precision_at_10
|
| 3073 |
+
value: 10.157
|
| 3074 |
+
- type: precision_at_100
|
| 3075 |
+
value: 1.567
|
| 3076 |
+
- type: precision_at_1000
|
| 3077 |
+
value: 0.199
|
| 3078 |
+
- type: precision_at_3
|
| 3079 |
+
value: 23.081
|
| 3080 |
+
- type: precision_at_5
|
| 3081 |
+
value: 16.738
|
| 3082 |
+
- type: recall_at_1
|
| 3083 |
+
value: 34.079
|
| 3084 |
+
- type: recall_at_10
|
| 3085 |
+
value: 65.93900000000001
|
| 3086 |
+
- type: recall_at_100
|
| 3087 |
+
value: 86.42699999999999
|
| 3088 |
+
- type: recall_at_1000
|
| 3089 |
+
value: 96.61
|
| 3090 |
+
- type: recall_at_3
|
| 3091 |
+
value: 50.56699999999999
|
| 3092 |
+
- type: recall_at_5
|
| 3093 |
+
value: 57.82000000000001
|
| 3094 |
+
- task:
|
| 3095 |
+
type: Retrieval
|
| 3096 |
+
dataset:
|
| 3097 |
+
type: mteb/cqadupstack-english
|
| 3098 |
+
name: MTEB CQADupstackEnglishRetrieval
|
| 3099 |
+
config: default
|
| 3100 |
+
split: test
|
| 3101 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
| 3102 |
+
metrics:
|
| 3103 |
+
- type: map_at_1
|
| 3104 |
+
value: 33.289
|
| 3105 |
+
- type: map_at_10
|
| 3106 |
+
value: 43.681
|
| 3107 |
+
- type: map_at_100
|
| 3108 |
+
value: 45.056000000000004
|
| 3109 |
+
- type: map_at_1000
|
| 3110 |
+
value: 45.171
|
| 3111 |
+
- type: map_at_3
|
| 3112 |
+
value: 40.702
|
| 3113 |
+
- type: map_at_5
|
| 3114 |
+
value: 42.292
|
| 3115 |
+
- type: mrr_at_1
|
| 3116 |
+
value: 41.146
|
| 3117 |
+
- type: mrr_at_10
|
| 3118 |
+
value: 49.604
|
| 3119 |
+
- type: mrr_at_100
|
| 3120 |
+
value: 50.28399999999999
|
| 3121 |
+
- type: mrr_at_1000
|
| 3122 |
+
value: 50.322
|
| 3123 |
+
- type: mrr_at_3
|
| 3124 |
+
value: 47.611
|
| 3125 |
+
- type: mrr_at_5
|
| 3126 |
+
value: 48.717
|
| 3127 |
+
- type: ndcg_at_1
|
| 3128 |
+
value: 41.146
|
| 3129 |
+
- type: ndcg_at_10
|
| 3130 |
+
value: 49.43
|
| 3131 |
+
- type: ndcg_at_100
|
| 3132 |
+
value: 54.01899999999999
|
| 3133 |
+
- type: ndcg_at_1000
|
| 3134 |
+
value: 55.803000000000004
|
| 3135 |
+
- type: ndcg_at_3
|
| 3136 |
+
value: 45.503
|
| 3137 |
+
- type: ndcg_at_5
|
| 3138 |
+
value: 47.198
|
| 3139 |
+
- type: precision_at_1
|
| 3140 |
+
value: 41.146
|
| 3141 |
+
- type: precision_at_10
|
| 3142 |
+
value: 9.268
|
| 3143 |
+
- type: precision_at_100
|
| 3144 |
+
value: 1.4749999999999999
|
| 3145 |
+
- type: precision_at_1000
|
| 3146 |
+
value: 0.19
|
| 3147 |
+
- type: precision_at_3
|
| 3148 |
+
value: 21.932
|
| 3149 |
+
- type: precision_at_5
|
| 3150 |
+
value: 15.389
|
| 3151 |
+
- type: recall_at_1
|
| 3152 |
+
value: 33.289
|
| 3153 |
+
- type: recall_at_10
|
| 3154 |
+
value: 59.209999999999994
|
| 3155 |
+
- type: recall_at_100
|
| 3156 |
+
value: 78.676
|
| 3157 |
+
- type: recall_at_1000
|
| 3158 |
+
value: 89.84100000000001
|
| 3159 |
+
- type: recall_at_3
|
| 3160 |
+
value: 47.351
|
| 3161 |
+
- type: recall_at_5
|
| 3162 |
+
value: 52.178999999999995
|
| 3163 |
+
- task:
|
| 3164 |
+
type: Retrieval
|
| 3165 |
+
dataset:
|
| 3166 |
+
type: mteb/cqadupstack-gaming
|
| 3167 |
+
name: MTEB CQADupstackGamingRetrieval
|
| 3168 |
+
config: default
|
| 3169 |
+
split: test
|
| 3170 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
| 3171 |
+
metrics:
|
| 3172 |
+
- type: map_at_1
|
| 3173 |
+
value: 44.483
|
| 3174 |
+
- type: map_at_10
|
| 3175 |
+
value: 56.862
|
| 3176 |
+
- type: map_at_100
|
| 3177 |
+
value: 57.901
|
| 3178 |
+
- type: map_at_1000
|
| 3179 |
+
value: 57.948
|
| 3180 |
+
- type: map_at_3
|
| 3181 |
+
value: 53.737
|
| 3182 |
+
- type: map_at_5
|
| 3183 |
+
value: 55.64
|
| 3184 |
+
- type: mrr_at_1
|
| 3185 |
+
value: 50.658
|
| 3186 |
+
- type: mrr_at_10
|
| 3187 |
+
value: 60.281
|
| 3188 |
+
- type: mrr_at_100
|
| 3189 |
+
value: 60.946
|
| 3190 |
+
- type: mrr_at_1000
|
| 3191 |
+
value: 60.967000000000006
|
| 3192 |
+
- type: mrr_at_3
|
| 3193 |
+
value: 58.192
|
| 3194 |
+
- type: mrr_at_5
|
| 3195 |
+
value: 59.531
|
| 3196 |
+
- type: ndcg_at_1
|
| 3197 |
+
value: 50.658
|
| 3198 |
+
- type: ndcg_at_10
|
| 3199 |
+
value: 62.339
|
| 3200 |
+
- type: ndcg_at_100
|
| 3201 |
+
value: 66.28399999999999
|
| 3202 |
+
- type: ndcg_at_1000
|
| 3203 |
+
value: 67.166
|
| 3204 |
+
- type: ndcg_at_3
|
| 3205 |
+
value: 57.458
|
| 3206 |
+
- type: ndcg_at_5
|
| 3207 |
+
value: 60.112
|
| 3208 |
+
- type: precision_at_1
|
| 3209 |
+
value: 50.658
|
| 3210 |
+
- type: precision_at_10
|
| 3211 |
+
value: 9.762
|
| 3212 |
+
- type: precision_at_100
|
| 3213 |
+
value: 1.26
|
| 3214 |
+
- type: precision_at_1000
|
| 3215 |
+
value: 0.13799999999999998
|
| 3216 |
+
- type: precision_at_3
|
| 3217 |
+
value: 25.329
|
| 3218 |
+
- type: precision_at_5
|
| 3219 |
+
value: 17.254
|
| 3220 |
+
- type: recall_at_1
|
| 3221 |
+
value: 44.483
|
| 3222 |
+
- type: recall_at_10
|
| 3223 |
+
value: 74.819
|
| 3224 |
+
- type: recall_at_100
|
| 3225 |
+
value: 91.702
|
| 3226 |
+
- type: recall_at_1000
|
| 3227 |
+
value: 97.84
|
| 3228 |
+
- type: recall_at_3
|
| 3229 |
+
value: 62.13999999999999
|
| 3230 |
+
- type: recall_at_5
|
| 3231 |
+
value: 68.569
|
| 3232 |
+
- task:
|
| 3233 |
+
type: Retrieval
|
| 3234 |
+
dataset:
|
| 3235 |
+
type: mteb/cqadupstack-gis
|
| 3236 |
+
name: MTEB CQADupstackGisRetrieval
|
| 3237 |
+
config: default
|
| 3238 |
+
split: test
|
| 3239 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
| 3240 |
+
metrics:
|
| 3241 |
+
- type: map_at_1
|
| 3242 |
+
value: 26.489
|
| 3243 |
+
- type: map_at_10
|
| 3244 |
+
value: 37.004999999999995
|
| 3245 |
+
- type: map_at_100
|
| 3246 |
+
value: 38.001000000000005
|
| 3247 |
+
- type: map_at_1000
|
| 3248 |
+
value: 38.085
|
| 3249 |
+
- type: map_at_3
|
| 3250 |
+
value: 34.239999999999995
|
| 3251 |
+
- type: map_at_5
|
| 3252 |
+
value: 35.934
|
| 3253 |
+
- type: mrr_at_1
|
| 3254 |
+
value: 28.362
|
| 3255 |
+
- type: mrr_at_10
|
| 3256 |
+
value: 38.807
|
| 3257 |
+
- type: mrr_at_100
|
| 3258 |
+
value: 39.671
|
| 3259 |
+
- type: mrr_at_1000
|
| 3260 |
+
value: 39.736
|
| 3261 |
+
- type: mrr_at_3
|
| 3262 |
+
value: 36.29
|
| 3263 |
+
- type: mrr_at_5
|
| 3264 |
+
value: 37.906
|
| 3265 |
+
- type: ndcg_at_1
|
| 3266 |
+
value: 28.362
|
| 3267 |
+
- type: ndcg_at_10
|
| 3268 |
+
value: 42.510999999999996
|
| 3269 |
+
- type: ndcg_at_100
|
| 3270 |
+
value: 47.226
|
| 3271 |
+
- type: ndcg_at_1000
|
| 3272 |
+
value: 49.226
|
| 3273 |
+
- type: ndcg_at_3
|
| 3274 |
+
value: 37.295
|
| 3275 |
+
- type: ndcg_at_5
|
| 3276 |
+
value: 40.165
|
| 3277 |
+
- type: precision_at_1
|
| 3278 |
+
value: 28.362
|
| 3279 |
+
- type: precision_at_10
|
| 3280 |
+
value: 6.633
|
| 3281 |
+
- type: precision_at_100
|
| 3282 |
+
value: 0.9490000000000001
|
| 3283 |
+
- type: precision_at_1000
|
| 3284 |
+
value: 0.11499999999999999
|
| 3285 |
+
- type: precision_at_3
|
| 3286 |
+
value: 16.234
|
| 3287 |
+
- type: precision_at_5
|
| 3288 |
+
value: 11.434999999999999
|
| 3289 |
+
- type: recall_at_1
|
| 3290 |
+
value: 26.489
|
| 3291 |
+
- type: recall_at_10
|
| 3292 |
+
value: 57.457
|
| 3293 |
+
- type: recall_at_100
|
| 3294 |
+
value: 78.712
|
| 3295 |
+
- type: recall_at_1000
|
| 3296 |
+
value: 93.565
|
| 3297 |
+
- type: recall_at_3
|
| 3298 |
+
value: 43.748
|
| 3299 |
+
- type: recall_at_5
|
| 3300 |
+
value: 50.589
|
| 3301 |
+
- task:
|
| 3302 |
+
type: Retrieval
|
| 3303 |
+
dataset:
|
| 3304 |
+
type: mteb/cqadupstack-mathematica
|
| 3305 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
| 3306 |
+
config: default
|
| 3307 |
+
split: test
|
| 3308 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
| 3309 |
+
metrics:
|
| 3310 |
+
- type: map_at_1
|
| 3311 |
+
value: 12.418999999999999
|
| 3312 |
+
- type: map_at_10
|
| 3313 |
+
value: 22.866
|
| 3314 |
+
- type: map_at_100
|
| 3315 |
+
value: 24.365000000000002
|
| 3316 |
+
- type: map_at_1000
|
| 3317 |
+
value: 24.479
|
| 3318 |
+
- type: map_at_3
|
| 3319 |
+
value: 19.965
|
| 3320 |
+
- type: map_at_5
|
| 3321 |
+
value: 21.684
|
| 3322 |
+
- type: mrr_at_1
|
| 3323 |
+
value: 14.677000000000001
|
| 3324 |
+
- type: mrr_at_10
|
| 3325 |
+
value: 26.316
|
| 3326 |
+
- type: mrr_at_100
|
| 3327 |
+
value: 27.514
|
| 3328 |
+
- type: mrr_at_1000
|
| 3329 |
+
value: 27.57
|
| 3330 |
+
- type: mrr_at_3
|
| 3331 |
+
value: 23.3
|
| 3332 |
+
- type: mrr_at_5
|
| 3333 |
+
value: 25.191000000000003
|
| 3334 |
+
- type: ndcg_at_1
|
| 3335 |
+
value: 14.677000000000001
|
| 3336 |
+
- type: ndcg_at_10
|
| 3337 |
+
value: 28.875
|
| 3338 |
+
- type: ndcg_at_100
|
| 3339 |
+
value: 35.607
|
| 3340 |
+
- type: ndcg_at_1000
|
| 3341 |
+
value: 38.237
|
| 3342 |
+
- type: ndcg_at_3
|
| 3343 |
+
value: 23.284
|
| 3344 |
+
- type: ndcg_at_5
|
| 3345 |
+
value: 26.226
|
| 3346 |
+
- type: precision_at_1
|
| 3347 |
+
value: 14.677000000000001
|
| 3348 |
+
- type: precision_at_10
|
| 3349 |
+
value: 5.771
|
| 3350 |
+
- type: precision_at_100
|
| 3351 |
+
value: 1.058
|
| 3352 |
+
- type: precision_at_1000
|
| 3353 |
+
value: 0.14200000000000002
|
| 3354 |
+
- type: precision_at_3
|
| 3355 |
+
value: 11.940000000000001
|
| 3356 |
+
- type: precision_at_5
|
| 3357 |
+
value: 9.229
|
| 3358 |
+
- type: recall_at_1
|
| 3359 |
+
value: 12.418999999999999
|
| 3360 |
+
- type: recall_at_10
|
| 3361 |
+
value: 43.333
|
| 3362 |
+
- type: recall_at_100
|
| 3363 |
+
value: 71.942
|
| 3364 |
+
- type: recall_at_1000
|
| 3365 |
+
value: 90.67399999999999
|
| 3366 |
+
- type: recall_at_3
|
| 3367 |
+
value: 28.787000000000003
|
| 3368 |
+
- type: recall_at_5
|
| 3369 |
+
value: 35.638
|
| 3370 |
+
- task:
|
| 3371 |
+
type: Retrieval
|
| 3372 |
+
dataset:
|
| 3373 |
+
type: mteb/cqadupstack-physics
|
| 3374 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
| 3375 |
+
config: default
|
| 3376 |
+
split: test
|
| 3377 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
| 3378 |
+
metrics:
|
| 3379 |
+
- type: map_at_1
|
| 3380 |
+
value: 31.686999999999998
|
| 3381 |
+
- type: map_at_10
|
| 3382 |
+
value: 42.331
|
| 3383 |
+
- type: map_at_100
|
| 3384 |
+
value: 43.655
|
| 3385 |
+
- type: map_at_1000
|
| 3386 |
+
value: 43.771
|
| 3387 |
+
- type: map_at_3
|
| 3388 |
+
value: 38.944
|
| 3389 |
+
- type: map_at_5
|
| 3390 |
+
value: 40.991
|
| 3391 |
+
- type: mrr_at_1
|
| 3392 |
+
value: 37.921
|
| 3393 |
+
- type: mrr_at_10
|
| 3394 |
+
value: 47.534
|
| 3395 |
+
- type: mrr_at_100
|
| 3396 |
+
value: 48.362
|
| 3397 |
+
- type: mrr_at_1000
|
| 3398 |
+
value: 48.405
|
| 3399 |
+
- type: mrr_at_3
|
| 3400 |
+
value: 44.995000000000005
|
| 3401 |
+
- type: mrr_at_5
|
| 3402 |
+
value: 46.617
|
| 3403 |
+
- type: ndcg_at_1
|
| 3404 |
+
value: 37.921
|
| 3405 |
+
- type: ndcg_at_10
|
| 3406 |
+
value: 48.236000000000004
|
| 3407 |
+
- type: ndcg_at_100
|
| 3408 |
+
value: 53.705000000000005
|
| 3409 |
+
- type: ndcg_at_1000
|
| 3410 |
+
value: 55.596000000000004
|
| 3411 |
+
- type: ndcg_at_3
|
| 3412 |
+
value: 43.11
|
| 3413 |
+
- type: ndcg_at_5
|
| 3414 |
+
value: 45.862
|
| 3415 |
+
- type: precision_at_1
|
| 3416 |
+
value: 37.921
|
| 3417 |
+
- type: precision_at_10
|
| 3418 |
+
value: 8.643
|
| 3419 |
+
- type: precision_at_100
|
| 3420 |
+
value: 1.336
|
| 3421 |
+
- type: precision_at_1000
|
| 3422 |
+
value: 0.166
|
| 3423 |
+
- type: precision_at_3
|
| 3424 |
+
value: 20.308
|
| 3425 |
+
- type: precision_at_5
|
| 3426 |
+
value: 14.514
|
| 3427 |
+
- type: recall_at_1
|
| 3428 |
+
value: 31.686999999999998
|
| 3429 |
+
- type: recall_at_10
|
| 3430 |
+
value: 60.126999999999995
|
| 3431 |
+
- type: recall_at_100
|
| 3432 |
+
value: 83.10600000000001
|
| 3433 |
+
- type: recall_at_1000
|
| 3434 |
+
value: 95.15
|
| 3435 |
+
- type: recall_at_3
|
| 3436 |
+
value: 46.098
|
| 3437 |
+
- type: recall_at_5
|
| 3438 |
+
value: 53.179
|
| 3439 |
+
- task:
|
| 3440 |
+
type: Retrieval
|
| 3441 |
+
dataset:
|
| 3442 |
+
type: mteb/cqadupstack-programmers
|
| 3443 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
| 3444 |
+
config: default
|
| 3445 |
+
split: test
