Create 1c3a.py
Browse files
1c3a.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Added Retrain all clusters or only from new folder options
|
| 2 |
+
import os
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.cluster import KMeans
|
| 6 |
+
from tensorflow.keras.models import load_model
|
| 7 |
+
from sklearn.svm import SVC
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from joblib import dump, load
|
| 10 |
+
from sklearn.cluster import KMeans
|
| 11 |
+
from keras.models import Sequential
|
| 12 |
+
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
|
| 13 |
+
import tensorflow as tf
|
| 14 |
+
|
| 15 |
+
# Define desired image size
|
| 16 |
+
img_size = (1000, 1000)
|
| 17 |
+
|
| 18 |
+
def load_images_from_folder(folder):
|
| 19 |
+
"""
|
| 20 |
+
Load and resize images from the specified folder.
|
| 21 |
+
|
| 22 |
+
:param folder: The path to the folder containing the images to load.
|
| 23 |
+
:return: A tuple containing a list of loaded and resized images and a list of their corresponding file paths.
|
| 24 |
+
"""
|
| 25 |
+
images = []
|
| 26 |
+
image_paths = []
|
| 27 |
+
for filename in os.listdir(folder):
|
| 28 |
+
file_path = os.path.join(folder, filename)
|
| 29 |
+
if os.path.isdir(file_path):
|
| 30 |
+
subfolder_images, subfolder_image_paths = load_images_from_folder(file_path)
|
| 31 |
+
images.extend(subfolder_images)
|
| 32 |
+
image_paths.extend(subfolder_image_paths)
|
| 33 |
+
elif filename.endswith(('.png', '.jpg', '.jpeg')):
|
| 34 |
+
img = cv2.imread(file_path, 0)
|
| 35 |
+
img = cv2.resize(img, img_size)
|
| 36 |
+
images.append(img)
|
| 37 |
+
image_paths.append(file_path)
|
| 38 |
+
return images, image_paths
|
| 39 |
+
|
| 40 |
+
def train_model(folder, model_file):
|
| 41 |
+
"""
|
| 42 |
+
Train a model for the specified folder and save it to the specified file.
|
| 43 |
+
|
| 44 |
+
:param folder: The path to the folder containing the training data.
|
| 45 |
+
:param model_file: The path to the file where the trained model will be saved.
|
| 46 |
+
"""
|
| 47 |
+
# Load and resize training data
|
| 48 |
+
images, image_paths = load_images_from_folder(folder)
|
| 49 |
+
images = np.array(images, dtype=object)
|
| 50 |
+
|
| 51 |
+
# Check if there are enough images
|
| 52 |
+
if len(images) > 0:
|
| 53 |
+
# Normalize pixel values
|
| 54 |
+
images = images.astype('float32') / 255.0
|
| 55 |
+
|
| 56 |
+
# Create CNN model
|
| 57 |
+
model = Sequential()
|
| 58 |
+
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(img_size[0], img_size[1], 1)))
|
| 59 |
+
model.add(MaxPooling2D((2, 2)))
|
| 60 |
+
model.add(Conv2D(64, (3, 3), activation='relu'))
|
| 61 |
+
model.add(MaxPooling2D((2, 2)))
|
| 62 |
+
model.add(Conv2D(64, (3, 3), activation='relu'))
|
| 63 |
+
model.add(Flatten())
|
| 64 |
+
model.add(Dense(64, activation='relu'))
|
| 65 |
+
model.add(Dense(1, activation='sigmoid'))
|
| 66 |
+
|
| 67 |
+
# Compile CNN model using SGD optimizer from tf.keras.optimizers.legacy
|
| 68 |
+
opt = tf.keras.optimizers.legacy.SGD()
|
| 69 |
+
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
|
| 70 |
+
|
| 71 |
+
# Convert images array to float32
|
| 72 |
+
images = images.astype(np.float32)
|
| 73 |
+
|
| 74 |
+
# Train CNN model
|
| 75 |
+
try:
|
| 76 |
+
history = model.fit(images.reshape(len(images), img_size[0], img_size[1], 1), np.ones(len(images)), epochs=2, batch_size=150)
|
| 77 |
+
# Save trained model to file
|
| 78 |
+
print(model_file, 'here')
|
| 79 |
+
model.save(model_file)
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(e)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def classify_images(folder, model_folder, n_clusters=5, new_only=False):
|
| 87 |
+
"""
|
| 88 |
+
Classify images in the specified folder using the specified model and a k-means algorithm.
