DF_Arena_1B_V_1 / pipeline_antispoofing.py
Speech-Arena-2025's picture
initial commit
86a2cc3
from transformers import Pipeline
import torch
from .feature_extraction_antispoofing import AntispoofingFeatureExtractor
class AntispoofingPipeline(Pipeline):
def __init__(self, model, **kwargs):
super().__init__(model=model, **kwargs)
self.feature_extractor = AntispoofingFeatureExtractor()
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
postprocess_kwargs = {}
if "sampling_rate" in kwargs:
preprocess_kwargs["sampling_rate"] = kwargs["sampling_rate"]
return preprocess_kwargs, {}, postprocess_kwargs
def preprocess(self, audio, sampling_rate=16000):
audio = self.feature_extractor(audio)['input_values']
inputs = {"input_values": audio}
return inputs
def _forward(self, model_inputs):
outputs = self.model(**model_inputs)
return outputs
def postprocess(self, model_outputs):
logits = model_outputs['logits']
probs = torch.nn.functional.softmax(logits, dim=-1)
predicted_class = torch.argmax(probs, dim=-1).item()
confidence = probs[0][predicted_class].item()
return {
"label": self.model.config.id2label[predicted_class],
"logits": logits.tolist(),
"score": confidence,
"all_scores": {
self.model.config.id2label[i]: probs[0][i].item()
for i in range(len(probs[0]))
}
}