|
| 3446 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
| 3447 |
+
metrics:
|
| 3448 |
+
- type: map_at_1
|
| 3449 |
+
value: 28.686
|
| 3450 |
+
- type: map_at_10
|
| 3451 |
+
value: 39.146
|
| 3452 |
+
- type: map_at_100
|
| 3453 |
+
value: 40.543
|
| 3454 |
+
- type: map_at_1000
|
| 3455 |
+
value: 40.644999999999996
|
| 3456 |
+
- type: map_at_3
|
| 3457 |
+
value: 36.195
|
| 3458 |
+
- type: map_at_5
|
| 3459 |
+
value: 37.919000000000004
|
| 3460 |
+
- type: mrr_at_1
|
| 3461 |
+
value: 35.160000000000004
|
| 3462 |
+
- type: mrr_at_10
|
| 3463 |
+
value: 44.711
|
| 3464 |
+
- type: mrr_at_100
|
| 3465 |
+
value: 45.609
|
| 3466 |
+
- type: mrr_at_1000
|
| 3467 |
+
value: 45.655
|
| 3468 |
+
- type: mrr_at_3
|
| 3469 |
+
value: 42.409
|
| 3470 |
+
- type: mrr_at_5
|
| 3471 |
+
value: 43.779
|
| 3472 |
+
- type: ndcg_at_1
|
| 3473 |
+
value: 35.160000000000004
|
| 3474 |
+
- type: ndcg_at_10
|
| 3475 |
+
value: 44.977000000000004
|
| 3476 |
+
- type: ndcg_at_100
|
| 3477 |
+
value: 50.663000000000004
|
| 3478 |
+
- type: ndcg_at_1000
|
| 3479 |
+
value: 52.794
|
| 3480 |
+
- type: ndcg_at_3
|
| 3481 |
+
value: 40.532000000000004
|
| 3482 |
+
- type: ndcg_at_5
|
| 3483 |
+
value: 42.641
|
| 3484 |
+
- type: precision_at_1
|
| 3485 |
+
value: 35.160000000000004
|
| 3486 |
+
- type: precision_at_10
|
| 3487 |
+
value: 8.014000000000001
|
| 3488 |
+
- type: precision_at_100
|
| 3489 |
+
value: 1.269
|
| 3490 |
+
- type: precision_at_1000
|
| 3491 |
+
value: 0.163
|
| 3492 |
+
- type: precision_at_3
|
| 3493 |
+
value: 19.444
|
| 3494 |
+
- type: precision_at_5
|
| 3495 |
+
value: 13.653
|
| 3496 |
+
- type: recall_at_1
|
| 3497 |
+
value: 28.686
|
| 3498 |
+
- type: recall_at_10
|
| 3499 |
+
value: 56.801
|
| 3500 |
+
- type: recall_at_100
|
| 3501 |
+
value: 80.559
|
| 3502 |
+
- type: recall_at_1000
|
| 3503 |
+
value: 95.052
|
| 3504 |
+
- type: recall_at_3
|
| 3505 |
+
value: 43.675999999999995
|
| 3506 |
+
- type: recall_at_5
|
| 3507 |
+
value: 49.703
|
| 3508 |
+
- task:
|
| 3509 |
+
type: Retrieval
|
| 3510 |
+
dataset:
|
| 3511 |
+
type: mteb/cqadupstack
|
| 3512 |
+
name: MTEB CQADupstackRetrieval
|
| 3513 |
+
config: default
|
| 3514 |
+
split: test
|
| 3515 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
| 3516 |
+
metrics:
|
| 3517 |
+
- type: map_at_1
|
| 3518 |
+
value: 28.173833333333338
|
| 3519 |
+
- type: map_at_10
|
| 3520 |
+
value: 38.202083333333334
|
| 3521 |
+
- type: map_at_100
|
| 3522 |
+
value: 39.47475
|
| 3523 |
+
- type: map_at_1000
|
| 3524 |
+
value: 39.586499999999994
|
| 3525 |
+
- type: map_at_3
|
| 3526 |
+
value: 35.17308333333334
|
| 3527 |
+
- type: map_at_5
|
| 3528 |
+
value: 36.914
|
| 3529 |
+
- type: mrr_at_1
|
| 3530 |
+
value: 32.92958333333333
|
| 3531 |
+
- type: mrr_at_10
|
| 3532 |
+
value: 42.16758333333333
|
| 3533 |
+
- type: mrr_at_100
|
| 3534 |
+
value: 43.04108333333333
|
| 3535 |
+
- type: mrr_at_1000
|
| 3536 |
+
value: 43.092499999999994
|
| 3537 |
+
- type: mrr_at_3
|
| 3538 |
+
value: 39.69166666666666
|
| 3539 |
+
- type: mrr_at_5
|
| 3540 |
+
value: 41.19458333333333
|
| 3541 |
+
- type: ndcg_at_1
|
| 3542 |
+
value: 32.92958333333333
|
| 3543 |
+
- type: ndcg_at_10
|
| 3544 |
+
value: 43.80583333333333
|
| 3545 |
+
- type: ndcg_at_100
|
| 3546 |
+
value: 49.060916666666664
|
| 3547 |
+
- type: ndcg_at_1000
|
| 3548 |
+
value: 51.127250000000004
|
| 3549 |
+
- type: ndcg_at_3
|
| 3550 |
+
value: 38.80383333333333
|
| 3551 |
+
- type: ndcg_at_5
|
| 3552 |
+
value: 41.29658333333333
|
| 3553 |
+
- type: precision_at_1
|
| 3554 |
+
value: 32.92958333333333
|
| 3555 |
+
- type: precision_at_10
|
| 3556 |
+
value: 7.655666666666666
|
| 3557 |
+
- type: precision_at_100
|
| 3558 |
+
value: 1.2094166666666668
|
| 3559 |
+
- type: precision_at_1000
|
| 3560 |
+
value: 0.15750000000000003
|
| 3561 |
+
- type: precision_at_3
|
| 3562 |
+
value: 17.87975
|
| 3563 |
+
- type: precision_at_5
|
| 3564 |
+
value: 12.741833333333332
|
| 3565 |
+
- type: recall_at_1
|
| 3566 |
+
value: 28.173833333333338
|
| 3567 |
+
- type: recall_at_10
|
| 3568 |
+
value: 56.219249999999995
|
| 3569 |
+
- type: recall_at_100
|
| 3570 |
+
value: 79.01416666666665
|
| 3571 |
+
- type: recall_at_1000
|
| 3572 |
+
value: 93.13425000000001
|
| 3573 |
+
- type: recall_at_3
|
| 3574 |
+
value: 42.39241666666667
|
| 3575 |
+
- type: recall_at_5
|
| 3576 |
+
value: 48.764833333333335
|
| 3577 |
+
- task:
|
| 3578 |
+
type: Retrieval
|
| 3579 |
+
dataset:
|
| 3580 |
+
type: mteb/cqadupstack-stats
|
| 3581 |
+
name: MTEB CQADupstackStatsRetrieval
|
| 3582 |
+
config: default
|
| 3583 |
+
split: test
|
| 3584 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
| 3585 |
+
metrics:
|
| 3586 |
+
- type: map_at_1
|
| 3587 |
+
value: 25.625999999999998
|
| 3588 |
+
- type: map_at_10
|
| 3589 |
+
value: 32.808
|
| 3590 |
+
- type: map_at_100
|
| 3591 |
+
value: 33.951
|
| 3592 |
+
- type: map_at_1000
|
| 3593 |
+
value: 34.052
|
| 3594 |
+
- type: map_at_3
|
| 3595 |
+
value: 30.536
|
| 3596 |
+
- type: map_at_5
|
| 3597 |
+
value: 31.77
|
| 3598 |
+
- type: mrr_at_1
|
| 3599 |
+
value: 28.374
|
| 3600 |
+
- type: mrr_at_10
|
| 3601 |
+
value: 35.527
|
| 3602 |
+
- type: mrr_at_100
|
| 3603 |
+
value: 36.451
|
| 3604 |
+
- type: mrr_at_1000
|
| 3605 |
+
value: 36.522
|
| 3606 |
+
- type: mrr_at_3
|
| 3607 |
+
value: 33.410000000000004
|
| 3608 |
+
- type: mrr_at_5
|
| 3609 |
+
value: 34.537
|
| 3610 |
+
- type: ndcg_at_1
|
| 3611 |
+
value: 28.374
|
| 3612 |
+
- type: ndcg_at_10
|
| 3613 |
+
value: 37.172
|
| 3614 |
+
- type: ndcg_at_100
|
| 3615 |
+
value: 42.474000000000004
|
| 3616 |
+
- type: ndcg_at_1000
|
| 3617 |
+
value: 44.853
|
| 3618 |
+
- type: ndcg_at_3
|
| 3619 |
+
value: 32.931
|
| 3620 |
+
- type: ndcg_at_5
|
| 3621 |
+
value: 34.882999999999996
|
| 3622 |
+
- type: precision_at_1
|
| 3623 |
+
value: 28.374
|
| 3624 |
+
- type: precision_at_10
|
| 3625 |
+
value: 5.813
|
| 3626 |
+
- type: precision_at_100
|
| 3627 |
+
value: 0.928
|
| 3628 |
+
- type: precision_at_1000
|
| 3629 |
+
value: 0.121
|
| 3630 |
+
- type: precision_at_3
|
| 3631 |
+
value: 14.008000000000001
|
| 3632 |
+
- type: precision_at_5
|
| 3633 |
+
value: 9.754999999999999
|
| 3634 |
+
- type: recall_at_1
|
| 3635 |
+
value: 25.625999999999998
|
| 3636 |
+
- type: recall_at_10
|
| 3637 |
+
value: 47.812
|
| 3638 |
+
- type: recall_at_100
|
| 3639 |
+
value: 71.61800000000001
|
| 3640 |
+
- type: recall_at_1000
|
| 3641 |
+
value: 88.881
|
| 3642 |
+
- type: recall_at_3
|
| 3643 |
+
value: 35.876999999999995
|
| 3644 |
+
- type: recall_at_5
|
| 3645 |
+
value: 40.839
|
| 3646 |
+
- task:
|
| 3647 |
+
type: Retrieval
|
| 3648 |
+
dataset:
|
| 3649 |
+
type: mteb/cqadupstack-tex
|
| 3650 |
+
name: MTEB CQADupstackTexRetrieval
|
| 3651 |
+
config: default
|
| 3652 |
+
split: test
|
| 3653 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
| 3654 |
+
metrics:
|
| 3655 |
+
- type: map_at_1
|
| 3656 |
+
value: 18.233
|
| 3657 |
+
- type: map_at_10
|
| 3658 |
+
value: 26.375999999999998
|
| 3659 |
+
- type: map_at_100
|
| 3660 |
+
value: 27.575
|
| 3661 |
+
- type: map_at_1000
|
| 3662 |
+
value: 27.706999999999997
|
| 3663 |
+
- type: map_at_3
|
| 3664 |
+
value: 23.619
|
| 3665 |
+
- type: map_at_5
|
| 3666 |
+
value: 25.217
|
| 3667 |
+
- type: mrr_at_1
|
| 3668 |
+
value: 22.023
|
| 3669 |
+
- type: mrr_at_10
|
| 3670 |
+
value: 30.122
|
| 3671 |
+
- type: mrr_at_100
|
| 3672 |
+
value: 31.083
|
| 3673 |
+
- type: mrr_at_1000
|
| 3674 |
+
value: 31.163999999999998
|
| 3675 |
+
- type: mrr_at_3
|
| 3676 |
+
value: 27.541
|
| 3677 |
+
- type: mrr_at_5
|
| 3678 |
+
value: 29.061999999999998
|
| 3679 |
+
- type: ndcg_at_1
|
| 3680 |
+
value: 22.023
|
| 3681 |
+
- type: ndcg_at_10
|
| 3682 |
+
value: 31.476
|
| 3683 |
+
- type: ndcg_at_100
|
| 3684 |
+
value: 37.114000000000004
|
| 3685 |
+
- type: ndcg_at_1000
|
| 3686 |
+
value: 39.981
|
| 3687 |
+
- type: ndcg_at_3
|
| 3688 |
+
value: 26.538
|
| 3689 |
+
- type: ndcg_at_5
|
| 3690 |
+
value: 29.016
|
| 3691 |
+
- type: precision_at_1
|
| 3692 |
+
value: 22.023
|
| 3693 |
+
- type: precision_at_10
|
| 3694 |
+
value: 5.819
|
| 3695 |
+
- type: precision_at_100
|
| 3696 |
+
value: 1.018
|
| 3697 |
+
- type: precision_at_1000
|
| 3698 |
+
value: 0.14300000000000002
|
| 3699 |
+
- type: precision_at_3
|
| 3700 |
+
value: 12.583
|
| 3701 |
+
- type: precision_at_5
|
| 3702 |
+
value: 9.36
|
| 3703 |
+
- type: recall_at_1
|
| 3704 |
+
value: 18.233
|
| 3705 |
+
- type: recall_at_10
|
| 3706 |
+
value: 43.029
|
| 3707 |
+
- type: recall_at_100
|
| 3708 |
+
value: 68.253
|
| 3709 |
+
- type: recall_at_1000
|
| 3710 |
+
value: 88.319
|
| 3711 |
+
- type: recall_at_3
|
| 3712 |
+
value: 29.541
|
| 3713 |
+
- type: recall_at_5
|
| 3714 |
+
value: 35.783
|
| 3715 |
+
- task:
|
| 3716 |
+
type: Retrieval
|
| 3717 |
+
dataset:
|
| 3718 |
+
type: mteb/cqadupstack-unix
|
| 3719 |
+
name: MTEB CQADupstackUnixRetrieval
|
| 3720 |
+
config: default
|
| 3721 |
+
split: test
|
| 3722 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
| 3723 |
+
metrics:
|
| 3724 |
+
- type: map_at_1
|
| 3725 |
+
value: 28.923
|
| 3726 |
+
- type: map_at_10
|
| 3727 |
+
value: 39.231
|
| 3728 |
+
- type: map_at_100
|
| 3729 |
+
value: 40.483000000000004
|
| 3730 |
+
- type: map_at_1000
|
| 3731 |
+
value: 40.575
|
| 3732 |
+
- type: map_at_3
|
| 3733 |
+
value: 35.94
|
| 3734 |
+
- type: map_at_5
|
| 3735 |
+
value: 37.683
|
| 3736 |
+
- type: mrr_at_1
|
| 3737 |
+
value: 33.955
|
| 3738 |
+
- type: mrr_at_10
|
| 3739 |
+
value: 43.163000000000004
|
| 3740 |
+
- type: mrr_at_100
|
| 3741 |
+
value: 44.054
|
| 3742 |
+
- type: mrr_at_1000
|
| 3743 |
+
value: 44.099
|
| 3744 |
+
- type: mrr_at_3
|
| 3745 |
+
value: 40.361000000000004
|
| 3746 |
+
- type: mrr_at_5
|
| 3747 |
+
value: 41.905
|
| 3748 |
+
- type: ndcg_at_1
|
| 3749 |
+
value: 33.955
|
| 3750 |
+
- type: ndcg_at_10
|
| 3751 |
+
value: 45.068000000000005
|
| 3752 |
+
- type: ndcg_at_100
|
| 3753 |
+
value: 50.470000000000006
|
| 3754 |
+
- type: ndcg_at_1000
|
| 3755 |
+
value: 52.349000000000004
|
| 3756 |
+
- type: ndcg_at_3
|
| 3757 |
+
value: 39.298
|
| 3758 |
+
- type: ndcg_at_5
|
| 3759 |
+
value: 41.821999999999996
|
| 3760 |
+
- type: precision_at_1
|
| 3761 |
+
value: 33.955
|
| 3762 |
+
- type: precision_at_10
|
| 3763 |
+
value: 7.649
|
| 3764 |
+
- type: precision_at_100
|
| 3765 |
+
value: 1.173
|
| 3766 |
+
- type: precision_at_1000
|
| 3767 |
+
value: 0.14200000000000002
|
| 3768 |
+
- type: precision_at_3
|
| 3769 |
+
value: 17.817
|
| 3770 |
+
- type: precision_at_5
|
| 3771 |
+
value: 12.537
|
| 3772 |
+
- type: recall_at_1
|
| 3773 |
+
value: 28.923
|
| 3774 |
+
- type: recall_at_10
|
| 3775 |
+
value: 58.934
|
| 3776 |
+
- type: recall_at_100
|
| 3777 |
+
value: 81.809
|
| 3778 |
+
- type: recall_at_1000
|
| 3779 |
+
value: 94.71300000000001
|
| 3780 |
+
- type: recall_at_3
|
| 3781 |
+
value: 42.975
|
| 3782 |
+
- type: recall_at_5
|
| 3783 |
+
value: 49.501
|
| 3784 |
+
- task:
|
| 3785 |
+
type: Retrieval
|
| 3786 |
+
dataset:
|
| 3787 |
+
type: mteb/cqadupstack-webmasters
|
| 3788 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
| 3789 |
+
config: default
|
| 3790 |
+
split: test
|
| 3791 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
| 3792 |
+
metrics:
|
| 3793 |
+
- type: map_at_1
|
| 3794 |
+
value: 28.596
|
| 3795 |
+
- type: map_at_10
|
| 3796 |
+
value: 38.735
|
| 3797 |
+
- type: map_at_100
|
| 3798 |
+
value: 40.264
|
| 3799 |
+
- type: map_at_1000
|
| 3800 |
+
value: 40.48
|
| 3801 |
+
- type: map_at_3
|
| 3802 |
+
value: 35.394999999999996
|
| 3803 |
+
- type: map_at_5
|
| 3804 |
+
value: 37.099
|
| 3805 |
+
- type: mrr_at_1
|
| 3806 |
+
value: 33.992
|
| 3807 |
+
- type: mrr_at_10
|
| 3808 |
+
value: 43.076
|
| 3809 |
+
- type: mrr_at_100
|
| 3810 |
+
value: 44.005
|
| 3811 |
+
- type: mrr_at_1000
|
| 3812 |
+
value: 44.043
|
| 3813 |