|
| 89 |
+
|
| 90 |
+
:param folder: The path to the folder containing the images to classify.
|
| 91 |
+
:param model_folder: The path to the folder containing the trained model.
|
| 92 |
+
:param n_clusters: The number of clusters to form using the k-means algorithm.
|
| 93 |
+
:param new_only: Whether to classify only images in a subfolder named "new".
|
| 94 |
+
:return: A 2D list of image file paths, where each inner list corresponds to a cluster and contains the file paths of the images assigned to that cluster.
|
| 95 |
+
"""
|
| 96 |
+
# Load trained model from file
|
| 97 |
+
model_file = os.path.join(folder, os.path.basename(folder) + '.h5')
|
| 98 |
+
model = load_model(model_file)
|
| 99 |
+
|
| 100 |
+
# Load and resize images from specified folder
|
| 101 |
+
if new_only:
|
| 102 |
+
folder = os.path.join(folder, 'new')
|
| 103 |
+
images, image_paths = load_images_from_folder(folder)
|
| 104 |
+
images = np.array(images, dtype=object)
|
| 105 |
+
|
| 106 |
+
# Normalize pixel values
|
| 107 |
+
images = images.astype('float32') / 255.0
|
| 108 |
+
|
| 109 |
+
# Obtain classification scores for each image
|
| 110 |
+
scores = model.predict(images.reshape(len(images), img_size[0], img_size[1], 1), batch_size=200)
|
| 111 |
+
|
| 112 |
+
# Use k-means algorithm to cluster images based on their classification scores
|
| 113 |
+
if len(scores) >= n_clusters:
|
| 114 |
+
kmeans = KMeans(n_clusters=n_clusters, n_init=20)
|
| 115 |
+
kmeans.fit(scores)
|
| 116 |
+
|
| 117 |
+
# Create 2D list of image file paths, where each inner list corresponds to a cluster
|
| 118 |
+
clusters = [[] for _ in range(n_clusters)]
|
| 119 |
+
for i, label in enumerate(kmeans.labels_):
|
| 120 |
+
clusters[label].append(image_paths[i])
|
| 121 |
+
else:
|
| 122 |
+
clusters = [image_paths]
|
| 123 |
+
|
| 124 |
+
# Return 2D list of image file paths
|
| 125 |
+
return clusters
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def remove_empty_folders_recursively(directory):
|
| 131 |
+
"""
|
| 132 |
+
Remove and delete empty folders in the specified directory and all of its subdirectories.
|
| 133 |
+
|
| 134 |
+
:param directory: The path to the directory to remove empty folders from.
|
| 135 |
+
"""
|
| 136 |
+
for folder in os.listdir(directory):
|
| 137 |
+
folder_path = os.path.join(directory, folder)
|
| 138 |
+
if os.path.isdir(folder_path):
|
| 139 |
+
# Recursively remove empty subfolders
|
| 140 |
+
remove_empty_folders_recursively(folder_path)
|
| 141 |
+
# Remove folder if it is empty
|
| 142 |
+
if not os.listdir(folder_path):
|
| 143 |
+
os.rmdir(folder_path)
|
| 144 |
+
|
| 145 |
+
def train_model_recursively(folder, model_folder, max_depth=None, depth=0):
|
| 146 |
+
"""
|
| 147 |
+
Train a model for the specified folder and its subdirectories and save it to the specified file.
|
| 148 |
+
|
| 149 |
+
:param folder: The path to the folder containing the training data.
|
| 150 |
+
:param model_folder: The path to the folder where the trained models will be saved.
|
| 151 |
+
:param max_depth: The maximum depth of recursion. If None, recursion will continue until all subdirectories have been processed.
|
| 152 |
+
:param depth: The current depth of recursion.