+
- type: mrr_at_3
|
| 3814 |
+
value: 40.415
|
| 3815 |
+
- type: mrr_at_5
|
| 3816 |
+
value: 41.957
|
| 3817 |
+
- type: ndcg_at_1
|
| 3818 |
+
value: 33.992
|
| 3819 |
+
- type: ndcg_at_10
|
| 3820 |
+
value: 44.896
|
| 3821 |
+
- type: ndcg_at_100
|
| 3822 |
+
value: 50.44499999999999
|
| 3823 |
+
- type: ndcg_at_1000
|
| 3824 |
+
value: 52.675000000000004
|
| 3825 |
+
- type: ndcg_at_3
|
| 3826 |
+
value: 39.783
|
| 3827 |
+
- type: ndcg_at_5
|
| 3828 |
+
value: 41.997
|
| 3829 |
+
- type: precision_at_1
|
| 3830 |
+
value: 33.992
|
| 3831 |
+
- type: precision_at_10
|
| 3832 |
+
value: 8.498
|
| 3833 |
+
- type: precision_at_100
|
| 3834 |
+
value: 1.585
|
| 3835 |
+
- type: precision_at_1000
|
| 3836 |
+
value: 0.248
|
| 3837 |
+
- type: precision_at_3
|
| 3838 |
+
value: 18.511
|
| 3839 |
+
- type: precision_at_5
|
| 3840 |
+
value: 13.241
|
| 3841 |
+
- type: recall_at_1
|
| 3842 |
+
value: 28.596
|
| 3843 |
+
- type: recall_at_10
|
| 3844 |
+
value: 56.885
|
| 3845 |
+
- type: recall_at_100
|
| 3846 |
+
value: 82.306
|
| 3847 |
+
- type: recall_at_1000
|
| 3848 |
+
value: 95.813
|
| 3849 |
+
- type: recall_at_3
|
| 3850 |
+
value: 42.168
|
| 3851 |
+
- type: recall_at_5
|
| 3852 |
+
value: 48.32
|
| 3853 |
+
- task:
|
| 3854 |
+
type: Retrieval
|
| 3855 |
+
dataset:
|
| 3856 |
+
type: mteb/cqadupstack-wordpress
|
| 3857 |
+
name: MTEB CQADupstackWordpressRetrieval
|
| 3858 |
+
config: default
|
| 3859 |
+
split: test
|
| 3860 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
| 3861 |
+
metrics:
|
| 3862 |
+
- type: map_at_1
|
| 3863 |
+
value: 25.576
|
| 3864 |
+
- type: map_at_10
|
| 3865 |
+
value: 33.034
|
| 3866 |
+
- type: map_at_100
|
| 3867 |
+
value: 34.117999999999995
|
| 3868 |
+
- type: map_at_1000
|
| 3869 |
+
value: 34.222
|
| 3870 |
+
- type: map_at_3
|
| 3871 |
+
value: 30.183
|
| 3872 |
+
- type: map_at_5
|
| 3873 |
+
value: 31.974000000000004
|
| 3874 |
+
- type: mrr_at_1
|
| 3875 |
+
value: 27.542
|
| 3876 |
+
- type: mrr_at_10
|
| 3877 |
+
value: 34.838
|
| 3878 |
+
- type: mrr_at_100
|
| 3879 |
+
value: 35.824
|
| 3880 |
+
- type: mrr_at_1000
|
| 3881 |
+
value: 35.899
|
| 3882 |
+
- type: mrr_at_3
|
| 3883 |
+
value: 32.348
|
| 3884 |
+
- type: mrr_at_5
|
| 3885 |
+
value: 34.039
|
| 3886 |
+
- type: ndcg_at_1
|
| 3887 |
+
value: 27.542
|
| 3888 |
+
- type: ndcg_at_10
|
| 3889 |
+
value: 37.663000000000004
|
| 3890 |
+
- type: ndcg_at_100
|
| 3891 |
+
value: 42.762
|
| 3892 |
+
- type: ndcg_at_1000
|
| 3893 |
+
value: 45.235
|
| 3894 |
+
- type: ndcg_at_3
|
| 3895 |
+
value: 32.227
|
| 3896 |
+
- type: ndcg_at_5
|
| 3897 |
+
value: 35.27
|
| 3898 |
+
- type: precision_at_1
|
| 3899 |
+
value: 27.542
|
| 3900 |
+
- type: precision_at_10
|
| 3901 |
+
value: 5.840999999999999
|
| 3902 |
+
- type: precision_at_100
|
| 3903 |
+
value: 0.895
|
| 3904 |
+
- type: precision_at_1000
|
| 3905 |
+
value: 0.123
|
| 3906 |
+
- type: precision_at_3
|
| 3907 |
+
value: 13.370000000000001
|
| 3908 |
+
- type: precision_at_5
|
| 3909 |
+
value: 9.797
|
| 3910 |
+
- type: recall_at_1
|
| 3911 |
+
value: 25.576
|
| 3912 |
+
- type: recall_at_10
|
| 3913 |
+
value: 50.285000000000004
|
| 3914 |
+
- type: recall_at_100
|
| 3915 |
+
value: 73.06
|
| 3916 |
+
- type: recall_at_1000
|
| 3917 |
+
value: 91.15299999999999
|
| 3918 |
+
- type: recall_at_3
|
| 3919 |
+
value: 35.781
|
| 3920 |
+
- type: recall_at_5
|
| 3921 |
+
value: 43.058
|
| 3922 |
+
- task:
|
| 3923 |
+
type: Retrieval
|
| 3924 |
+
dataset:
|
| 3925 |
+
type: mteb/climate-fever
|
| 3926 |
+
name: MTEB ClimateFEVER
|
| 3927 |
+
config: default
|
| 3928 |
+
split: test
|
| 3929 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
| 3930 |
+
metrics:
|
| 3931 |
+
- type: map_at_1
|
| 3932 |
+
value: 17.061
|
| 3933 |
+
- type: map_at_10
|
| 3934 |
+
value: 29.464000000000002
|
| 3935 |
+
- type: map_at_100
|
| 3936 |
+
value: 31.552999999999997
|
| 3937 |
+
- type: map_at_1000
|
| 3938 |
+
value: 31.707
|
| 3939 |
+
- type: map_at_3
|
| 3940 |
+
value: 24.834999999999997
|
| 3941 |
+
- type: map_at_5
|
| 3942 |
+
value: 27.355
|
| 3943 |
+
- type: mrr_at_1
|
| 3944 |
+
value: 38.958
|
| 3945 |
+
- type: mrr_at_10
|
| 3946 |
+
value: 51.578
|
| 3947 |
+
- type: mrr_at_100
|
| 3948 |
+
value: 52.262
|
| 3949 |
+
- type: mrr_at_1000
|
| 3950 |
+
value: 52.283
|
| 3951 |
+
- type: mrr_at_3
|
| 3952 |
+
value: 48.599
|
| 3953 |
+
- type: mrr_at_5
|
| 3954 |
+
value: 50.404
|
| 3955 |
+
- type: ndcg_at_1
|
| 3956 |
+
value: 38.958
|
| 3957 |
+
- type: ndcg_at_10
|
| 3958 |
+
value: 39.367999999999995
|
| 3959 |
+
- type: ndcg_at_100
|
| 3960 |
+
value: 46.521
|
| 3961 |
+
- type: ndcg_at_1000
|
| 3962 |
+
value: 49.086999999999996
|
| 3963 |
+
- type: ndcg_at_3
|
| 3964 |
+
value: 33.442
|
| 3965 |
+
- type: ndcg_at_5
|
| 3966 |
+
value: 35.515
|
| 3967 |
+
- type: precision_at_1
|
| 3968 |
+
value: 38.958
|
| 3969 |
+
- type: precision_at_10
|
| 3970 |
+
value: 12.110999999999999
|
| 3971 |
+
- type: precision_at_100
|
| 3972 |
+
value: 1.982
|
| 3973 |
+
- type: precision_at_1000
|
| 3974 |
+
value: 0.247
|
| 3975 |
+
- type: precision_at_3
|
| 3976 |
+
value: 25.102999999999998
|
| 3977 |
+
- type: precision_at_5
|
| 3978 |
+
value: 18.971
|
| 3979 |
+
- type: recall_at_1
|
| 3980 |
+
value: 17.061
|
| 3981 |
+
- type: recall_at_10
|
| 3982 |
+
value: 45.198
|
| 3983 |
+
- type: recall_at_100
|
| 3984 |
+
value: 69.18900000000001
|
| 3985 |
+
- type: recall_at_1000
|
| 3986 |
+
value: 83.38499999999999
|
| 3987 |
+
- type: recall_at_3
|
| 3988 |
+
value: 30.241
|
| 3989 |
+
- type: recall_at_5
|
| 3990 |
+
value: 36.851
|
| 3991 |
+
- task:
|
| 3992 |
+
type: Retrieval
|
| 3993 |
+
dataset:
|
| 3994 |
+
type: mteb/dbpedia
|
| 3995 |
+
name: MTEB DBPedia
|
| 3996 |
+
config: default
|
| 3997 |
+
split: test
|
| 3998 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
| 3999 |
+
metrics:
|
| 4000 |
+
- type: map_at_1
|
| 4001 |
+
value: 9.398
|
| 4002 |
+
- type: map_at_10
|
| 4003 |
+
value: 21.421
|
| 4004 |
+
- type: map_at_100
|
| 4005 |
+
value: 31.649
|
| 4006 |
+
- type: map_at_1000
|
| 4007 |
+
value: 33.469
|
| 4008 |
+
- type: map_at_3
|
| 4009 |
+
value: 15.310000000000002
|
| 4010 |
+
- type: map_at_5
|
| 4011 |
+
value: 17.946
|
| 4012 |
+
- type: mrr_at_1
|
| 4013 |
+
value: 71
|
| 4014 |
+
- type: mrr_at_10
|
| 4015 |
+
value: 78.92099999999999
|
| 4016 |
+
- type: mrr_at_100
|
| 4017 |
+
value: 79.225
|
| 4018 |
+
- type: mrr_at_1000
|
| 4019 |
+
value: 79.23
|
| 4020 |
+
- type: mrr_at_3
|
| 4021 |
+
value: 77.792
|
| 4022 |
+
- type: mrr_at_5
|
| 4023 |
+
value: 78.467
|
| 4024 |
+
- type: ndcg_at_1
|
| 4025 |
+
value: 57.99999999999999
|
| 4026 |
+
- type: ndcg_at_10
|
| 4027 |
+
value: 44.733000000000004
|
| 4028 |
+
- type: ndcg_at_100
|
| 4029 |
+
value: 50.646
|
| 4030 |
+
- type: ndcg_at_1000
|
| 4031 |
+
value: 57.903999999999996
|
| 4032 |
+
- type: ndcg_at_3
|
| 4033 |
+
value: 49.175999999999995
|
| 4034 |
+
- type: ndcg_at_5
|
| 4035 |
+
value: 46.800999999999995
|
| 4036 |
+
- type: precision_at_1
|
| 4037 |
+
value: 71
|
| 4038 |
+
- type: precision_at_10
|
| 4039 |
+
value: 36.25
|
| 4040 |
+
- type: precision_at_100
|
| 4041 |
+
value: 12.135
|
| 4042 |
+
- type: precision_at_1000
|
| 4043 |
+
value: 2.26
|
| 4044 |
+
- type: precision_at_3
|
| 4045 |
+
value: 52.75
|
| 4046 |
+
- type: precision_at_5
|
| 4047 |
+
value: 45.65
|
| 4048 |
+
- type: recall_at_1
|
| 4049 |
+
value: 9.398
|
| 4050 |
+
- type: recall_at_10
|
| 4051 |
+
value: 26.596999999999998
|
| 4052 |
+
- type: recall_at_100
|
| 4053 |
+
value: 57.943
|
| 4054 |
+
- type: recall_at_1000
|
| 4055 |
+
value: 81.147
|
| 4056 |
+
- type: recall_at_3
|
| 4057 |
+
value: 16.634
|
| 4058 |
+
- type: recall_at_5
|
| 4059 |
+
value: 20.7
|
| 4060 |
+
- task:
|
| 4061 |
+
type: Classification
|
| 4062 |
+
dataset:
|
| 4063 |
+
type: mteb/emotion
|
| 4064 |
+
name: MTEB EmotionClassification
|
| 4065 |
+
config: default
|
| 4066 |
+
split: test
|
| 4067 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 4068 |
+
metrics:
|
| 4069 |
+
- type: accuracy
|
| 4070 |
+
value: 46.535000000000004
|
| 4071 |
+
- type: f1
|
| 4072 |
+
value: 42.53702746452163
|
| 4073 |
+
- task:
|
| 4074 |
+
type: Retrieval
|
| 4075 |
+
dataset:
|
| 4076 |
+
type: mteb/fever
|
| 4077 |
+
name: MTEB FEVER
|
| 4078 |
+
config: default
|
| 4079 |
+
split: test
|
| 4080 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
| 4081 |
+
metrics:
|
| 4082 |
+
- type: map_at_1
|
| 4083 |
+
value: 77.235
|
| 4084 |
+
- type: map_at_10
|
| 4085 |
+
value: 85.504
|
| 4086 |
+
- type: map_at_100
|
| 4087 |
+
value: 85.707
|
| 4088 |
+
- type: map_at_1000
|
| 4089 |
+
value: 85.718
|
| 4090 |
+
- type: map_at_3
|
| 4091 |
+
value: 84.425
|
| 4092 |
+
- type: map_at_5
|
| 4093 |
+
value: 85.13
|
| 4094 |
+
- type: mrr_at_1
|
| 4095 |
+
value: 83.363
|
| 4096 |
+
- type: mrr_at_10
|
| 4097 |
+
value: 89.916
|
| 4098 |
+
- type: mrr_at_100
|
| 4099 |
+
value: 89.955
|
| 4100 |
+
- type: mrr_at_1000
|
| 4101 |
+
value: 89.956
|
| 4102 |
+
- type: mrr_at_3
|
| 4103 |
+
value: 89.32600000000001
|
| 4104 |
+
- type: mrr_at_5
|
| 4105 |
+
value: 89.79
|
| 4106 |
+
- type: ndcg_at_1
|
| 4107 |
+
value: 83.363
|
| 4108 |
+
- type: ndcg_at_10
|
| 4109 |
+
value: 89.015
|
| 4110 |
+
- type: ndcg_at_100
|
| 4111 |
+
value: 89.649
|
| 4112 |
+
- type: ndcg_at_1000
|
| 4113 |
+
value: 89.825
|
| 4114 |
+
- type: ndcg_at_3
|
| 4115 |
+
value: 87.45100000000001
|
| 4116 |
+
- type: ndcg_at_5
|
| 4117 |
+
value: 88.39399999999999
|
| 4118 |
+
- type: precision_at_1
|
| 4119 |
+
value: 83.363
|
| 4120 |
+
- type: precision_at_10
|
| 4121 |
+
value: 10.659
|
| 4122 |
+
- type: precision_at_100
|
| 4123 |
+
value: 1.122
|
| 4124 |
+
- type: precision_at_1000
|
| 4125 |
+
value: 0.11499999999999999
|
| 4126 |
+
- type: precision_at_3
|
| 4127 |
+
value: 33.338
|
| 4128 |
+
- type: precision_at_5
|
| 4129 |
+
value: 20.671999999999997
|
| 4130 |
+
- type: recall_at_1
|
| 4131 |
+
value: 77.235
|
| 4132 |
+
- type: recall_at_10
|
| 4133 |
+
value: 95.389
|
| 4134 |
+
- type: recall_at_100
|
| 4135 |
+
value: 97.722
|
| 4136 |
+
- type: recall_at_1000
|
| 4137 |
+
value: 98.744
|
| 4138 |
+
- type: recall_at_3
|
| 4139 |
+
value: 91.19800000000001
|
| 4140 |
+
- type: recall_at_5
|
| 4141 |
+
value: 93.635
|
| 4142 |
+
- task:
|
| 4143 |
+
type: Retrieval
|
| 4144 |
+
dataset:
|
| 4145 |
+
type: mteb/fiqa
|
| 4146 |
+
name: MTEB FiQA2018
|
| 4147 |
+
config: default
|
| 4148 |
+
split: test
|
| 4149 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
| 4150 |
+
metrics:
|
| 4151 |
+
- type: map_at_1
|
| 4152 |
+
value: 20.835
|
| 4153 |
+
- type: map_at_10
|
| 4154 |
+
value: 34.459
|
| 4155 |
+
- type: map_at_100
|
| 4156 |
+
value: 36.335
|
| 4157 |
+
- type: map_at_1000
|
| 4158 |
+
value: 36.518
|
| 4159 |
+
- type: map_at_3
|
| 4160 |
+
value: 30.581000000000003
|
| 4161 |
+
- type: map_at_5
|
| 4162 |
+
value: 32.859
|
| 4163 |
+
- type: mrr_at_1
|
| 4164 |
+
value: 40.894999999999996
|
| 4165 |
+
- type: mrr_at_10
|
| 4166 |
+
value: 50.491
|
| 4167 |
+
- type: mrr_at_100
|
| 4168 |
+
value: 51.243
|
| 4169 |
+
- type: mrr_at_1000
|
| 4170 |
+
value: 51.286
|
| 4171 |
+
- type: mrr_at_3
|
| 4172 |
+
value: 47.994
|
| 4173 |
+
- type: mrr_at_5
|
| 4174 |
+
value: 49.429
|
| 4175 |
+
- type: ndcg_at_1
|
| 4176 |
+
value: 40.894999999999996
|
| 4177 |
+
- type: ndcg_at_10
|
| 4178 |
+
value: 42.403
|
| 4179 |
+
- type: ndcg_at_100
|
| 4180 |
+
value: 48.954
|
| 4181 |
+
- type: ndcg_at_1000
|
| 4182 |
+
value: 51.961
|
| 4183 |
+
- type: ndcg_at_3
|
| 4184 |
+
value: 39.11
|
| 4185 |
+
- type: ndcg_at_5
|
| 4186 |
+
value: 40.152
|
| 4187 |
+
- type: precision_at_1
|
| 4188 |
+
value: 40.894999999999996
|
| 4189 |
+
- type: precision_at_10
|
| 4190 |
+
value: 11.466
|
| 4191 |
+
- type: precision_at_100
|
| 4192 |
+
value: 1.833
|
| 4193 |
+
- type: precision_at_1000
|
| 4194 |
+
value: 0.23700000000000002
|
| 4195 |
+
- type: precision_at_3
|
| 4196 |
+
value: 25.874000000000002
|
| 4197 |
+
- type: precision_at_5
|
| 4198 |
+
value: 19.012
|
| 4199 |
+
- type: recall_at_1
|
| 4200 |
+
value: 20.835
|
| 4201 |
+
- type: recall_at_10
|
| 4202 |
+
value: 49.535000000000004
|
| 4203 |
+
- type: recall_at_100
|
| 4204 |
+
value: 73.39099999999999
|
| 4205 |
+
- type: recall_at_1000
|
| 4206 |
+
value: 91.01599999999999
|
| 4207 |
+
- type: recall_at_3
|
| 4208 |
+
value: 36.379
|
| 4209 |
+
- type: recall_at_5
|
| 4210 |
+
value: 42.059999999999995
|
| 4211 |
+
- task:
|
| 4212 |
+
type: Retrieval
|
| 4213 |
+
dataset:
|
| 4214 |
+
type: mteb/hotpotqa
|
| 4215 |
+
name: MTEB HotpotQA
|
| 4216 |
+
config: default
|
| 4217 |
+
split: test
|
| 4218 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
| 4219 |
+
metrics:
|
| 4220 |
+
- type: map_at_1
|
| 4221 |
+
value: 40.945
|
| 4222 |
+
- type: map_at_10
|
| 4223 |
+
value: 65.376
|
| 4224 |
+
- type: map_at_100
|
| 4225 |
+
value: 66.278
|
| 4226 |
+
- type: map_at_1000
|
| 4227 |
+
value: 66.33
|
| 4228 |
+
- type: map_at_3
|
| 4229 |
+
value: 61.753
|
| 4230 |
+
- type: map_at_5
|
| 4231 |
+
value: 64.077
|
| 4232 |
+
- type: mrr_at_1
|
| 4233 |
+
value: 81.891
|
| 4234 |
+
- type: mrr_at_10
|
| 4235 |
+
value: 87.256
|
| 4236 |
+
- type: mrr_at_100
|
| 4237 |
+
value: 87.392
|
| 4238 |
+
- type: mrr_at_1000
|
| 4239 |
+
value: 87.395
|
| 4240 |
+
- type: mrr_at_3
|
| 4241 |
+
value: 86.442
|
| 4242 |
+
- type: mrr_at_5
|
| 4243 |
+
value: 86.991
|
| 4244 |
+
- type: ndcg_at_1
|
| 4245 |
+
value: 81.891
|
| 4246 |
+
- type: ndcg_at_10
|
| 4247 |
+
value: 73.654
|
| 4248 |
+
- type: ndcg_at_100
|
| 4249 |
+
value: 76.62299999999999
|
| 4250 |
+
- type: ndcg_at_1000
|
| 4251 |
+
value: 77.60000000000001
|
| 4252 |
+
- type: ndcg_at_3
|
| 4253 |
+
value: 68.71199999999999
|
| 4254 |
+
- type: ndcg_at_5
|
| 4255 |
+
value: 71.563
|
| 4256 |
+
- type: precision_at_1
|
| 4257 |
+
value: 81.891
|
| 4258 |
+
- type: precision_at_10
|
| 4259 |
+
value: 15.409
|
| 4260 |
+
- type: precision_at_100
|
| 4261 |
+
value: 1.77
|
| 4262 |
+
- type: precision_at_1000
|
| 4263 |
+
value: 0.19
|
| 4264 |
+
- type: precision_at_3
|
| 4265 |
+
value: 44.15
|
| 4266 |
+
- type: precision_at_5
|
| 4267 |
+
value: 28.732000000000003
|
| 4268 |
+
- type: recall_at_1
|
| 4269 |
+
value: 40.945
|
| 4270 |
+
- type: recall_at_10
|
| 4271 |
+
value: 77.04299999999999
|
| 4272 |
+
- type: recall_at_100
|
| 4273 |
+
value: 88.508
|
| 4274 |
+
- type: recall_at_1000
|
| 4275 |
+
value: 94.943
|
| 4276 |
+
- type: recall_at_3
|
| 4277 |
+
value: 66.226
|
| 4278 |
+
- type: recall_at_5
|
| 4279 |
+
value: 71.83
|
| 4280 |
+
- task:
|
| 4281 |
+
type: Classification
|
| 4282 |
+
dataset:
|
| 4283 |
+
type: mteb/imdb
|
| 4284 |
+
name: MTEB ImdbClassification
|
| 4285 |
+
config: default
|
| 4286 |
+
split: test
|
| 4287 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 4288 |
+
metrics:
|
| 4289 |
+
- type: accuracy
|
| 4290 |
+
value: 74.08200000000001
|
| 4291 |
+
- type: ap
|
| 4292 |
+
value: 68.10929101713998
|
| 4293 |
+
- type: f1
|
| 4294 |
+
value: 73.98447117652009
|
| 4295 |
+
- task:
|
| 4296 |
+
type: Retrieval
|
| 4297 |
+
dataset:
|
| 4298 |
+
type: mteb/msmarco
|
| 4299 |
+
name: MTEB MSMARCO
|
| 4300 |
+
config: default
|
| 4301 |
+
split: dev
|
| 4302 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
| 4303 |
+
metrics:
|
| 4304 |
+
- type: map_at_1
|
| 4305 |
+
value: 21.729000000000003
|
| 4306 |
+
- type: map_at_10
|
| 4307 |
+
value: 34.602
|
| 4308 |
+
- type: map_at_100
|
| 4309 |
+
value: 35.756
|
| 4310 |
+
- type: map_at_1000
|
| 4311 |
+
value: 35.803000000000004
|
| 4312 |
+
- type: map_at_3
|
| 4313 |
+
value: 30.619000000000003
|
| 4314 |
+
- type: map_at_5
|
| 4315 |
+
value: 32.914
|
| 4316 |
+
- type: mrr_at_1
|
| 4317 |
+
value: 22.364
|
| 4318 |
+
- type: mrr_at_10
|
| 4319 |
+
value: 35.183
|
| 4320 |
+
- type: mrr_at_100
|
| 4321 |
+
value: 36.287000000000006
|
| 4322 |
+
- type: mrr_at_1000
|
| 4323 |
+
value: 36.327999999999996
|
| 4324 |
+
- type: mrr_at_3
|
| 4325 |
+
value: 31.258000000000003
|
| 4326 |
+
- type: mrr_at_5
|
| 4327 |
+
value: 33.542
|
| 4328 |
+
- type: ndcg_at_1
|
| 4329 |
+
value: 22.364
|
| 4330 |
+
- type: ndcg_at_10
|
| 4331 |
+
value: 41.765
|
| 4332 |
+
- type: ndcg_at_100
|
| 4333 |
+
value: 47.293
|
| 4334 |
+
- type: ndcg_at_1000
|
| 4335 |
+
value: 48.457
|
| 4336 |
+
- type: ndcg_at_3
|
| 4337 |
+
value: 33.676
|
| 4338 |
+
- type: ndcg_at_5
|
| 4339 |
+
value: 37.783
|
| 4340 |
+
- type: precision_at_1
|
| 4341 |
+
value: 22.364
|
| 4342 |
+
- type: precision_at_10
|
| 4343 |
+
value: 6.662
|
| 4344 |
+
- type: precision_at_100
|
| 4345 |
+
value: 0.943
|
| 4346 |
+
- type: precision_at_1000
|
| 4347 |
+
value: 0.104
|
| 4348 |
+
- type: precision_at_3
|
| 4349 |
+
value: 14.435999999999998
|
| 4350 |
+
- type: precision_at_5
|
| 4351 |
+
value: 10.764999999999999
|
| 4352 |
+
- type: recall_at_1
|
| 4353 |
+
value: 21.729000000000003
|
| 4354 |
+
- type: recall_at_10
|
| 4355 |
+
value: 63.815999999999995
|
| 4356 |
+
- type: recall_at_100
|
| 4357 |
+
value: 89.265
|
| 4358 |
+
- type: recall_at_1000
|
| 4359 |
+
value: 98.149
|
| 4360 |
+
- type: recall_at_3
|
| 4361 |
+
value: 41.898
|
| 4362 |
+
- type: recall_at_5
|
| 4363 |
+
value: 51.76500000000001
|
| 4364 |
+
- task:
|
| 4365 |
+
type: Classification
|
| 4366 |
+
dataset:
|
| 4367 |
+
type: mteb/mtop_domain
|
| 4368 |
+
name: MTEB MTOPDomainClassification (en)
|
| 4369 |
+
config: en
|
| 4370 |
+
split: test
|
| 4371 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 4372 |
+
metrics:
|
| 4373 |
+
- type: accuracy
|
| 4374 |
+
value: 92.73141814865483
|
| 4375 |
+
- type: f1
|
| 4376 |
+
value: 92.17518476408004
|
| 4377 |
+
- task:
|
| 4378 |
+
type: Classification
|
| 4379 |
+
dataset:
|
| 4380 |
+
type: mteb/mtop_intent
|
| 4381 |
+
name: MTEB MTOPIntentClassification (en)
|
| 4382 |
+
config: en
|
| 4383 |
+
split: test
|
| 4384 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 4385 |
+
metrics:
|
| 4386 |
+
- type: accuracy
|
| 4387 |
+
value: 65.18011855905152
|
| 4388 |
+
- type: f1
|
| 4389 |
+
value: 46.70999638311856
|
| 4390 |
+
- task:
|
| 4391 |
+
type: Classification
|
| 4392 |
+
dataset:
|
| 4393 |
+
type: masakhane/masakhanews
|
| 4394 |
+
name: MTEB MasakhaNEWSClassification (eng)
|
| 4395 |
+
config: eng
|
| 4396 |
+
split: test
|
| 4397 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
| 4398 |
+
metrics:
|
| 4399 |
+
- type: accuracy
|
| 4400 |
+
value: 75.24261603375525
|
| 4401 |
+
- type: f1
|
| 4402 |
+
value: 74.07895183913367
|
| 4403 |
+
- task:
|
| 4404 |
+
type: Clustering
|
| 4405 |
+
dataset:
|
| 4406 |
+
type: masakhane/masakhanews
|
| 4407 |
+
name: MTEB MasakhaNEWSClusteringP2P (eng)
|
| 4408 |
+
config: eng
|
| 4409 |
+
split: test
|
| 4410 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
| 4411 |
+
metrics:
|
| 4412 |
+
- type: v_measure
|
| 4413 |
+
value: 28.43855875387446
|
| 4414 |
+
- task:
|
| 4415 |
+
type: Clustering
|
| 4416 |
+
dataset:
|
| 4417 |
+
type: masakhane/masakhanews
|
| 4418 |
+
name: MTEB MasakhaNEWSClusteringS2S (eng)
|
| 4419 |
+
config: eng
|
| 4420 |
+
split: test
|
| 4421 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
| 4422 |
+
metrics:
|
| 4423 |
+
- type: v_measure
|
| 4424 |
+
value: 29.05331990256969
|
| 4425 |
+
- task:
|
| 4426 |
+
type: Classification
|
| 4427 |
+
dataset:
|
| 4428 |
+
type: mteb/amazon_massive_intent
|
| 4429 |
+
name: MTEB MassiveIntentClassification (en)
|
| 4430 |
+
config: en
|
| 4431 |
+
split: test
|
| 4432 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 4433 |
+
metrics:
|
| 4434 |
+
- type: accuracy
|
| 4435 |
+
value: 66.92333557498318
|
| 4436 |
+
- type: f1
|
| 4437 |
+
value: 64.29789389602692
|
| 4438 |
+
- task:
|
| 4439 |
+
type: Classification
|
| 4440 |
+
dataset:
|
| 4441 |
+
type: mteb/amazon_massive_scenario
|
| 4442 |
+
name: MTEB MassiveScenarioClassification (en)
|
| 4443 |
+
config: en
|
| 4444 |
+
split: test
|
| 4445 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 4446 |
+
metrics:
|
| 4447 |
+
- type: accuracy
|
| 4448 |
+
value: 72.74714189643578
|
| 4449 |
+
- type: f1
|
| 4450 |
+
value: 71.672585608315
|
| 4451 |
+
- task:
|
| 4452 |
+
type: Clustering
|
| 4453 |
+
dataset:
|
| 4454 |
+
type: mteb/medrxiv-clustering-p2p
|
| 4455 |
+
name: MTEB MedrxivClusteringP2P
|
| 4456 |
+
config: default
|
| 4457 |
+
split: test
|
| 4458 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 4459 |
+
metrics:
|
| 4460 |
+
- type: v_measure
|
| 4461 |
+
value: 31.503564225501613
|
| 4462 |
+
- task:
|
| 4463 |
+
type: Clustering
|
| 4464 |
+
dataset:
|
| 4465 |
+
type: mteb/medrxiv-clustering-s2s
|
| 4466 |
+
name: MTEB MedrxivClusteringS2S
|
| 4467 |
+
config: default
|
| 4468 |
+
split: test
|
| 4469 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 4470 |
+
metrics:
|
| 4471 |
+
- type: v_measure
|
| 4472 |
+
value: 28.410225127136457
|
| 4473 |
+
- task:
|
| 4474 |
+
type: Reranking
|
| 4475 |
+
dataset:
|
| 4476 |
+
type: mteb/mind_small
|
| 4477 |
+
name: MTEB MindSmallReranking
|
| 4478 |
+
config: default
|
| 4479 |
+
split: test
|
| 4480 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 4481 |
+
metrics:
|
| 4482 |
+
- type: map
|
| 4483 |
+
value: 29.170019896091908
|
| 4484 |
+
- type: mrr
|
| 4485 |
+
value: 29.881276831500976
|
| 4486 |
+
- task:
|
| 4487 |
+
type: Retrieval
|
| 4488 |
+
dataset:
|
| 4489 |
+
type: mteb/nfcorpus
|
| 4490 |
+
name: MTEB NFCorpus
|
| 4491 |
+
config: default
|
| 4492 |
+
split: test
|
| 4493 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
| 4494 |
+
metrics:
|
| 4495 |
+
- type: map_at_1
|
| 4496 |
+
value: 6.544
|
| 4497 |
+
- type: map_at_10
|
| 4498 |
+
value: 14.116999999999999
|
| 4499 |
+
- type: map_at_100
|
| 4500 |
+
value: 17.522
|
| 4501 |
+
- type: map_at_1000
|
| 4502 |
+
value: 19
|
| 4503 |
+
- type: map_at_3
|
| 4504 |
+
value: 10.369
|
| 4505 |
+
- type: map_at_5
|
| 4506 |
+
value: 12.189
|
| 4507 |
+
- type: mrr_at_1
|
| 4508 |
+
value: 47.988
|
| 4509 |
+
- type: mrr_at_10
|
| 4510 |
+
value: 56.84
|
| 4511 |
+
- type: mrr_at_100
|
| 4512 |
+
value: 57.367000000000004
|
| 4513 |
+
- type: mrr_at_1000
|
| 4514 |
+
value: 57.403000000000006
|
| 4515 |
+
- type: mrr_at_3
|
| 4516 |
+
value: 54.592
|
| 4517 |
+
- type: mrr_at_5
|
| 4518 |
+
value: 56.233
|
| 4519 |
+
- type: ndcg_at_1
|
| 4520 |
+
value: 45.82
|
| 4521 |
+
- type: ndcg_at_10
|
| 4522 |
+
value: 36.767
|
| 4523 |
+
- type: ndcg_at_100
|
| 4524 |
+
value: 33.356
|
| 4525 |
+
- type: ndcg_at_1000
|
| 4526 |
+
value: 42.062
|
| 4527 |
+
- type: ndcg_at_3
|
| 4528 |
+
value: 42.15
|
| 4529 |
+
- type: ndcg_at_5
|
| 4530 |
+
value: 40.355000000000004
|
| 4531 |
+
- type: precision_at_1
|
| 4532 |
+
value: 47.988
|
| 4533 |
+
- type: precision_at_10
|
| 4534 |
+
value: 27.121000000000002
|
| 4535 |
+
- type: precision_at_100
|
| 4536 |
+
value: 8.455
|
| 4537 |
+
- type: precision_at_1000
|
| 4538 |
+
value: 2.103
|
| 4539 |
+
- type: precision_at_3
|
| 4540 |
+
value: 39.628
|
| 4541 |
+
- type: precision_at_5
|
| 4542 |
+
value: 35.356
|
| 4543 |
+
- type: recall_at_1
|
| 4544 |
+
value: 6.544
|
| 4545 |
+
- type: recall_at_10
|
| 4546 |
+
value: 17.928
|
| 4547 |
+
- type: recall_at_100
|
| 4548 |
+
value: 32.843
|
| 4549 |
+
- type: recall_at_1000
|
| 4550 |
+
value: 65.752
|
| 4551 |
+
- type: recall_at_3
|
| 4552 |
+
value: 11.297
|
| 4553 |
+
- type: recall_at_5
|
| 4554 |
+
value: 14.357000000000001
|
| 4555 |
+
- task:
|
| 4556 |
+
type: Retrieval
|
| 4557 |
+
dataset:
|
| 4558 |
+
type: mteb/nq
|
| 4559 |
+
name: MTEB NQ
|
| 4560 |
+
config: default
|
| 4561 |
+
split: test
|
| 4562 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
| 4563 |
+
metrics:
|
| 4564 |
+
- type: map_at_1
|
| 4565 |
+