|
| 153 |
+
"""
|
| 154 |
+
# Train model for current folder
|
| 155 |
+
model_file = os.path.join(model_folder, os.path.basename(folder) + '.h5')
|
| 156 |
+
train_model(folder, model_file)
|
| 157 |
+
|
| 158 |
+
# Recursively train models for subdirectories
|
| 159 |
+
if max_depth is None or depth < max_depth:
|
| 160 |
+
for subfolder in os.listdir(folder):
|
| 161 |
+
subfolder_path = os.path.join(folder, subfolder)
|
| 162 |
+
if os.path.isdir(subfolder_path):
|
| 163 |
+
model_folder = subfolder_path
|
| 164 |
+
print(model_folder,subfolder_path)
|
| 165 |
+
#print(subfolder_path,folder,subfolder,model_folder)
|
| 166 |
+
train_model_recursively(subfolder_path, model_folder, max_depth, depth + 1)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def classify_images_recursively(folder, model_folder, n_clusters=5, max_depth=None, depth=0):
|
| 170 |
+
"""
|
| 171 |
+
Classify images in the specified folder and its subdirectories using the specified model and a k-means algorithm.
|
| 172 |
+
|
| 173 |
+
:param folder: The path to the folder containing the images to classify.
|
| 174 |
+
:param model_folder: The path to the folder containing the trained models.
|
| 175 |
+
:param n_clusters: The number of clusters to form using the k-means algorithm.
|
| 176 |
+
:param max_depth: The maximum depth of recursion. If None, recursion will continue until all subdirectories have been processed.
|
| 177 |
+
:param depth: The current depth of recursion.
|
| 178 |
+
:return: A dictionary where the keys are folder paths and the values are 2D lists of image file paths, where each inner list corresponds to a cluster and contains the file paths of the images assigned to that cluster.
|
| 179 |
+
"""
|
| 180 |
+
# Classify images in current folder
|
| 181 |
+
clusters = classify_images(folder, model_folder, n_clusters)
|
| 182 |
+
result = {folder: clusters}
|
| 183 |
+
|
| 184 |
+
# Recursively classify images in subdirectories
|
| 185 |
+
if max_depth is None or depth < max_depth:
|
| 186 |
+
for subfolder in os.listdir(folder):
|
| 187 |
+
subfolder_path = os.path.join(folder, subfolder)
|
| 188 |
+
if os.path.isdir(subfolder_path):
|
| 189 |
+
result.update(classify_images_recursively(subfolder_path, model_folder, n_clusters, max_depth, depth + 1))
|
| 190 |
+
|
| 191 |
+
# Return result
|
| 192 |
+
return result
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def main():
|
| 197 |
+
# Train models for textcv and buttoncv folders and their subdirectories
|
| 198 |
+
train_model_recursively('textcv', 'textcv')
|
| 199 |
+
train_model_recursively('buttoncv', 'buttoncv')
|
| 200 |
+
|
| 201 |
+
# Check for and remove empty subfolders
|
| 202 |
+
remove_empty_folders_recursively('textcv')
|
| 203 |
+
remove_empty_folders_recursively('buttoncv')
|
| 204 |
+
|
| 205 |
+
# Classify images in textcv and buttoncv folders and their subdirectories
|
| 206 |
+
text_clusters = classify_images_recursively('textcv', 'models')
|
| 207 |
+
button_clusters = classify_images_recursively('buttoncv', 'models')
|
| 208 |
+
try:
|
| 209 |
+
# Move images in textcv clusters to new folders
|
| 210 |
+
for folder, clusters in text_clusters.items():
|
| 211 |
+
for i, cluster in enumerate(clusters):
|
| 212 |
+
cluster_folder = os.path.join(folder, f'cluster_{i}')
|
| 213 |
+
os.makedirs(cluster_folder, exist_ok=True)
|
| 214 |
+
for image_path in cluster:
|
| 215 |
+
new_image_path = os.path.join(cluster_folder, os.path.basename(image_path))
|
| 216 |
+
os.rename(image_path, new_image_path)
|
| 217 |
+
|
| 218 |
+
except Exception as e:
|
| 219 |
+
print(e)
|
| 220 |
+
try:
|
| 221 |
+
# Move images in buttoncv clusters to new folders
|
| 222 |
+
for folder, clusters in button_clusters.items():
|
| 223 |
+
for i, cluster in enumerate(clusters):
|
| 224 |
+
cluster_folder = os.path.join(folder, f'cluster_{i}')
|
| 225 |
+
os.makedirs(cluster_folder, exist_ok=True)
|
| 226 |
+
for image_path in cluster:
|
| 227 |
+
new_image_path = os.path.join(cluster_folder, os.path.basename(image_path))
|
| 228 |
+
os.rename(image_path, new_image_path)
|
| 229 |
+
except Exception as e:
|
| 230 |
+
print(e)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if __name__ == '__main__':
|
| 236 |
+
main()
|
| 237 |
+
|