value: 39.262
|
| 4566 |
+
- type: map_at_10
|
| 4567 |
+
value: 55.095000000000006
|
| 4568 |
+
- type: map_at_100
|
| 4569 |
+
value: 55.93900000000001
|
| 4570 |
+
- type: map_at_1000
|
| 4571 |
+
value: 55.955999999999996
|
| 4572 |
+
- type: map_at_3
|
| 4573 |
+
value: 50.93
|
| 4574 |
+
- type: map_at_5
|
| 4575 |
+
value: 53.491
|
| 4576 |
+
- type: mrr_at_1
|
| 4577 |
+
value: 43.598
|
| 4578 |
+
- type: mrr_at_10
|
| 4579 |
+
value: 57.379999999999995
|
| 4580 |
+
- type: mrr_at_100
|
| 4581 |
+
value: 57.940999999999995
|
| 4582 |
+
- type: mrr_at_1000
|
| 4583 |
+
value: 57.952000000000005
|
| 4584 |
+
- type: mrr_at_3
|
| 4585 |
+
value: 53.998000000000005
|
| 4586 |
+
- type: mrr_at_5
|
| 4587 |
+
value: 56.128
|
| 4588 |
+
- type: ndcg_at_1
|
| 4589 |
+
value: 43.598
|
| 4590 |
+
- type: ndcg_at_10
|
| 4591 |
+
value: 62.427
|
| 4592 |
+
- type: ndcg_at_100
|
| 4593 |
+
value: 65.759
|
| 4594 |
+
- type: ndcg_at_1000
|
| 4595 |
+
value: 66.133
|
| 4596 |
+
- type: ndcg_at_3
|
| 4597 |
+
value: 54.745999999999995
|
| 4598 |
+
- type: ndcg_at_5
|
| 4599 |
+
value: 58.975
|
| 4600 |
+
- type: precision_at_1
|
| 4601 |
+
value: 43.598
|
| 4602 |
+
- type: precision_at_10
|
| 4603 |
+
value: 9.789
|
| 4604 |
+
- type: precision_at_100
|
| 4605 |
+
value: 1.171
|
| 4606 |
+
- type: precision_at_1000
|
| 4607 |
+
value: 0.121
|
| 4608 |
+
- type: precision_at_3
|
| 4609 |
+
value: 24.295
|
| 4610 |
+
- type: precision_at_5
|
| 4611 |
+
value: 17.028
|
| 4612 |
+
- type: recall_at_1
|
| 4613 |
+
value: 39.262
|
| 4614 |
+
- type: recall_at_10
|
| 4615 |
+
value: 82.317
|
| 4616 |
+
- type: recall_at_100
|
| 4617 |
+
value: 96.391
|
| 4618 |
+
- type: recall_at_1000
|
| 4619 |
+
value: 99.116
|
| 4620 |
+
- type: recall_at_3
|
| 4621 |
+
value: 62.621
|
| 4622 |
+
- type: recall_at_5
|
| 4623 |
+
value: 72.357
|
| 4624 |
+
- task:
|
| 4625 |
+
type: Classification
|
| 4626 |
+
dataset:
|
| 4627 |
+
type: ag_news
|
| 4628 |
+
name: MTEB NewsClassification
|
| 4629 |
+
config: default
|
| 4630 |
+
split: test
|
| 4631 |
+
revision: eb185aade064a813bc0b7f42de02595523103ca4
|
| 4632 |
+
metrics:
|
| 4633 |
+
- type: accuracy
|
| 4634 |
+
value: 78.17500000000001
|
| 4635 |
+
- type: f1
|
| 4636 |
+
value: 78.01940892857273
|
| 4637 |
+
- task:
|
| 4638 |
+
type: PairClassification
|
| 4639 |
+
dataset:
|
| 4640 |
+
type: GEM/opusparcus
|
| 4641 |
+
name: MTEB OpusparcusPC (en)
|
| 4642 |
+
config: en
|
| 4643 |
+
split: test
|
| 4644 |
+
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
|
| 4645 |
+
metrics:
|
| 4646 |
+
- type: cos_sim_accuracy
|
| 4647 |
+
value: 99.89816700610999
|
| 4648 |
+
- type: cos_sim_ap
|
| 4649 |
+
value: 100
|
| 4650 |
+
- type: cos_sim_f1
|
| 4651 |
+
value: 99.9490575649516
|
| 4652 |
+
- type: cos_sim_precision
|
| 4653 |
+
value: 100
|
| 4654 |
+
- type: cos_sim_recall
|
| 4655 |
+
value: 99.89816700610999
|
| 4656 |
+
- type: dot_accuracy
|
| 4657 |
+
value: 99.89816700610999
|
| 4658 |
+
- type: dot_ap
|
| 4659 |
+
value: 100
|
| 4660 |
+
- type: dot_f1
|
| 4661 |
+
value: 99.9490575649516
|
| 4662 |
+
- type: dot_precision
|
| 4663 |
+
value: 100
|
| 4664 |
+
- type: dot_recall
|
| 4665 |
+
value: 99.89816700610999
|
| 4666 |
+
- type: euclidean_accuracy
|
| 4667 |
+
value: 99.89816700610999
|
| 4668 |
+
- type: euclidean_ap
|
| 4669 |
+
value: 100
|
| 4670 |
+
- type: euclidean_f1
|
| 4671 |
+
value: 99.9490575649516
|
| 4672 |
+
- type: euclidean_precision
|
| 4673 |
+
value: 100
|
| 4674 |
+
- type: euclidean_recall
|
| 4675 |
+
value: 99.89816700610999
|
| 4676 |
+
- type: manhattan_accuracy
|
| 4677 |
+
value: 99.89816700610999
|
| 4678 |
+
- type: manhattan_ap
|
| 4679 |
+
value: 100
|
| 4680 |
+
- type: manhattan_f1
|
| 4681 |
+
value: 99.9490575649516
|
| 4682 |
+
- type: manhattan_precision
|
| 4683 |
+
value: 100
|
| 4684 |
+
- type: manhattan_recall
|
| 4685 |
+
value: 99.89816700610999
|
| 4686 |
+
- type: max_accuracy
|
| 4687 |
+
value: 99.89816700610999
|
| 4688 |
+
- type: max_ap
|
| 4689 |
+
value: 100
|
| 4690 |
+
- type: max_f1
|
| 4691 |
+
value: 99.9490575649516
|
| 4692 |
+
- task:
|
| 4693 |
+
type: PairClassification
|
| 4694 |
+
dataset:
|
| 4695 |
+
type: paws-x
|
| 4696 |
+
name: MTEB PawsX (en)
|
| 4697 |
+
config: en
|
| 4698 |
+
split: test
|
| 4699 |
+
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
| 4700 |
+
metrics:
|
| 4701 |
+
- type: cos_sim_accuracy
|
| 4702 |
+
value: 61
|
| 4703 |
+
- type: cos_sim_ap
|
| 4704 |
+
value: 59.630757252602464
|
| 4705 |
+
- type: cos_sim_f1
|
| 4706 |
+
value: 62.37521514629949
|
| 4707 |
+
- type: cos_sim_precision
|
| 4708 |
+
value: 45.34534534534534
|
| 4709 |
+
- type: cos_sim_recall
|
| 4710 |
+
value: 99.88974641675854
|
| 4711 |
+
- type: dot_accuracy
|
| 4712 |
+
value: 61
|
| 4713 |
+
- type: dot_ap
|
| 4714 |
+
value: 59.631527308059006
|
| 4715 |
+
- type: dot_f1
|
| 4716 |
+
value: 62.37521514629949
|
| 4717 |
+
- type: dot_precision
|
| 4718 |
+
value: 45.34534534534534
|
| 4719 |
+
- type: dot_recall
|
| 4720 |
+
value: 99.88974641675854
|
| 4721 |
+
- type: euclidean_accuracy
|
| 4722 |
+
value: 61
|
| 4723 |
+
- type: euclidean_ap
|
| 4724 |
+
value: 59.630757252602464
|
| 4725 |
+
- type: euclidean_f1
|
| 4726 |
+
value: 62.37521514629949
|
| 4727 |
+
- type: euclidean_precision
|
| 4728 |
+
value: 45.34534534534534
|
| 4729 |
+
- type: euclidean_recall
|
| 4730 |
+
value: 99.88974641675854
|
| 4731 |
+
- type: manhattan_accuracy
|
| 4732 |
+
value: 60.9
|
| 4733 |
+
- type: manhattan_ap
|
| 4734 |
+
value: 59.613947780462254
|
| 4735 |
+
- type: manhattan_f1
|
| 4736 |
+
value: 62.37521514629949
|
| 4737 |
+
- type: manhattan_precision
|
| 4738 |
+
value: 45.34534534534534
|
| 4739 |
+
- type: manhattan_recall
|
| 4740 |
+
value: 99.88974641675854
|
| 4741 |
+
- type: max_accuracy
|
| 4742 |
+
value: 61
|
| 4743 |
+
- type: max_ap
|
| 4744 |
+
value: 59.631527308059006
|
| 4745 |
+
- type: max_f1
|
| 4746 |
+
value: 62.37521514629949
|
| 4747 |
+
- task:
|
| 4748 |
+
type: Retrieval
|
| 4749 |
+
dataset:
|
| 4750 |
+
type: mteb/quora
|
| 4751 |
+
name: MTEB QuoraRetrieval
|
| 4752 |
+
config: default
|
| 4753 |
+
split: test
|
| 4754 |
+
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
|
| 4755 |
+
metrics:
|
| 4756 |
+
- type: map_at_1
|
| 4757 |
+
value: 69.963
|
| 4758 |
+
- type: map_at_10
|
| 4759 |
+
value: 83.59400000000001
|
| 4760 |
+
- type: map_at_100
|
| 4761 |
+
value: 84.236
|
| 4762 |
+
- type: map_at_1000
|
| 4763 |
+
value: 84.255
|
| 4764 |
+
- type: map_at_3
|
| 4765 |
+
value: 80.69800000000001
|
| 4766 |
+
- type: map_at_5
|
| 4767 |
+
value: 82.568
|
| 4768 |
+
- type: mrr_at_1
|
| 4769 |
+
value: 80.58999999999999
|
| 4770 |
+
- type: mrr_at_10
|
| 4771 |
+
value: 86.78200000000001
|
| 4772 |
+
- type: mrr_at_100
|
| 4773 |
+
value: 86.89099999999999
|
| 4774 |
+
- type: mrr_at_1000
|
| 4775 |
+
value: 86.893
|
| 4776 |
+
- type: mrr_at_3
|
| 4777 |
+
value: 85.757
|
| 4778 |
+
- type: mrr_at_5
|
| 4779 |
+
value: 86.507
|
| 4780 |
+
- type: ndcg_at_1
|
| 4781 |
+
value: 80.60000000000001
|
| 4782 |
+
- type: ndcg_at_10
|
| 4783 |
+
value: 87.41799999999999
|
| 4784 |
+
- type: ndcg_at_100
|
| 4785 |
+
value: 88.723
|
| 4786 |
+
- type: ndcg_at_1000
|
| 4787 |
+
value: 88.875
|
| 4788 |
+
- type: ndcg_at_3
|
| 4789 |
+
value: 84.565
|
| 4790 |
+
- type: ndcg_at_5
|
| 4791 |
+
value: 86.236
|
| 4792 |
+
- type: precision_at_1
|
| 4793 |
+
value: 80.60000000000001
|
| 4794 |
+
- type: precision_at_10
|
| 4795 |
+
value: 13.239
|
| 4796 |
+
- type: precision_at_100
|
| 4797 |
+
value: 1.5150000000000001
|
| 4798 |
+
- type: precision_at_1000
|
| 4799 |
+
value: 0.156
|
| 4800 |
+
- type: precision_at_3
|
| 4801 |
+
value: 36.947
|
| 4802 |
+
- type: precision_at_5
|
| 4803 |
+
value: 24.354
|
| 4804 |
+
- type: recall_at_1
|
| 4805 |
+
value: 69.963
|
| 4806 |
+
- type: recall_at_10
|
| 4807 |
+
value: 94.553
|
| 4808 |
+
- type: recall_at_100
|
| 4809 |
+
value: 99.104
|
| 4810 |
+
- type: recall_at_1000
|
| 4811 |
+
value: 99.872
|
| 4812 |
+
- type: recall_at_3
|
| 4813 |
+
value: 86.317
|
| 4814 |
+
- type: recall_at_5
|
| 4815 |
+
value: 91.023
|
| 4816 |
+
- task:
|
| 4817 |
+
type: Clustering
|
| 4818 |
+
dataset:
|
| 4819 |
+
type: mteb/reddit-clustering
|
| 4820 |
+
name: MTEB RedditClustering
|
| 4821 |
+
config: default
|
| 4822 |
+
split: test
|
| 4823 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 4824 |
+
metrics:
|
| 4825 |
+
- type: v_measure
|
| 4826 |
+
value: 47.52890410998761
|
| 4827 |
+
- task:
|
| 4828 |
+
type: Clustering
|
| 4829 |
+
dataset:
|
| 4830 |
+
type: mteb/reddit-clustering-p2p
|
| 4831 |
+
name: MTEB RedditClusteringP2P
|
| 4832 |
+
config: default
|
| 4833 |
+
split: test
|
| 4834 |
+
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
| 4835 |
+
metrics:
|
| 4836 |
+
- type: v_measure
|
| 4837 |
+
value: 62.760692287940486
|
| 4838 |
+
- task:
|
| 4839 |
+
type: Retrieval
|
| 4840 |
+
dataset:
|
| 4841 |
+
type: mteb/scidocs
|
| 4842 |
+
name: MTEB SCIDOCS
|
| 4843 |
+
config: default
|
| 4844 |
+
split: test
|
| 4845 |
+
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
|
| 4846 |
+
metrics:
|
| 4847 |
+
- type: map_at_1
|
| 4848 |
+
value: 5.093
|
| 4849 |
+
- type: map_at_10
|
| 4850 |
+
value: 12.695
|
| 4851 |
+
- type: map_at_100
|
| 4852 |
+
value: 14.824000000000002
|
| 4853 |
+
- type: map_at_1000
|
| 4854 |
+
value: 15.123000000000001
|
| 4855 |
+
- type: map_at_3
|
| 4856 |
+
value: 8.968
|
| 4857 |
+
- type: map_at_5
|
| 4858 |
+
value: 10.828
|
| 4859 |
+
- type: mrr_at_1
|
| 4860 |
+
value: 25.1
|
| 4861 |
+
- type: mrr_at_10
|
| 4862 |
+
value: 35.894999999999996
|
| 4863 |
+
- type: mrr_at_100
|
| 4864 |
+
value: 36.966
|
| 4865 |
+
- type: mrr_at_1000
|
| 4866 |
+
value: 37.019999999999996
|
| 4867 |
+
- type: mrr_at_3
|
| 4868 |
+
value: 32.467
|
| 4869 |
+
- type: mrr_at_5
|
| 4870 |
+
value: 34.416999999999994
|
| 4871 |
+
- type: ndcg_at_1
|
| 4872 |
+
value: 25.1
|
| 4873 |
+
- type: ndcg_at_10
|
| 4874 |
+
value: 21.096999999999998
|
| 4875 |
+
- type: ndcg_at_100
|
| 4876 |
+
value: 29.202
|
| 4877 |
+
- type: ndcg_at_1000
|
| 4878 |
+
value: 34.541
|
| 4879 |
+
- type: ndcg_at_3
|
| 4880 |
+
value: 19.875
|
| 4881 |
+
- type: ndcg_at_5
|
| 4882 |
+
value: 17.497
|
| 4883 |
+
- type: precision_at_1
|
| 4884 |
+
value: 25.1
|
| 4885 |
+
- type: precision_at_10
|
| 4886 |
+
value: 10.9
|
| 4887 |
+
- type: precision_at_100
|
| 4888 |
+
value: 2.255
|
| 4889 |
+
- type: precision_at_1000
|
| 4890 |
+
value: 0.35400000000000004
|
| 4891 |
+
- type: precision_at_3
|
| 4892 |
+
value: 18.367
|
| 4893 |
+
- type: precision_at_5
|
| 4894 |
+
value: 15.299999999999999
|
| 4895 |
+
- type: recall_at_1
|
| 4896 |
+
value: 5.093
|
| 4897 |
+
- type: recall_at_10
|
| 4898 |
+
value: 22.092
|
| 4899 |
+
- type: recall_at_100
|
| 4900 |
+
value: 45.778
|
| 4901 |
+
- type: recall_at_1000
|
| 4902 |
+
value: 71.985
|
| 4903 |
+
- type: recall_at_3
|
| 4904 |
+
value: 11.167
|
| 4905 |
+
- type: recall_at_5
|
| 4906 |
+
value: 15.501999999999999
|
| 4907 |
+
- task:
|
| 4908 |
+
type: STS
|
| 4909 |
+
dataset:
|
| 4910 |
+
type: mteb/sickr-sts
|
| 4911 |
+
name: MTEB SICK-R
|
| 4912 |
+
config: default
|
| 4913 |
+
split: test
|
| 4914 |
+
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
| 4915 |
+
metrics:
|
| 4916 |
+
- type: cos_sim_pearson
|
| 4917 |
+
value: 74.04386981759481
|
| 4918 |
+
- type: cos_sim_spearman
|
| 4919 |
+
value: 69.12484963763646
|
| 4920 |
+
- type: euclidean_pearson
|
| 4921 |
+
value: 71.49384353291062
|
| 4922 |
+
- type: euclidean_spearman
|
| 4923 |
+
value: 69.12484548317074
|
| 4924 |
+
- type: manhattan_pearson
|
| 4925 |
+
value: 71.49828173987272
|
| 4926 |
+
- type: manhattan_spearman
|
| 4927 |
+
value: 69.08350274367014
|
| 4928 |
+
- task:
|
| 4929 |
+
type: STS
|
| 4930 |
+
dataset:
|
| 4931 |
+
type: mteb/sts12-sts
|
| 4932 |
+
name: MTEB STS12
|
| 4933 |
+
config: default
|
| 4934 |
+
split: test
|
| 4935 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 4936 |
+
metrics:
|
| 4937 |
+
- type: cos_sim_pearson
|
| 4938 |
+
value: 66.95372527615659
|
| 4939 |
+
- type: cos_sim_spearman
|
| 4940 |
+
value: 66.96821894433991
|
| 4941 |
+
- type: euclidean_pearson
|
| 4942 |
+
value: 64.675348002074
|
| 4943 |
+
- type: euclidean_spearman
|
| 4944 |
+
value: 66.96821894433991
|
| 4945 |
+
- type: manhattan_pearson
|
| 4946 |
+
value: 64.5965887073831
|
| 4947 |
+
- type: manhattan_spearman
|
| 4948 |
+
value: 66.88569076794741
|
| 4949 |
+
- task:
|
| 4950 |
+
type: STS
|
| 4951 |
+
dataset:
|
| 4952 |
+
type: mteb/sts13-sts
|
| 4953 |
+
name: MTEB STS13
|
| 4954 |
+
config: default
|
| 4955 |
+
split: test
|
| 4956 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 4957 |
+
metrics:
|
| 4958 |
+
- type: cos_sim_pearson
|
| 4959 |
+
value: 77.34698437961983
|
| 4960 |
+
- type: cos_sim_spearman
|
| 4961 |
+
value: 79.1153001117325
|
| 4962 |
+
- type: euclidean_pearson
|
| 4963 |
+
value: 78.53562874696966
|
| 4964 |
+
- type: euclidean_spearman
|
| 4965 |
+
value: 79.11530018205724
|
| 4966 |
+
- type: manhattan_pearson
|
| 4967 |
+
value: 78.46484988944093
|
| 4968 |
+
- type: manhattan_spearman
|
| 4969 |
+
value: 79.01416027493104
|
| 4970 |
+
- task:
|
| 4971 |
+
type: STS
|
| 4972 |
+
dataset:
|
| 4973 |
+
type: mteb/sts14-sts
|
| 4974 |
+
name: MTEB STS14
|
| 4975 |
+
config: default
|
| 4976 |
+
split: test
|
| 4977 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 4978 |
+
metrics:
|
| 4979 |
+
- type: cos_sim_pearson
|
| 4980 |
+
value: 68.81220371935373
|
| 4981 |
+
- type: cos_sim_spearman
|
| 4982 |
+
value: 68.50538405089604
|
| 4983 |
+
- type: euclidean_pearson
|
| 4984 |
+
value: 68.69204272683749
|
| 4985 |
+
- type: euclidean_spearman
|
| 4986 |
+
value: 68.50534223912419
|
| 4987 |
+
- type: manhattan_pearson
|
| 4988 |
+
value: 68.67300120149523
|
| 4989 |
+
- type: manhattan_spearman
|
| 4990 |
+
value: 68.45404301623115
|
| 4991 |
+
- task:
|
| 4992 |
+
type: STS
|
| 4993 |
+
dataset:
|
| 4994 |
+
type: mteb/sts15-sts
|
| 4995 |
+
name: MTEB STS15
|
| 4996 |
+
config: default
|
| 4997 |
+
split: test
|
| 4998 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 4999 |
+
metrics:
|
| 5000 |
+
- type: cos_sim_pearson
|
| 5001 |
+
value: 78.2464678879813
|
| 5002 |
+
- type: cos_sim_spearman
|
| 5003 |
+
value: 79.92003940566667
|
| 5004 |
+
- type: euclidean_pearson
|
| 5005 |
+
value: 79.8080778793964
|
| 5006 |
+
- type: euclidean_spearman
|
| 5007 |
+
value: 79.92003940566667
|
| 5008 |
+
- type: manhattan_pearson
|
| 5009 |
+
value: 79.80153621444681
|
| 5010 |
+
- type: manhattan_spearman
|
| 5011 |
+
value: 79.91293261418134
|
| 5012 |
+
- task:
|
| 5013 |
+
type: STS
|
| 5014 |
+
dataset:
|
| 5015 |
+
type: mteb/sts16-sts
|
| 5016 |
+
name: MTEB STS16
|
| 5017 |
+
config: default
|
| 5018 |
+
split: test
|
| 5019 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 5020 |
+
metrics:
|
| 5021 |
+
- type: cos_sim_pearson
|
| 5022 |
+
value: 76.31179207708662
|
| 5023 |
+
- type: cos_sim_spearman
|
| 5024 |
+
value: 78.65597349856115
|
| 5025 |
+
- type: euclidean_pearson
|
| 5026 |
+
value: 78.76937027472678
|
| 5027 |
+
- type: euclidean_spearman
|
| 5028 |
+
value: 78.65597349856115
|
| 5029 |
+
- type: manhattan_pearson
|
| 5030 |
+
value: 78.77129513300605
|
| 5031 |
+
- type: manhattan_spearman
|
| 5032 |
+
value: 78.62640467680775
|
| 5033 |
+
- task:
|
| 5034 |
+
type: STS
|
| 5035 |
+
dataset:
|
| 5036 |
+
type: mteb/sts17-crosslingual-sts
|
| 5037 |
+
name: MTEB STS17 (en-en)
|
| 5038 |
+
config: en-en
|
| 5039 |
+
split: test
|
| 5040 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 5041 |
+
metrics:
|
| 5042 |
+
- type: cos_sim_pearson
|
| 5043 |
+
value: 79.43158429552561
|
| 5044 |
+
- type: cos_sim_spearman
|
| 5045 |
+
value: 81.46108646565362
|
| 5046 |
+
- type: euclidean_pearson
|
| 5047 |
+
value: 81.47071791452292
|
| 5048 |
+
- type: euclidean_spearman
|
| 5049 |
+
value: 81.46108646565362
|
| 5050 |
+
- type: manhattan_pearson
|
| 5051 |
+
value: 81.56920643846031
|
| 5052 |
+
- type: manhattan_spearman
|
| 5053 |
+
value: 81.42226241399516
|
| 5054 |
+
- task:
|
| 5055 |
+
type: STS
|
| 5056 |
+
dataset:
|
| 5057 |
+
type: mteb/sts22-crosslingual-sts
|
| 5058 |
+
name: MTEB STS22 (en)
|
| 5059 |
+
config: en
|
| 5060 |
+
split: test
|
| 5061 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
| 5062 |
+
metrics:
|
| 5063 |
+
- type: cos_sim_pearson
|
| 5064 |
+
value: 66.89546474141514
|
| 5065 |
+
- type: cos_sim_spearman
|
| 5066 |
+
value: 65.8393752170531
|
| 5067 |
+
- type: euclidean_pearson
|
| 5068 |
+
value: 67.2580522762307
|
| 5069 |
+
- type: euclidean_spearman
|
| 5070 |
+
value: 65.8393752170531
|
| 5071 |
+
- type: manhattan_pearson
|
| 5072 |
+
value: 67.45157729300522
|
| 5073 |
+
- type: manhattan_spearman
|
| 5074 |
+
value: 66.19470854403802
|
| 5075 |
+
- task:
|
| 5076 |
+
type: STS
|
| 5077 |
+
dataset:
|
| 5078 |
+
type: mteb/stsbenchmark-sts
|
| 5079 |
+
name: MTEB STSBenchmark
|
| 5080 |
+
config: default
|
| 5081 |
+
split: test
|
| 5082 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 5083 |
+
metrics:
|
| 5084 |
+
- type: cos_sim_pearson
|
| 5085 |
+
value: 71.39566306334434
|
| 5086 |
+
- type: cos_sim_spearman
|
| 5087 |
+
value: 74.0981396086974
|
| 5088 |
+
- type: euclidean_pearson
|
| 5089 |
+
value: 73.7834496259745
|
| 5090 |
+
- type: euclidean_spearman
|
| 5091 |
+
value: 74.09803741302046
|
| 5092 |
+
- type: manhattan_pearson
|
| 5093 |
+
value: 73.79958138780945
|
| 5094 |
+
- type: manhattan_spearman
|
| 5095 |
+
value: 74.09894837555905
|
| 5096 |
+
- task:
|
| 5097 |
+
type: STS
|
| 5098 |
+
dataset:
|
| 5099 |
+
type: PhilipMay/stsb_multi_mt
|
| 5100 |
+
name: MTEB STSBenchmarkMultilingualSTS (en)
|
| 5101 |
+
config: en
|
| 5102 |
+
split: test
|
| 5103 |
+
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
|
| 5104 |
+
metrics:
|
| 5105 |
+
- type: cos_sim_pearson
|
| 5106 |
+
value: 71.39566311006806
|
| 5107 |
+
- type: cos_sim_spearman
|
| 5108 |
+
value: 74.0981396086974
|
| 5109 |
+
- type: euclidean_pearson
|
| 5110 |
+
value: 73.78344970897099
|
| 5111 |
+
- type: euclidean_spearman
|
| 5112 |
+
value: 74.09803741302046
|
| 5113 |
+
- type: manhattan_pearson
|
| 5114 |
+
value: 73.79958147136705
|
| 5115 |
+
- type: manhattan_spearman
|
| 5116 |
+
value: 74.09894837555905
|
| 5117 |
+
- task:
|
| 5118 |
+
type: Reranking
|
| 5119 |
+
dataset:
|
| 5120 |
+
type: mteb/scidocs-reranking
|
| 5121 |
+
name: MTEB SciDocsRR
|
| 5122 |
+
config: default
|
| 5123 |
+
split: test
|
| 5124 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 5125 |
+
metrics:
|
| 5126 |
+
- type: map
|
| 5127 |
+
value: 80.81059564334683
|
| 5128 |
+
- type: mrr
|
| 5129 |
+
value: 94.62696617108381
|
| 5130 |
+
- task:
|
| 5131 |
+
type: Retrieval
|
| 5132 |
+
dataset:
|
| 5133 |
+
type: mteb/scifact
|
| 5134 |
+
name: MTEB SciFact
|
| 5135 |
+
config: default
|
| 5136 |
+
split: test
|
| 5137 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
| 5138 |
+
metrics:
|
| 5139 |
+
- type: map_at_1
|
| 5140 |
+
value: 57.760999999999996
|
| 5141 |
+
- type: map_at_10
|
| 5142 |
+
value: 68.614
|
| 5143 |
+
- type: map_at_100
|
| 5144 |
+
value: 69.109
|
| 5145 |
+
- type: map_at_1000
|
| 5146 |
+
value: 69.134
|
| 5147 |
+
- type: map_at_3
|
| 5148 |
+
value: 65.735
|
| 5149 |
+
- type: map_at_5
|
| 5150 |
+
value: 67.42099999999999
|
| 5151 |
+
- type: mrr_at_1
|
| 5152 |
+
value: 60.667
|
| 5153 |
+
- type: mrr_at_10
|
| 5154 |
+
value: 69.94200000000001
|
| 5155 |
+
- type: mrr_at_100
|
| 5156 |
+
value: 70.254
|
| 5157 |
+
- type: mrr_at_1000
|
| 5158 |
+
value: 70.28
|
| 5159 |
+
- type: mrr_at_3
|
| 5160 |
+
value: 67.72200000000001
|
| 5161 |
+
- type: mrr_at_5
|
| 5162 |
+
value: 69.18900000000001
|
| 5163 |
+
- type: ndcg_at_1
|
| 5164 |
+
value: 60.667
|
| 5165 |
+
- type: ndcg_at_10
|
| 5166 |
+
value: 73.548
|
| 5167 |
+
- type: ndcg_at_100
|
| 5168 |
+
value: 75.381
|
| 5169 |
+
- type: ndcg_at_1000
|
| 5170 |
+
value: 75.991
|
| 5171 |
+
- type: ndcg_at_3
|
| 5172 |
+
value: 68.685
|
| 5173 |
+
- type: ndcg_at_5
|
| 5174 |
+
value: 71.26
|
| 5175 |
+
- type: precision_at_1
|
| 5176 |
+
value: 60.667
|
| 5177 |
+
- type: precision_at_10
|
| 5178 |
+
value: 9.833
|
| 5179 |
+
- type: precision_at_100
|
| 5180 |
+
value: 1.08
|
| 5181 |
+
- type: precision_at_1000
|
| 5182 |
+
value: 0.11299999999999999
|
| 5183 |
+
- type: precision_at_3
|
| 5184 |
+
value: 26.889000000000003
|
| 5185 |
+
- type: precision_at_5
|
| 5186 |
+
value: 17.8
|
| 5187 |
+
- type: recall_at_1
|
| 5188 |
+
value: 57.760999999999996
|
| 5189 |
+
- type: recall_at_10
|
| 5190 |
+
value: 87.13300000000001
|
| 5191 |
+
- type: recall_at_100
|
| 5192 |
+
value: 95
|
| 5193 |
+
- type: recall_at_1000
|
| 5194 |
+
value: 99.667
|
| 5195 |
+
- type: recall_at_3
|
| 5196 |
+
value: 74.211
|
| 5197 |
+
- type: recall_at_5
|
| 5198 |
+
value: 80.63900000000001
|
| 5199 |
+
- task:
|
| 5200 |
+
type: PairClassification
|
| 5201 |
+
dataset:
|
| 5202 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
| 5203 |
+
name: MTEB SprintDuplicateQuestions
|
| 5204 |
+
config: default
|
| 5205 |
+
split: test
|
| 5206 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 5207 |
+
metrics:
|
| 5208 |
+
- type: cos_sim_accuracy
|
| 5209 |
+
value: 99.81881188118813
|
| 5210 |
+
- type: cos_sim_ap
|
| 5211 |
+
value: 95.21196473745837
|
| 5212 |
+
- type: cos_sim_f1
|
| 5213 |
+
value: 90.69767441860465
|
| 5214 |
+
- type: cos_sim_precision
|
| 5215 |
+
value: 91.71779141104295
|
| 5216 |
+
- type: cos_sim_recall
|
| 5217 |
+
value: 89.7
|
| 5218 |
+
- type: dot_accuracy
|
| 5219 |
+
value: 99.81881188118813
|
| 5220 |
+
- type: dot_ap
|
| 5221 |
+
value: 95.21196473745837
|
| 5222 |
+
- type: dot_f1
|
| 5223 |
+
value: 90.69767441860465
|
| 5224 |
+
- type: dot_precision
|
| 5225 |
+
value: 91.71779141104295
|
| 5226 |
+
- type: dot_recall
|
| 5227 |
+
value: 89.7
|
| 5228 |
+
- type: euclidean_accuracy
|
| 5229 |
+
value: 99.81881188118813
|
| 5230 |
+
- type: euclidean_ap
|
| 5231 |
+
value: 95.21196473745839
|
| 5232 |
+
- type: euclidean_f1
|
| 5233 |
+
value: 90.69767441860465
|
| 5234 |
+
- type: euclidean_precision
|
| 5235 |
+
value: 91.71779141104295
|
| 5236 |
+
- type: euclidean_recall
|
| 5237 |
+
value: 89.7
|
| 5238 |
+
- type: manhattan_accuracy
|
| 5239 |
+
value: 99.81287128712871
|
| 5240 |
+
- type: manhattan_ap
|
| 5241 |
+
value: 95.16667174835017
|
| 5242 |
+
- type: manhattan_f1
|
| 5243 |
+
value: 90.41095890410959
|
| 5244 |
+
- type: manhattan_precision
|
| 5245 |
+
value: 91.7610710607621
|
| 5246 |
+
- type: manhattan_recall
|
| 5247 |
+
value: 89.1
|
| 5248 |
+
- type: max_accuracy
|
| 5249 |
+
value: 99.81881188118813
|
| 5250 |
+
- type: max_ap
|
| 5251 |
+
value: 95.21196473745839
|
| 5252 |
+
- type: max_f1
|
| 5253 |
+
value: 90.69767441860465
|
| 5254 |
+
- task:
|
| 5255 |
+
type: Clustering
|
| 5256 |
+
dataset:
|
| 5257 |
+
type: mteb/stackexchange-clustering
|
| 5258 |
+
name: MTEB StackExchangeClustering
|
| 5259 |
+
config: default
|
| 5260 |
+
split: test
|
| 5261 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 5262 |
+
metrics:
|
| 5263 |
+
- type: v_measure
|
| 5264 |
+
value: 59.54942204515638
|
| 5265 |
+
- task:
|
| 5266 |
+
type: Clustering
|
| 5267 |
+
dataset:
|
| 5268 |
+
type: mteb/stackexchange-clustering-p2p
|
| 5269 |
+
name: MTEB StackExchangeClusteringP2P
|
| 5270 |
+
config: default
|
| 5271 |
+
split: test
|
| 5272 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 5273 |
+
metrics:
|
| 5274 |
+
- type: v_measure
|
| 5275 |
+
value: 39.42892282672948
|
| 5276 |
+
- task:
|
| 5277 |
+
type: Reranking
|
| 5278 |
+
dataset:
|
| 5279 |
+
type: mteb/stackoverflowdupquestions-reranking
|
| 5280 |
+
name: MTEB StackOverflowDupQuestions
|
| 5281 |
+
config: default
|
| 5282 |
+
split: test
|
| 5283 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 5284 |
+
metrics:
|
| 5285 |
+
- type: map
|
| 5286 |
+
value: 51.189033075914324
|
| 5287 |
+
- type: mrr
|
| 5288 |
+
value: 51.97014790764791
|
| 5289 |
+
- task:
|
| 5290 |
+
type: Summarization
|
| 5291 |
+
dataset:
|
| 5292 |
+
type: mteb/summeval
|
| 5293 |
+
name: MTEB SummEval
|
| 5294 |
+
config: default
|
| 5295 |
+
split: test
|
| 5296 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 5297 |
+
metrics:
|
| 5298 |
+
- type: cos_sim_pearson
|
| 5299 |
+
value: 30.09466569775977
|
| 5300 |
+
- type: cos_sim_spearman
|
| 5301 |
+
value: 30.31058660775912
|
| 5302 |
+
- type: dot_pearson
|
| 5303 |
+
value: 30.09466438861689
|
| 5304 |
+
- type: dot_spearman
|
| 5305 |
+
value: 30.31058660775912
|
| 5306 |
+
- task:
|
| 5307 |
+
type: Retrieval
|
| 5308 |
+
dataset:
|
| 5309 |
+
type: mteb/trec-covid
|
| 5310 |
+
name: MTEB TRECCOVID
|
| 5311 |
+
config: default
|
| 5312 |
+
split: test
|
| 5313 |
+
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
|
| 5314 |
+
metrics:
|
| 5315 |
+
- type: map_at_1
|
| 5316 |
+
value: 0.253
|
| 5317 |
+
- type: map_at_10
|
| 5318 |
+
value: 2.07
|
| 5319 |
+
- type: map_at_100
|
| 5320 |
+
value: 12.679000000000002
|
| 5321 |
+
- type: map_at_1000
|
| 5322 |
+
value: 30.412
|
| 5323 |
+
- type: map_at_3
|
| 5324 |
+
value: 0.688
|
| 5325 |
+
- type: map_at_5
|
| 5326 |
+
value: 1.079
|
| 5327 |
+
- type: mrr_at_1
|
| 5328 |
+
value: 96
|
| 5329 |
+
- type: mrr_at_10
|
| 5330 |
+
value: 98
|
| 5331 |
+
- type: mrr_at_100
|
| 5332 |
+
value: 98
|
| 5333 |
+
- type: mrr_at_1000
|
| 5334 |
+
value: 98
|
| 5335 |
+
- type: mrr_at_3
|
| 5336 |
+
value: 98
|
| 5337 |
+
- type: mrr_at_5
|
| 5338 |
+
value: 98
|
| 5339 |
+
- type: ndcg_at_1
|
| 5340 |
+
value: 89
|
| 5341 |
+
- type: ndcg_at_10
|
| 5342 |
+
value: 79.646
|
| 5343 |
+
- type: ndcg_at_100
|
| 5344 |
+
value: 62.217999999999996
|
| 5345 |
+
- type: ndcg_at_1000
|
| 5346 |
+
value: 55.13400000000001
|
| 5347 |
+
- type: ndcg_at_3
|
| 5348 |
+
value: 83.458
|
| 5349 |
+
- type: ndcg_at_5
|
| 5350 |
+
value: 80.982
|
| 5351 |
+
- type: precision_at_1
|
| 5352 |
+
value: 96
|
| 5353 |
+
- type: precision_at_10
|
| 5354 |
+
value: 84.6
|
| 5355 |
+
- type: precision_at_100
|
| 5356 |
+
value: 64.34
|
| 5357 |
+
- type: precision_at_1000
|
| 5358 |
+
value: 24.534
|
| 5359 |
+
- type: precision_at_3
|
| 5360 |
+
value: 88.667
|
| 5361 |
+
- type: precision_at_5
|
| 5362 |
+
value: 85.6
|
| 5363 |
+
- type: recall_at_1
|
| 5364 |
+
value: 0.253
|
| 5365 |
+
- type: recall_at_10
|
| 5366 |
+
value: 2.253
|
| 5367 |
+
- type: recall_at_100
|
| 5368 |
+
value: 15.606
|
| 5369 |
+
- type: recall_at_1000
|
| 5370 |
+
value: 51.595
|
| 5371 |
+
- type: recall_at_3
|
| 5372 |
+
value: 0.7100000000000001
|
| 5373 |
+
- type: recall_at_5
|
| 5374 |
+
value: 1.139
|
| 5375 |
+
- task:
|
| 5376 |
+
type: Retrieval
|
| 5377 |
+
dataset:
|
| 5378 |
+
type: mteb/touche2020
|
| 5379 |
+
name: MTEB Touche2020
|
| 5380 |
+
config: default
|
| 5381 |
+
split: test
|
| 5382 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
| 5383 |
+
metrics:
|
| 5384 |
+
- type: map_at_1
|
| 5385 |
+
value: 3.0540000000000003
|
| 5386 |
+
- type: map_at_10
|
| 5387 |
+
value: 13.078999999999999
|
| 5388 |
+
- type: map_at_100
|
| 5389 |
+
value: 19.468
|
| 5390 |
+
- type: map_at_1000
|
| 5391 |
+
value: 21.006
|
| 5392 |
+
- type: map_at_3
|
| 5393 |
+
value: 6.8629999999999995
|
| 5394 |
+
- type: map_at_5
|
| 5395 |
+
value: 9.187
|
| 5396 |
+
- type: mrr_at_1
|
| 5397 |
+
value: 42.857
|
| 5398 |
+
- type: mrr_at_10
|
| 5399 |
+
value: 56.735
|
| 5400 |
+
- type: mrr_at_100
|
| 5401 |
+
value: 57.352000000000004
|
| 5402 |
+
- type: mrr_at_1000
|
| 5403 |
+
value: 57.352000000000004
|
| 5404 |
+
- type: mrr_at_3
|
| 5405 |
+
value: 52.721
|
| 5406 |
+
- type: mrr_at_5
|
| 5407 |
+
value: 54.66
|
| 5408 |
+
- type: ndcg_at_1
|
| 5409 |
+
value: 38.775999999999996
|
| 5410 |
+
- type: ndcg_at_10
|
| 5411 |
+
value: 31.469
|
| 5412 |
+
- type: ndcg_at_100
|
| 5413 |
+
value: 42.016999999999996
|
| 5414 |
+
- type: ndcg_at_1000
|
| 5415 |
+
value: 52.60399999999999
|
| 5416 |
+
- type: ndcg_at_3
|
| 5417 |
+
value: 35.894
|
| 5418 |
+
- type: ndcg_at_5
|
| 5419 |
+
value: 33.873
|
| 5420 |
+
- type: precision_at_1
|
| 5421 |
+
value: 42.857
|
| 5422 |
+
- type: precision_at_10
|
| 5423 |
+
value: 27.346999999999998
|
| 5424 |
+
- type: precision_at_100
|
| 5425 |
+
value: 8.327
|
| 5426 |
+
- type: precision_at_1000
|
| 5427 |
+
value: 1.551
|
| 5428 |
+
- type: precision_at_3
|
| 5429 |
+
value: 36.735
|
| 5430 |
+
- type: precision_at_5
|
| 5431 |
+
value: 33.469
|
| 5432 |
+
- type: recall_at_1
|
| 5433 |
+
value: 3.0540000000000003
|
| 5434 |
+
- type: recall_at_10
|
| 5435 |
+
value: 19.185
|
| 5436 |
+
- type: recall_at_100
|
| 5437 |
+
value: 51.056000000000004
|
| 5438 |
+
- type: recall_at_1000
|
| 5439 |
+
value: 82.814
|
| 5440 |
+
- type: recall_at_3
|
| 5441 |
+
value: 7.961
|
| 5442 |
+
- type: recall_at_5
|
| 5443 |
+
value: 11.829
|
| 5444 |
+
- task:
|
| 5445 |
+
type: Classification
|
| 5446 |
+
dataset:
|
| 5447 |
+
type: mteb/toxic_conversations_50k
|
| 5448 |
+
name: MTEB ToxicConversationsClassification
|
| 5449 |
+
config: default
|
| 5450 |
+
split: test
|
| 5451 |
+
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
| 5452 |
+
metrics:
|
| 5453 |
+
- type: accuracy
|
| 5454 |
+
value: 64.9346
|
| 5455 |
+
- type: ap
|
| 5456 |
+
value: 12.121605736777527
|
| 5457 |
+
- type: f1
|
| 5458 |
+
value: 50.169902005887955
|
| 5459 |
+
- task:
|
| 5460 |
+
type: Classification
|
| 5461 |
+
dataset:
|
| 5462 |
+
type: mteb/tweet_sentiment_extraction
|
| 5463 |
+
name: MTEB TweetSentimentExtractionClassification
|
| 5464 |
+
config: default
|
| 5465 |
+
split: test
|
| 5466 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 5467 |
+
metrics:
|
| 5468 |
+
- type: accuracy
|
| 5469 |
+
value: 56.72608941709111
|
| 5470 |
+
- type: f1
|
| 5471 |
+
value: 57.0702928875253
|
| 5472 |
+
- task:
|
| 5473 |
+
type: Clustering
|
| 5474 |
+
dataset:
|
| 5475 |
+
type: mteb/twentynewsgroups-clustering
|
| 5476 |
+
name: MTEB TwentyNewsgroupsClustering
|
| 5477 |
+
config: default
|
| 5478 |
+
split: test
|
| 5479 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 5480 |
+
metrics:
|
| 5481 |
+
- type: v_measure
|
| 5482 |
+
value: 37.72671554400943
|
| 5483 |
+
- task:
|
| 5484 |
+
type: PairClassification
|
| 5485 |
+
dataset:
|
| 5486 |
+
type: mteb/twittersemeval2015-pairclassification
|
| 5487 |
+
name: MTEB TwitterSemEval2015
|
| 5488 |
+
config: default
|
| 5489 |
+
split: test
|
| 5490 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 5491 |
+
metrics:
|
| 5492 |
+
- type: cos_sim_accuracy
|
| 5493 |
+
value: 82.84556237706384
|
| 5494 |
+
- type: cos_sim_ap
|
| 5495 |
+
value: 63.28364215788651
|
| 5496 |
+
- type: cos_sim_f1
|
| 5497 |
+
value: 60.00000000000001
|
| 5498 |
+
- type: cos_sim_precision
|
| 5499 |
+
value: 54.45161290322581
|
| 5500 |
+
- type: cos_sim_recall
|
| 5501 |
+
value: 66.80738786279683
|
| 5502 |
+
- type: dot_accuracy
|
| 5503 |
+
value: 82.84556237706384
|
| 5504 |
+
- type: dot_ap
|
| 5505 |
+
value: 63.28364302860433
|
| 5506 |
+
- type: dot_f1
|
| 5507 |
+
value: 60.00000000000001
|
| 5508 |
+
- type: dot_precision
|
| 5509 |
+
value: 54.45161290322581
|
| 5510 |
+
- type: dot_recall
|
| 5511 |
+
value: 66.80738786279683
|
| 5512 |
+
- type: euclidean_accuracy
|
| 5513 |
+
value: 82.84556237706384
|
| 5514 |
+
- type: euclidean_ap
|
| 5515 |
+
value: 63.28363625097978
|
| 5516 |
+
- type: euclidean_f1
|
| 5517 |
+
value: 60.00000000000001
|
| 5518 |
+
- type: euclidean_precision
|
| 5519 |
+
value: 54.45161290322581
|
| 5520 |
+
- type: euclidean_recall
|
| 5521 |
+
value: 66.80738786279683
|
| 5522 |
+
- type: manhattan_accuracy
|
| 5523 |
+
value: 82.86940454193241
|
| 5524 |
+
- type: manhattan_ap
|
| 5525 |
+
value: 63.244773709836764
|
| 5526 |
+
- type: manhattan_f1
|
| 5527 |
+
value: 60.12680942696495
|
| 5528 |
+
- type: manhattan_precision
|
| 5529 |
+
value: 55.00109433136353
|
| 5530 |
+
- type: manhattan_recall
|
| 5531 |
+
value: 66.3060686015831
|
| 5532 |
+
- type: max_accuracy
|
| 5533 |
+
value: 82.86940454193241
|
| 5534 |
+
- type: max_ap
|
| 5535 |
+
value: 63.28364302860433
|
| 5536 |
+
- type: max_f1
|
| 5537 |
+
value: 60.12680942696495
|
| 5538 |
+
- task:
|
| 5539 |
+
type: PairClassification
|
| 5540 |
+
dataset:
|
| 5541 |
+
type: mteb/twitterurlcorpus-pairclassification
|
| 5542 |
+
name: MTEB TwitterURLCorpus
|
| 5543 |
+
config: default
|
| 5544 |
+
split: test
|
| 5545 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 5546 |
+
metrics:
|
| 5547 |
+
- type: cos_sim_accuracy
|
| 5548 |
+
value: 88.32033220786278
|
| 5549 |
+
- type: cos_sim_ap
|
| 5550 |
+
value: 84.71928176006863
|
| 5551 |
+
- type: cos_sim_f1
|
| 5552 |
+
value: 76.51483333969684
|
| 5553 |
+
- type: cos_sim_precision
|
| 5554 |
+
value: 75.89184276300841
|
| 5555 |
+
- type: cos_sim_recall
|
| 5556 |
+
value: 77.14813674160764
|
| 5557 |
+
- type: dot_accuracy
|
| 5558 |
+
value: 88.32033220786278
|
| 5559 |
+
- type: dot_ap
|
| 5560 |
+
value: 84.71928330149228
|
| 5561 |
+
- type: dot_f1
|
| 5562 |
+
value: 76.51483333969684
|
| 5563 |
+
- type: dot_precision
|
| 5564 |
+
value: 75.89184276300841
|
| 5565 |
+
- type: dot_recall
|
| 5566 |
+
value: 77.14813674160764
|
| 5567 |
+
- type: euclidean_accuracy
|
| 5568 |
+
value: 88.32033220786278
|
| 5569 |
+
- type: euclidean_ap
|
| 5570 |
+
value: 84.71928045384345
|
| 5571 |
+
- type: euclidean_f1
|
| 5572 |
+
value: 76.51483333969684
|
| 5573 |
+
- type: euclidean_precision
|
| 5574 |
+
value: 75.89184276300841
|
| 5575 |
+
- type: euclidean_recall
|
| 5576 |
+
value: 77.14813674160764
|
| 5577 |
+
- type: manhattan_accuracy
|
| 5578 |
+
value: 88.27570147863545
|
| 5579 |
+
- type: manhattan_ap
|
| 5580 |
+
value: 84.68523541579755
|
| 5581 |
+
- type: manhattan_f1
|
| 5582 |
+
value: 76.51512269355146
|
| 5583 |
+
- type: manhattan_precision
|
| 5584 |
+
value: 75.62608107091825
|
| 5585 |
+
- type: manhattan_recall
|
| 5586 |
+
value: 77.42531567600862
|
| 5587 |
+
- type: max_accuracy
|
| 5588 |
+
value: 88.32033220786278
|
| 5589 |
+
- type: max_ap
|
| 5590 |
+
value: 84.71928330149228
|
| 5591 |
+
- type: max_f1
|
| 5592 |
+
value: 76.51512269355146
|
| 5593 |
+
- task:
|
| 5594 |
+
type: Clustering
|
| 5595 |
+
dataset:
|
| 5596 |
+
type: jinaai/cities_wiki_clustering
|
| 5597 |
+
name: MTEB WikiCitiesClustering
|
| 5598 |
+
config: default
|
| 5599 |
+
split: test
|
| 5600 |
+
revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
|
| 5601 |
+
metrics:
|
| 5602 |
+
- type: v_measure
|
| 5603 |
+
value: 85.30624598674467
|
| 5604 |
+
license: apache-2.0
|
| 5605 |
+
---
|
| 5606 |
+
---
|
| 5607 |
+
<h1 align="center">Snowflake's Artic-embed-s</h1>
|
| 5608 |
+
<h4 align="center">
|
| 5609 |
+
<p>
|
| 5610 |
+
<a href=#news>News</a> |
|
| 5611 |
+
<a href=#models>Models</a> |
|
| 5612 |
+
<a href=#usage>Usage</a> |
|
| 5613 |
+
<a href="#evaluation">Evaluation</a> |
|
| 5614 |
+
<a href="#contact">Contact</a> |
|
| 5615 |
+
<a href="#faq">FAQ</a>
|
| 5616 |
+
<a href="#license">License</a> |
|
| 5617 |
+
<a href="#acknowledgement">Acknowledgement</a>
|
| 5618 |
+
<p>
|
| 5619 |
+
</h4>
|
| 5620 |
+
|
| 5621 |
+
|
| 5622 |
+
## News
|
| 5623 |
+
|
| 5624 |
+
|
| 5625 |
+
04/16/2024: Release the ** Arctic-embed ** family of text empedding models. The releases are state-of-the-art for Retrieval quality at each of their representative size profiles. [Technical Report]() is coming shortly. For more details, please refer to our Github: [Arctic-Text-Embed](https://github.com/Snowflake/Arctic-Text-Embed).
|
| 5626 |
+
|
| 5627 |
+
|
| 5628 |
+
## Models
|
| 5629 |
+
|
| 5630 |
+
|
| 5631 |
+
Arctic-Embed is a suite of text embedding models that focuses on creating high-quality retrieval models optimized for performance.
|
| 5632 |
+
|
| 5633 |
+
|
| 5634 |
+
The `arctic-embedding` models achieve **state-of-the-art performance on the MTEB/BEIR leaderboard** for each of their size variants. Evaluation is performed using these [scripts](https://github.com/Snowflake-Labs/arctic-embed/tree/main/src). As shown below, each class of model size achieves SOTA retrieval accuracy compared to other top models.
|
| 5635 |
+
|
| 5636 |
+
|
| 5637 |
+
The models are trained by leveraging existing open-source text representation models, such as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval performance. First, the models are trained with large batches of query-document pairs where negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public datasets and proprietary web search data. Following pretraining models are further optimized with long training on a smaller dataset (about 1m samples) of triplets of query, positive document, and negative document derived from hard harmful mining. Mining of the negatives and data curation is crucial to retrieval accuracy. A detailed technical report will be available shortly.
|
| 5638 |
+
|
| 5639 |
+
|
| 5640 |
+
| Name | MTEB Retrieval Score (NDCG @ 10) | Parameters (Millions) | Embedding Dimension |
|
| 5641 |
+
| ----------------------------------------------------------------------- | -------------------------------- | --------------------- | ------------------- |
|
| 5642 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-xs/) | 50.15 | 22 | 384 |
|
| 5643 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-s/) | 51.98 | 33 | 384 |
|
| 5644 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-m/) | 54.90 | 110 | 768 |
|
| 5645 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-m-long/) | 54.83 | 137 | 768 |
|
| 5646 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-l/) | 55.98 | 335 | 1024 |
|
| 5647 |
+
|
| 5648 |
+
|
| 5649 |
+
Aside from being great open-source models, the largest model, [arctic-embed-l](https://huggingface.co/Snowflake/arctic-embed-l/), can serve as a natural replacement for closed-source embedding, as shown below.
|
| 5650 |
+
|
| 5651 |
+
|
| 5652 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5653 |
+
| ------------------------------------------------------------------ | -------------------------------- |
|
| 5654 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-l/) | 55.98 |
|
| 5655 |
+
| Google-gecko-text-embedding | 55.7 |
|
| 5656 |
+
| text-embedding-3-large | 55.44 |
|
| 5657 |
+
| Cohere-embed-english-v3.0 | 55.00 |
|
| 5658 |
+
| bge-large-en-v1.5 | 54.29 |
|
| 5659 |
+
|
| 5660 |
+
|
| 5661 |
+
### [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-xs/)
|
| 5662 |
+
|
| 5663 |
+
|
| 5664 |
+
This tiny model packs quite the punch based on the [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) model. With only 22m parameters and 384 dimensions, this model should meet even the strictest latency/TCO budgets. Despite its size, its retrieval accuracy is closer to that of models with 100m paramers.
|
| 5665 |
+
|
| 5666 |
+
|
| 5667 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5668 |
+
| ------------------------------------------------------------------- | -------------------------------- |
|
| 5669 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-xs/) | 50.15 |
|
| 5670 |
+
| GIST-all-MiniLM-L6-v2 | 45.12 |
|
| 5671 |
+
| gte-tiny | 44.92 |
|
| 5672 |
+
| all-MiniLM-L6-v2 | 41.95 |
|
| 5673 |
+
| bge-micro-v2 | 42.56 |
|
| 5674 |
+
|
| 5675 |
+
|
| 5676 |
+
### Arctic-embed-m
|
| 5677 |
+
|
| 5678 |
+
|
| 5679 |
+
Based on the [all-MiniLM-L12-v2](https://huggingface.co/intfloat/e5-base-unsupervised) model, this small model does not trade off retrieval accuracy for its small size. With only 33m parameters and 384 dimensions, this model should easily allow scaling to large datasets.
|
| 5680 |
+
|
| 5681 |
+
|
| 5682 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5683 |
+
| ------------------------------------------------------------------ | -------------------------------- |
|
| 5684 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-s/) | 51.98 |
|
| 5685 |
+
| bge-small-en-v1.5 | 51.68 |
|
| 5686 |
+
| Cohere-embed-english-light-v3.0 | 51.34 |
|
| 5687 |
+
| text-embedding-3-small | 51.08 |
|
| 5688 |
+
| e5-small-v2 | 49.04 |
|
| 5689 |
+
|
| 5690 |
+
|
| 5691 |
+
### [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-m-long/)
|
| 5692 |
+
|
| 5693 |
+
|
| 5694 |
+
Based on the [nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) model, this long-context variant of our medium-sized model is perfect for workloads that can be constrained by the regular 512 token context of our other models. Without the use of RPE, this model supports up to 2048 tokens. With RPE, it can scale to 8192!
|
| 5695 |
+
|
| 5696 |
+
|
| 5697 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5698 |
+
| ------------------------------------------------------------------ | -------------------------------- |
|
| 5699 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-m/) | 54.90 |
|
| 5700 |
+
| bge-base-en-v1.5 | 53.25 |
|
| 5701 |
+
| nomic-embed-text-v1.5 | 53.01 |
|
| 5702 |
+
| GIST-Embedding-v0 | 52.31 |
|
| 5703 |
+
| gte-base | 52.31 |
|
| 5704 |
+
|
| 5705 |
+
|
| 5706 |
+
### Arctic-embed-m
|
| 5707 |
+
|
| 5708 |
+
|
| 5709 |
+
Based on the [intfloat/e5-base-unsupervised](https://huggingface.co/intfloat/e5-base-unsupervised) model, this medium model is the workhorse that provides the best retrieval performance without slowing down inference.
|
| 5710 |
+
|
| 5711 |
+
|
| 5712 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5713 |
+
| ------------------------------------------------------------------ | -------------------------------- |
|
| 5714 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-m/) | 54.90 |
|
| 5715 |
+
| bge-base-en-v1.5 | 53.25 |
|
| 5716 |
+
| nomic-embed-text-v1.5 | 53.25 |
|
| 5717 |
+
| GIST-Embedding-v0 | 52.31 |
|
| 5718 |
+
| gte-base | 52.31 |
|
| 5719 |
+
|
| 5720 |
+
|
| 5721 |
+
### [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-l/)
|
| 5722 |
+
|
| 5723 |
+
|
| 5724 |
+
Based on the [intfloat/e5-large-unsupervised](https://huggingface.co/intfloat/e5-large-unsupervised) model, this small model does not sacrifice retrieval accuracy for its small size.
|
| 5725 |
+
|
| 5726 |
+
|
| 5727 |
+
| Model Name | MTEB Retrieval Score (NDCG @ 10) |
|
| 5728 |
+
| ------------------------------------------------------------------ | -------------------------------- |
|
| 5729 |
+
| [arctic-embed-s](https://huggingface.co/Snowflake/arctic-embed-l/) | 55.98 |
|
| 5730 |
+
| UAE-Large-V1 | 54.66 |
|
| 5731 |
+
| bge-large-en-v1.5 | 54.29 |
|
| 5732 |
+
| mxbai-embed-large-v1 | 54.39 |
|
| 5733 |
+
| e5-Large-v2 | 50.56 |
|
| 5734 |
+
|
| 5735 |
+
|
| 5736 |
+
## Usage
|
| 5737 |
+
|
| 5738 |
+
|
| 5739 |
+
### Using Huggingface transformers
|
| 5740 |
+
|
| 5741 |
+
|
| 5742 |
+
You can use the transformers package to use an arctic-embed model, as shown below. For optimal retrieval quality, use the CLS token to embed each text portion and use the query prefix below (just on the query).
|
| 5743 |
+
|
| 5744 |
+
|
| 5745 |
+
|
| 5746 |
+
```python
|
| 5747 |
+
import torch
|
| 5748 |
+
from transformers import AutoModel, AutoTokenizer
|
| 5749 |
+
|
| 5750 |
+
tokenizer = AutoTokenizer.from_pretrained('Snowflake/arctic-embed-')
|
| 5751 |
+
model = AutoModel.from_pretrained('Snowflake/arctic-embed-s', add_pooling_layer=False)
|
| 5752 |
+
model.eval()
|
| 5753 |
+
|
| 5754 |
+
query_prefix = 'Represent this sentence for searching relevant passages: '
|
| 5755 |
+
queries = ['what is snowflake?', 'Where can I get the best tacos?']
|
| 5756 |
+
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
|
| 5757 |
+
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 5758 |
+
|
| 5759 |
+
documents = ['The Data Cloud!', 'Mexico City of Course!']
|
| 5760 |
+
document_tokens = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 5761 |
+
|
| 5762 |
+
# Compute token embeddings
|
| 5763 |
+
with torch.no_grad():
|
| 5764 |
+
query_embeddings = model(**query_tokens)[0][:, 0]
|
| 5765 |
+
doument_embeddings = model(**document_tokens)[0][:, 0]
|
| 5766 |
+
|
| 5767 |
+
|
| 5768 |
+
# normalize embeddings
|
| 5769 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
|
| 5770 |
+
doument_embeddings = torch.nn.functional.normalize(doument_embeddings, p=2, dim=1)
|
| 5771 |
+
|
| 5772 |
+
scores = torch.mm(query_embeddings, doument_embeddings.transpose(0, 1))
|
| 5773 |
+
for query, query_scores in zip(queries, scores):
|
| 5774 |
+
doc_score_pairs = list(zip(documents, query_scores))
|
| 5775 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
| 5776 |
+
#Output passages & scores
|
| 5777 |
+
print("Query:", query)
|
| 5778 |
+
for document, score in doc_score_pairs:
|
| 5779 |
+
print(score, document)
|
| 5780 |
+
```
|
| 5781 |
+
|
| 5782 |
+
|
| 5783 |
+
If you use the long context model with more than 2048 tokens, ensure that you initialize the model like below instead. This will use [RPE](https://arxiv.org/abs/2104.09864) to allow up to 8192 tokens.
|
| 5784 |
+
|
| 5785 |
+
|
| 5786 |
+
``` py
|
| 5787 |
+
model = AutoModel.from_pretrained('Snowflake/arctic-embed-m-long', trust_remote_code=True, rotary_scaling_factor=2)
|
| 5788 |
+
```
|
| 5789 |
+
|
| 5790 |
+
|
| 5791 |
+
## FAQ
|
| 5792 |
+
|
| 5793 |
+
|
| 5794 |
+
TBD
|
| 5795 |
+
|
| 5796 |
+
|
| 5797 |
+
## Contact
|
| 5798 |
+
|
| 5799 |
+
|
| 5800 |
+
Feel free to open an issue or pull request if you have any questions or suggestions about this project.
|
| 5801 |
+
You also can email Daniel Campos([email protected]).
|
| 5802 |
+
|
| 5803 |
+
|
| 5804 |
+
## License
|
| 5805 |
+
|
| 5806 |
+
|
| 5807 |
+
Arctic is licensed under the [Apache-2](https://www.apache.org/licenses/LICENSE-2.0). The released models can be used for commercial purposes free of charge.
|
| 5808 |
+
|
| 5809 |
+
|
| 5810 |
+
## Acknowledgement
|
| 5811 |
+
|
| 5812 |
+
|
| 5813 |
+
We want to thank the open-source community, which has provided the great building blocks upon which we could make our models.
|
| 5814 |
+
We thank our modeling engineers, Danmei Xu, Luke Merrick, Gaurav Nuti, and Daniel Campos, for making these great models possible.
|
| 5815 |
+
We thank our leadership, Himabindu Pucha, Kelvin So, Vivek Raghunathan, and Sridhar Ramaswamy, for supporting this work.
|
| 5816 |
+
We also thank the open-source community for producing the great models we could build on top of and making these releases possible.
|
| 5817 |
+
Finally, we thank the researchers who created BEIR and MTEB benchmarks.
|
| 5818 |
+
It is largely thanks to their tireless work to define what better looks like that we could improve model performance.
|